Nano devices for single photon source and qubit

Similar documents
Quantum Information Processing with Semiconductor Quantum Dots

The Nanotube SQUID. uhu,, M. Monthioux,, V. Bouchiat, W. Wernsdorfer, CEMES-Toulouse, CRTBT & LLN Grenoble

M.C. Escher. Angels and devils (detail), 1941

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

Coulomb blockade in metallic islands and quantum dots

Qubits: Supraleitende Quantenschaltungen. (i) Grundlagen und Messung

Superconducting qubits (Phase qubit) Quantum informatics (FKA 172)

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Fabrication / Synthesis Techniques

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Single Electron Transistor (SET)

Circuit QED with electrons on helium:

Lecture 2: Double quantum dots

Quantum physics in quantum dots

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

single-electron electron tunneling (SET)

QUANTUM TRANSPORT IN BOTTOM-UP SEMICONDUCTOR NANOSTRUCTURES

Superconducting Flux Qubits: The state of the field

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Micro & nano-cooling: electronic cooling and thermometry based on superconducting tunnel junctions


Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Single Electron Transistor (SET)

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station

SMR/ JOINT ICTP-INFM SCHOOL/WORKSHOP ON "ENTANGLEMENT AT THE NANOSCALE" (28 October - 8 November 2002)

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Coherent oscillations in a charge qubit

HYSWITCH Informal meeting Chersonissos - Crete September 15th 19th 2007,

Ideal Discrete Energy Levels in Synthesized Au. Nanoparticle for Chemically Assembled. Single-Electron Transistors

Demonstration of conditional gate operation using superconducting charge qubits

Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures

Carbon based Nanoscale Electronics

Cotunneling and Kondo effect in quantum dots. Part I/II

Electronic transport in low dimensional systems

Experimental Studies of Single-Molecule Transistors

Classification of Solids

Building blocks for nanodevices

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005

Strong tunable coupling between a charge and a phase qubit

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

Experimental Quantum Computing: A technology overview

Single Electron Tunneling Examples

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

Electrical and Optical Properties. H.Hofmann

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Final Report. Superconducting Qubits for Quantum Computation Contract MDA C-A821/0000

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 1 Apr 1999

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Solid State Device Fundamentals

Lecture 2, March 2, 2017

and conversion to photons

tunneling theory of few interacting atoms in a trap

Physics and Material Science of Semiconductor Nanostructures

Design Considerations for Integrated Semiconductor Control Electronics for a Large-scale Solid State Quantum Processor

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Quantum Noise Measurement of a Carbon Nanotube Quantum dot in the Kondo Regime

Exploring parasitic Material Defects with superconducting Qubits

Quantum Technology: Supplying the Picks and Shovels

How a single defect can affect silicon nano-devices. Ted Thorbeck

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Supercondcting Qubits

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Lecture 2, March 1, 2018

Defense Technical Information Center Compilation Part Notice

Coherence and Correlations in Transport through Quantum Dots

LECTURE 3: Refrigeration

what happens if we make materials smaller?

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Charges and Spins in Quantum Dots

Retract. Press down D RG MG LG S. Recess. I-V Converter VNA. Gate ADC. DC Bias. 20 mk. Amplifier. Attenuators. 0.

Cooper-pair splitter: towards an efficient source of spin-entangled EPR pairs

Interaction between surface acoustic waves and a transmon qubit

The Physics of Nanoelectronics

Distributing Quantum Information with Microwave Resonators in Circuit QED

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

InAs Quantum Dots for Quantum Information Processing

Nanoimprint Lithography

Nanoelectronics 08. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture E = 2m 0 a 2 ξ 2.

Nanostructures. Lecture 13 OUTLINE

Terahertz sensing and imaging based on carbon nanotubes:

Carbon Nanotube Quantum Dot with Superconducting Leads. Kondo Effect and Andreev Reflection in CNT s

Chapter 10. Superconducting Quantum Circuits

Electronic refrigeration and thermometry in nanostructures at low temperatures

Conventional Paper I (a) (i) What are ferroelectric materials? What advantages do they have over conventional dielectric materials?

There's Plenty of Room at the Bottom

Physics of Semiconductors

Parity-Protected Josephson Qubits

Nanoelectronics. Topics

Superconducting Qubits. Nathan Kurz PHYS January 2007

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures

Tunable Non-local Spin Control in a Coupled Quantum Dot System. N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus

Single Photon Generation & Application

Quantum Confinement in Graphene

Chapter 8: Coulomb blockade and Kondo physics

Josephson charge qubits: a brief review

Quantum dynamics in Josephson junction circuits Wiebke Guichard Université Joseph Fourier/ Néel Institute Nano Department Equipe Cohérence quantique

Transcription:

Nano devices for single photon source and qubit,

Acknowledgement K. Gloos, P. Utko, P. Lindelof Niels Bohr Institute, Denmark J. Toppari, K. Hansen, S. Paraoanu, J. Pekola University of Jyvaskyla, Finland Pil-Sun Na, Joon-Sung Lee KRISS Soo-Hyun Park, Myung-Hwa Jung KBSI Hey-Mi So, Ju-Jin Kim Chonbuk National University

Outline Part I. Solid state source of single photon 1. Acousto-electric single photon source: 2DEG 2. Future plan with nanotube and nanowire Part II. Qubit 1. Superconducting qubit 2. Future plan: qubit with CNT and molecules

Part I. Solid state source of single photon

Single Photon Source [Ref. I. Abram, CNRS, France ]

Single photon sources (so far reported) spatial 2. coh. Intensity temperature Parametric downconversion good --- 10 7 /s (10 mw) room Atomic micro-maser good (0.17) --- 1 K NC diamond color center bad 0.13 2 10 4 /s room Single molecules bad 0.27 5 10 6 /s room Turnstile device bad --- 10 7 /s 50 mk Quantum dots bad < 0.07 8 10 7 /s 5 K Ref. Michael M. Petersen (NBI)

Single-photon turnstile device [Kim et. al., Semicond. Sci. Tech., 13, 8A, Stanford, 1998] Simultaneous Coulomb blockade for electrons and holes in a p-n junction

Semiconductor quantum dots [Yuan et. al., Science, 295, Cambridge, 2002] p-i-n diode containing InAs quantum dots on a GaAs substrate.

Acousto-electric single-photon source [Cambridge group (PRA 62, 01183, 2000)] 2DEG n-i-p junction

Polarized single photon

Principle of adiabatic single electron pumping [Altshuler and Glazman, Science(1999)] electric potential U(x/λ-f t) 1D metal v=λ f e e e e e e e e I=ef adiabatic pumping DC current, I = ef

SAW-induced electric potential (SAW=surface acoustic wave) SAW transducer Electric potential U(x/λ-f t) λ f = 2.88 GHz for λ =1 µm

SAWPHOTON (Project IST-2000-26020, QIPC) [NBI, Cavendish lab., Scuola Nomale Superiore, Toshiba Europe] Cross section

ef 2ef 3ef

error of ef = 25 ppm

Problems to be solved - Electron injection rate > e-h recombination rate (300 ps) (1000 ps for GaAs) Slow down the single electron injection rate

Preliminary results (NBI & KRISS) G(2e 2 /h) 2.5 2.0 1.5 1.0 0.5 0.0 T=1.8 K 0.04 0.03 0.02 0.01 0.00 dg/dv g -0.01-0.02 0 100 200 300 400 500 600 V g (mv)

4 2EI 3 2 1 0-6 -4 0-2 2 4 6 100 200 300 600 500 400 VG (mv) V SD (mv) G (e 2 /h)

V G (mv) d 2 I/dV SD dv G of the Sample 2EI (diff. wrt V G done by weighted-averaging over 4 datapoints) (AC excitation : dv SD = +-100 µv RMS ) 550 500 450 400 350 300 250 200 150 100-6 -4-2 0 2 4 6 V SD (mv) 0.05000 0.04922 0.04844 0.04766 0.04687 0.04609 0.04531 0.04453 0.04375 0.04297 0.04219 0.04141 0.04062 0.03984 0.03906 0.03828 0.03750 0.03672 0.03594 0.03516 0.03438 0.03359 0.03281 0.03203 0.03125 0.03047 0.02969 0.02891 0.02813 0.02734 0.02656 0.02578 0.02500 0.02422 0.02344 0.02266 0.02188 0.02109 0.02031 0.01953 0.01875 0.01797 0.01719 0.01641 0.01563 0.01484 0.01406 0.01328 0.01250 0.01172 0.01094 0.01016 0.009375 0.008594 0.007812 0.007031 0.006250 0.005469 0.004687 0.003906 0.003125 0.002344 0.001563 7.813E-4 0

Problems to be solved - difficult to cool down below 1 K due to high rf power 2DEG on top of LiNbO 3 (NBI & KRISS)

SAW transducer I = ef A SAW detector λ Nanotube/ Nanowire f= v/λ, v = 2.8 km/s i.e., f = 2.88 GHz for λ =1 µm I = ef = 0.46 na

1 D pn SAW n e h p

Part II. Qubit

NMR 7 qubits (MIT) Trapped Ions 4 qubits (NIST) Photons 3 qubits (ENS Paris) Cooper pair 2 qubit (NEC, Saclay, Chalmers) Flux qubit 2 qubit (Delft) Quntum dot 1 qubit

Single Cooper pair box -Q g +Q g -Q +Q E J n V g C g C E=4E c (n-q g /2e) 2 -E J cosφ >E c >E J >> k B T Qubit 0 C g V g /2e

Single superconducting Qubit Box Box V g,box V g,,box C g n SET SET C couple V bias V g,set A I V g,set A T=0K I set I set V bias -2.0-1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 V g,box

0.2 0.1 2e I SET (na) 0.0-0.1-0.2-30 -20-10 0 10 20 30 V g,box (mv) 4 <n> 2 0-2 -4 2e E c ~ 170 µev Al ~ 200 µev E J ~ 1 µev R T ~ 12 MΩ -30-20 -10 0 10 20 30 V g,box (mv)

Single Cooper-pair transistor (SCT) Current bias mode Nb 1 µm Gate E c ~ 30 µev E J ~ 30 µev R T ~ 80 kω Nb ~ 800 µev I(nA) 1.0 0.5 0.0-0.5-1.0-1.0-0.5 0.0 0.5 1.0 V(mV) I sw (pa) 90 85 80 75 70 65 60 e/c g 55-30 -20-10 0 10 20 30 V g (mv)

Superconducting qubits NEC Chalmers Saclay Delft KRISS # of qubits 2 1 1 1 1(?) Qubit type charge charge charge+phase phase charge Read out qp tunneling rf SET JJ SQUID? SET (Bloch transistor)? T φ ~ 10 ns ~ 10 ns ~ 500 ns

Multiple quantum dots on CNT Why Carbon Nanotube? Ideal 1 D quantum conductor ballistic, long coherent length relatively easy to fabricate detector (+) III II I I (-) II

Fano resonance in crossed CNTs 1 2 3 4 I:1-4 V:2-3 t 0 t r

Spin qubit with a molecular magnet?

H θ M easy axis U

Measurement of spin state by injecting spin polarized electron Molecular magnet

Gate SAM 100 nm Au nanoparticle Au electrode

Au nanoparticle δe δe 2π 2 2 /mk F V 1-2 mev (diameter = 8-10 nm)

Nano-Fabrication Facilities E-beam lithograph Evaporator (metal film) Ion milling:etching Sputtering machine (magnetic material) Clean room facilities: PR fab process, Si-based device fab Chemical synthesis: nano-particle, nano-tube, nano-wire etc.

Measurement Facilities Dilution refrigerator UHV SPM We are now attaching rf components to the dilution refrigerator We have a plan to attach photon detector to a dilution refrigerator (KBSI)

Summary Part I. Solid state source of single photon 1. Acousto-electric single photon source: 2DEG 2. Future plan with nanotube and nanowire Part II. Qubit 1. Superconducting qubit 2. Future plan: qubit with CNT and molecules