GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION. Osaka Journal of Mathematics. 51(1) P.245-P.256

Similar documents
Differential Harnack Estimates for Parabolic Equations

Existence of positive solution for a third-order three-point BVP with sign-changing Green s function

Heat kernel and Harnack inequality on Riemannian manifolds

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

EXISTENCE OF NON-OSCILLATORY SOLUTIONS TO FIRST-ORDER NEUTRAL DIFFERENTIAL EQUATIONS

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

arxiv:math/ v1 [math.nt] 3 Nov 2005

A NOTE ON S(t) AND THE ZEROS OF THE RIEMANN ZETA-FUNCTION

Convergence of the Neumann series in higher norms

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Stability and Bifurcation in a Neural Network Model with Two Delays

BOUNDEDNESS OF MAXIMAL FUNCTIONS ON NON-DOUBLING MANIFOLDS WITH ENDS

CONTRIBUTION TO IMPULSIVE EQUATIONS

Mapping Properties Of The General Integral Operator On The Classes R k (ρ, b) And V k (ρ, b)

Asymptotic instability of nonlinear differential equations

The Poisson Equation and Hermitian-Einstein Metrics on Holomorphic Vector Bundles over Complete Noncompact Kähler Manifolds

L p -L q -Time decay estimate for solution of the Cauchy problem for hyperbolic partial differential equations of linear thermoelasticity

Monotonic Solutions of a Class of Quadratic Singular Integral Equations of Volterra type

Sobolev-type Inequality for Spaces L p(x) (R N )

Nonlinear Fuzzy Stability of a Functional Equation Related to a Characterization of Inner Product Spaces via Fixed Point Technique

Matrix Versions of Some Refinements of the Arithmetic-Geometric Mean Inequality

Existence of non-oscillatory solutions of a kind of first-order neutral differential equation

THE GENERALIZED PASCAL MATRIX VIA THE GENERALIZED FIBONACCI MATRIX AND THE GENERALIZED PELL MATRIX

arxiv: v1 [math.dg] 21 Dec 2007

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero

On some Properties of Conjugate Fourier-Stieltjes Series

Properties Of Solutions To A Generalized Liénard Equation With Forcing Term

Positive continuous solution of a quadratic integral equation of fractional orders

Fractional Method of Characteristics for Fractional Partial Differential Equations

Multi-component Levi Hierarchy and Its Multi-component Integrable Coupling System

Lecture 10: The Poincaré Inequality in Euclidean space

On Gronwall s Type Integral Inequalities with Singular Kernels

Some Ramsey results for the n-cube

An Introduction to Malliavin calculus and its applications

CHARACTERIZATION OF REARRANGEMENT INVARIANT SPACES WITH FIXED POINTS FOR THE HARDY LITTLEWOOD MAXIMAL OPERATOR

arxiv: v1 [math.ca] 15 Nov 2016

Existence of positive solutions for second order m-point boundary value problems

Undetermined coefficients for local fractional differential equations

REMARK ON THE PAPER ON PRODUCTS OF FOURIER COEFFICIENTS OF CUSP FORMS 1. INTRODUCTION

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 32 (2016), ISSN

POSITIVE SOLUTIONS OF NEUTRAL DELAY DIFFERENTIAL EQUATION

An Invariance for (2+1)-Extension of Burgers Equation and Formulae to Obtain Solutions of KP Equation

FURTHER EXTENSION OF AN ORDER PRESERVING OPERATOR INEQUALITY. (communicated by M. Fujii)

arxiv: v1 [math.fa] 9 Dec 2018

Omega-limit sets and bounded solutions

On a Fractional Stochastic Landau-Ginzburg Equation

On Two Integrability Methods of Improper Integrals

THE FINITE HAUSDORFF AND FRACTAL DIMENSIONS OF THE GLOBAL ATTRACTOR FOR A CLASS KIRCHHOFF-TYPE EQUATIONS

Existence of multiple positive periodic solutions for functional differential equations

POSITIVE PERIODIC SOLUTIONS OF NONAUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS DEPENDING ON A PARAMETER

Conservation laws of a perturbed Kaup Newell equation

TO our knowledge, most exciting results on the existence

Super Ricci flow for disjoint unions

t 2 B F x,t n dsdt t u x,t dxdt

Existence Theory of Second Order Random Differential Equations

1 Solutions to selected problems

Average Number of Lattice Points in a Disk

Some operator monotone functions related to Petz-Hasegawa s functions

EXISTENCE AND UNIQUENESS THEOREMS ON CERTAIN DIFFERENCE-DIFFERENTIAL EQUATIONS

di Bernardo, M. (1995). A purely adaptive controller to synchronize and control chaotic systems.

EXISTENCE AND ITERATION OF MONOTONE POSITIVE POLUTIONS FOR MULTI-POINT BVPS OF DIFFERENTIAL EQUATIONS

Harnack inequalities and Gaussian estimates for a class of hypoelliptic operators

A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients

LINEAR INVARIANCE AND INTEGRAL OPERATORS OF UNIVALENT FUNCTIONS

Singular control of SPDEs and backward stochastic partial diffe. reflection

A sphere theorem on locally conformally flat even-dimensional manifolds

Homotopy Perturbation Method for Solving Some Initial Boundary Value Problems with Non Local Conditions

On the Stability of the n-dimensional Quadratic and Additive Functional Equation in Random Normed Spaces via Fixed Point Method

DISCRETE GRONWALL LEMMA AND APPLICATIONS

ODEs II, Lecture 1: Homogeneous Linear Systems - I. Mike Raugh 1. March 8, 2004

NEW APPROACH TO DIFFERENTIAL EQUATIONS WITH COUNTABLE IMPULSES

Class Meeting # 10: Introduction to the Wave Equation

SOME PROPERTIES OF GENERALIZED STRONGLY HARMONIC CONVEX FUNCTIONS MUHAMMAD ASLAM NOOR, KHALIDA INAYAT NOOR, SABAH IFTIKHAR AND FARHAT SAFDAR

arxiv: v1 [math.pr] 23 Jan 2019

STABILITY OF NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS

COUPLING IN THE HEISENBERG GROUP AND ITS APPLICATIONS TO GRADIENT ESTIMATES

arxiv:math/ v1 [math.ca] 16 Jun 2003

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

arxiv: v1 [math.pr] 19 Feb 2011

Attractors for a deconvolution model of turbulence

Bifurcation Analysis of a Stage-Structured Prey-Predator System with Discrete and Continuous Delays

On the cohomology groups of certain quotients of products of upper half planes and upper half spaces

LIPSCHITZ RETRACTIONS IN HADAMARD SPACES VIA GRADIENT FLOW SEMIGROUPS

EXISTENCE OF TRIPLE POSITIVE PERIODIC SOLUTIONS OF A FUNCTIONAL DIFFERENTIAL EQUATION DEPENDING ON A PARAMETER

Notes for Lecture 17-18

Boundedness and Stability of Solutions of Some Nonlinear Differential Equations of the Third-Order.

On Oscillation of a Generalized Logistic Equation with Several Delays

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Variational Iteration Method for Solving System of Fractional Order Ordinary Differential Equations

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

1 1 + x 2 dx. tan 1 (2) = ] ] x 3. Solution: Recall that the given integral is improper because. x 3. 1 x 3. dx = lim dx.

ON THE WAVE EQUATION WITH A TEMPORAL NON-LOCAL TERM

arxiv: v1 [math.pr] 4 Aug 2016

Solution of Integro-Differential Equations by Using ELzaki Transform

Approximating positive solutions of nonlinear first order ordinary quadratic differential equations

Lecture 20: Riccati Equations and Least Squares Feedback Control

Stochastic Model for Cancer Cell Growth through Single Forward Mutation

DIFFERENTIAL GEOMETRY HW 5

6.2 Transforms of Derivatives and Integrals.

Transcription:

Tile Auhor(s) GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION Zhao, Liang Ciaion Osaka Journal of Mahemaics. 51(1) P.45-P.56 Issue Dae 014-01 Tex Version publisher URL hps://doi.org/10.18910/9195 DOI 10.18910/9195 righs

Zhao, L. Osaka J. Mah. 51 (014), 45 56 GRADIENT ESTIMATES FOR A SIMPLE PARABOLIC LICHNEROWICZ EQUATION LIANG ZHAO (Received Augus, 01) Absrac In his paper, we sudy he gradien esimaes for posiive soluions o he following nonlinear parabolic equaion u f u cu «on complee noncompac manifolds wih Bakry Émery Ricci curvaure bounded below, where «, c are wo real consans and «0. 1. Inroducion Le (M n, g) be an n-dimensional complee noncompac Riemannian manifold. For a smooh real-valued funcion f on M, he drifing Laplacian is defined by f Ö f Ö. There is a naurally associaed measure d e f dv on M, which makes he operaor f self-adjoin. The N-Bakry Émery Ricci ensor is defined by Ric N f Ric Ö f 1 N d f Å d f for 0 N ½ and N 0 if and only if f 0. Here Ö is he Hessian and Ric is he Ricci ensor. Recenly, here has been an acive ineres in he sudy of gradien esimaes for he parial differenial equaion. Wu [16] gave a local Li Yau ype gradien esimae for he posiive soluions o a general nonlinear parabolic equaion u u Ö³Öu au log u qu in M [0, ], where a ¾ R, is a C -smooh funcion and q q(x, ) is a funcion, which generalizes many previous well-known gradien esimaes resuls. Zhu [18] 000 Mahemaics Subjec Classificaion. Primary 53J05; Secondary 58J35.

46 L. ZHAO invesigaed he fas diffusion equaion (1.1) u u «and he auhor go he following resuls: Theorem 1.1 (Zhu [18]). Le M be a Riemannian manifold of dimension n wih Ric(M) k for some k 0. Suppose ha Ú («(«1))u «1 is any posiive soluion o he equaion (1.1) in Q R,T B(x 0, R) [ 0 T, 0 ] M ( ½,½). Suppose also ha Ú ÉM in Q R,T. Then here exiss a consan C C(«, M) such ha in Q R,T. ÖÚ Ú 1 C ÉM 1 1 R 1 Ô T Ô k Laer, Huang and Li [5] considered he generalized equaion u f u «on Riemannian manifolds and go some ineresing gradien esimaes. Zhang and Ma [17] considered gradien esimaes for posiive soluions o he following nonlinear equaion (1.) f u cu «0 on complee noncompac manifolds. When N is finie and he N-Bakry Émery Ricci ensor is bounded from below, he auhors in [17] go a gradien esimae for posiive soluions of he above equaion (1.). Theorem 1. (Zhang and Ma [17]). Le (M, g) be a complee noncompac n-dimensional Riemannian manifold wih N-Bakry Émery Ricci ensor bounded from below by he consan K Ï K (R), where R 0 and K (R) 0 in he meric ball B R (p) around p ¾ M. Le u be a posiive soluion of (1.). Then (1) if c 0, we have Öu cu («1) (N n)(n n )c 1 (N n)[(n n 1)c 1 c ] u R R (N n)ô (N n)k c 1 R (N n)k.

GRADIENT ESTIMATES FOR A LICHNEROWICZ EQUATION 47 () if c 0, we have Öu cu («1) (A Ô A)c u «1 inf u B p (R) (N n)c 1 R Ô 1 (n N)K, A n N n N Ô A (N n)[(n n 1)c 1 c ] R (N n)ô (N n)k c 1 R where A (N n)(«1)(«) and c 1, c are absolue posiive consans. For ineresing gradien esimaes in his direcion, we can refer o [1] [] [7] [8] [9]. Recenly, a simple Lichnerowicz equaion u u p 1 u p 1, where p 1, was sudied by Ma [10]. The auhor obained a Liouville ype resul for smooh posiive soluions for he Lichnerowicz equaion in a complee non-compac Riemannian manifold wih he Ricci curvaure bounded from below. Laer, Sun and Zhao [14] sudied a generalized ellipic Lichnerowicz equaion u(x) h(x)u(x) A(x)u p (x) B(x) u q (x) on compac manifold (M, g). The auhors in [14] go he local gradien esimae for he posiive soluions of he above equaion. Moreover, hey considered he following parabolic Lichnerowicz equaion u (x, ) u(x, ) h(x)u(x, ) A(x)u p (x, ) B(x)u q (x, ) on manifold (M, g) and obained he Harnack differenial inequaliy. From he above work, we can see gradien esimaes for posiive soluions o nonlinear hea equaions are ineresing subjecs o researchers. Gradien esimaes ofen lead o Liouville ype heorems and Harnack inequaliies. For nonlinear hea equaions wih drifing Laplacians on manifolds, o ge good conrols of suiable Harnack quaniies (depending on nonlinear erms), one may need he key lower bounds assumpion abou Bakry Émery Ricci curvaures. Wihou he drifing erm, he naure assumpions are abou he Ricci curvaures. These are he main geomeric differences caused by drifing erms. A new research direcion is he nonlinear hea equaion wih negaive power, which has is roo from he Einsein-scalar Lichnerowicz equaion. In his paper, we sudy he following parabolic equaion (1.3) u f u cu «,

48 L. ZHAO where «, c are wo real consans and «0, f is a smooh real-valued funcion on M. We sae our main resuls as follows. Theorem 1.3. Le (M, g) be a complee noncompac n-dimensional Riemannian manifold wih N-Bakry Émery Ricci ensor bounded from below by he consan K Ï K (R), where R 0 and K (R) 0 in he meric ball B R (p) around p ¾ M. Le u be a posiive soluion of (1.3). Then (1) if c 0, we have Öu u cu («1) u u N n (N n)c 1 (1 Æ) 4Æ (1 )R A 1 Á () if c 0 and u («1) ÉM for all (x, ) ¾ B R (p) [0, ½). We have Öu u cu («1) u u N n (1 Æ) (N n)c 1 4Æ (1 )R («) A c ÉM(«1) 1 (1 ) where A ((n 1 Ô nk R)c 1 c c 1 )R, c 1, c, Æ are posiive consans wih 0 Æ 1 and e K. Le R ½, we can ge he following global gradien esimaes for he nonlinear parabolic equaion (1.3). Corollary 1.4. Le (M, g) be a complee noncompac n-dimensional Riemannian manifold wih N-Bakry Émery Ricci ensor bounded from below by he consan K, where K 0. Le u be a posiive soluion of (1.3). Then (1) if c 0, we have Öu u cu («1) u u N n 1 (1 Æ) Á () if c 0 and u («1) ÉM for all (x, ) ¾ M [0, ½). We have Öu cu («1) u u u N n («) c ÉM(«1) 1 (1 Æ) (1 ) here 0 Æ 1 and e K. As an applicaion, we ge he following Harnack inequaliy.,,

GRADIENT ESTIMATES FOR A LICHNEROWICZ EQUATION 49 Theorem 1.5. manifold wih Ric N f he equaion Le (M, g) be a complee noncompac n-dimensional Riemannian K, where K 0. Le u(x, ) be a posiive smooh soluion o u f u on M [0, ½). Then for any poins (x 1, 1 ) and (x, ) on M [0, ½) wih 0 1, we have he following Harnack inequaliy: u(x 1, 1 ) u(x, ) 1 (Nn) e (x 1,x, 1, )B, Ê where (x 1, x, 1, ) in f 1 4e K È d, B ((N n))(e K e K 1 ) and is any space ime pah joining (x 1, ) and (x, ). REMARK 1.6. The above Theorem 1.5 has been proved in [6], we can also ge his resul by leing c 0 and Æ 0 in Corollary 1.4. We can refer o [6] for deailed proof.. Proof of Theorem 1.3 Le u be a posiive soluion o (1.3). Se Û ln u, hen Û saisfies he equaion (.1) Û f Û ÖÛ ce Û(«1). Theorem.1. Le (M, g) be a complee noncompac n-dimensional Riemannian manifold wih N-Bakry Émery Ricci ensor bounded from below by he consan K Ï K (R), where R 0 and K (R) 0 in he meric ball B R (p) around p ¾ M. For a smooh funcion Û defined on M [0, ½) saisfies he equaion (.1), we have f F ÖÛ Ö F N n ( 1)ÖÛ F c( «)(«1)e Û(«1) ÖÛ c(«1)e Û(«1) F F, where F ( ÖÛ ce Û(«1) Û ), and e K. Proof. Define F ( ÖÛ ce Û(«1) Û ),

50 L. ZHAO where e K. I is well known ha for he N-Bakry Émery Ricci ensor, we have he Bochner formula: f ÖÛ N n f Û ÖÛÖ( f Û) K ÖÛ. Noicing f Û ( f Û) ÖÛÖÛ c(«1)e Û(«1) Û Û and f Û ÖÛ ce Û(«1) Û 1 1 ( ce Û(«1) Û ) F, we have f F ( f ÖÛ c f e Û(«1) f Û ) and ( f ÖÛ ) c((«1) e Û(«1) ÖÛ («1)e Û(«1) f Û) f Û N n f Û ÖÛÖ( f Û) K ÖÛ c(«1) e Û(«1) ÖÛ ( ce Û(«1) Û ) F N n c(«1)e Û(«1) 1 1 ( ÖÛÖÛ c(«1)e Û(«1) Û Û ) ( 1)ÖÛ F ÖÛÖ F ÖÛÖÛ [( «1)c(«1)e Û(«1) K ]ÖÛ c («1) 1 e Û(«1) 1 c(«1) Û Û c(«1)e Û(«1) F F ( ÖÛ ce Û(«1) Û ) ( ÖÛÖÛ c(«1)e Û(«1) Û Û K ÖÛ ) F ( ÖÛÖÛ c(«1)e Û(«1) Û Û K ÖÛ ).

GRADIENT ESTIMATES FOR A LICHNEROWICZ EQUATION 51 Therefore, i follows ha f F ÖÛÖ F c(«1)e Û(«1) F ÖÛÖ F N n c(«1)e Û(«1) F ÖÛÖ F N n ( 1)ÖÛ F N n [( «1)c(«1)e Û(«1) ]ÖÛ c («1) 1 e Û(«1) 1 c(«1)e Û(«1) Û F ( 1)ÖÛ F (( 1)c(«1)e Û(«1) ) ÖÛ ( «)c(«1)e Û(«1) ÖÛ F ( 1)ÖÛ F ( «)c(«1)e Û(«1) ÖÛ ( 1)c(«1)e Û(«1) F c(«1)e Û(«1) F F ÖÛ Ö F ( 1)ÖÛ F N n ( «)c(«1)e Û(«1) ÖÛ c(«1)e Û(«1) F F. ce Û(«1) 1 Û We complee he proof of Theorem.1.

5 L. ZHAO We ake a C cu-off funcion ɳ defined on [0,½) such ha ɳ(r) 1 for r ¾ [0,1], ɳ(r) 0 for r ¾ [, ½), and 0 ɳ(r) 1. Furhermore ɳ saisfies and ɳ ¼ (r) ɳ 1 (r) c 1 ɳ ¼¼ (r) c for some absolue consans c 1, c 0. Denoe by r(x) he disance beween x and p in M. Se r(x) ³(x) ɳ. R Using an argumen of Cheng and Yau [3], we can assume ³(x) ¾ C (M) wih suppor in B p (R). Direc calculaion shows ha on B p (R) (.) Ö³ ³ c 1 R. I has been shown by Qian [13] ha Hence, we have I follows ha f (r ) n 1 Ö 1 4Kr n f (r) 1 r ( f (r ) Ör ) n r n 1 r n r Ô nk. 1 Ö. 1 4Kr n (.3) f ³ ɳ¼¼ (r)ör R ɳ¼ (r) f r R (n 1 Ô nk R)c 1 c R. For T 0, le (x,s) be a poin in B R (p) [0, T ] a which ³F aains is maximum value P, and we assume ha P is posiive (oherwise he proof is rivial). A he poin (x, s), we have Ö(³F) 0, f (³F) 0, F 0.

GRADIENT ESTIMATES FOR A LICHNEROWICZ EQUATION 53 I follows ha ³ f F F f ³ F³ 1 Ö³ 0. This inequaliy ogeher wih he inequaliies (.) and (.3) yields (.4) ³ f F AF, where A (x, s), by Theorem.1, we have ³ f F ³ÖÛÖ F s³ A (n 1 Ô nk R)c 1 c c 1 R. N n ( 1)ÖÛ F s ( «)c(«1)e Û(«1) ÖÛ where he las inequaliy used c³(«1)e Û(«1) F ³ F s c 1 R ³1 FÖÛ s³ N n c³(«1)e Û(«1) F ³ F s, ( 1)ÖÛ F s ( «)c(«1)e Û(«1) ÖÛ ³ÖÛÖ F FÖÛÖ³ FÖÛ Ö³ c 1 R ³1 FÖÛ. Therefor, by (.4), we obain s³ ( 1)ÖÛ F N n s c 1 R ³1 FÖÛ AF ( «)cs³(«1)e Û(«1) ÖÛ c³(«1)e Û(«1) F ³F s. Following Davies [4] (see also Negrin [1]), we se ÖÛ F.

54 L. ZHAO Then we have ³ (( 1)s 1) F (N n)s c 1 R ³1 1 F 3 AF ( «)cs³(«1)e Û(«1) F c³(«1)e Û(«1) F ³F s. Nex, we consider he following wo cases: (1) c 0; () c 0. (1) When c 0, hen we have ³ (( 1)s 1) F (N n)s c 1 R ³1 1 F 3 AF ³F s, muliplying boh sides of he above inequaliy by s³, we have (( 1)s 1) N n So, i follows ha (³F) c 1 R ³1 1 (³F) 3 As³F ³F Æ (( 1)s 1) (³F) (N n)c1 s N n Æ (( 1)s 1) R ³F As³F ³F. N n (N n)c1 P s (1 Æ) (( 1)s 1) Æ (( 1)s 1) R As 1. Since we ge (( 1)s 1) (1 )s 1 (1 )s, P N n (N n)c 1 s (1 Æ) 4Æ (1 )R As 1. Now, (1) of Theorem 1.3 can be easily deduced from he inequaliy above. () When c 0, hen we have ³ (( 1)s 1) F (N n)s c 1 R ³1 1 F 3 AF ( «)cs³(«1) ÉMF c ÉM(«1)³F ³F s,

GRADIENT ESTIMATES FOR A LICHNEROWICZ EQUATION 55 muliplying boh sides of he above inequaliy by s³, we have (( 1)s 1) (³F) N n c 1 R ³1 1 (³F) 3 As³F ( «)cs ³ («1) ÉMF c ÉM(«1)³s F ³F Æ (( 1)s 1) (³F) (N n)c1 s N n Æ (( 1)s 1) R ³F As³F ( «)cs ³(«1) ÉMF c ÉM(«1)³s F ³F. So, i follows ha P N n (N n)c 1 s (1 Æ) 4Æ (1 )R («) As (1 ) Similarly, we can obain () of Theorem 1.3. c ÉM(«1)s 1. ACKNOWLEDGEMENT. The auhor would like o hank his supervisor Professor Kefeng Liu for his consan encouragemen and help. This work is suppored by he Posdocoral Science Foundaion of China (013M53134), Naional Naural Science Foundaion of China (Gran No. 11101085), Naional Naural Science Foundaion of China (No. 116069) and Naural Science Foundaion of Zhejiang Province of China (LQ13A010018). References [1] L. Chen and W. Chen: Gradien esimaes for a nonlinear parabolic equaion on complee non-compac Riemannian manifolds, Ann. Global Anal. Geom. 35 (009), 397 404. [] L. Chen and W. Chen: Gradien esimaes for posiive smooh f -harmonic funcions, Aca Mah. Sci. Ser. B, Engl. Ed. 30 (010), 1614 1618. [3] S.Y. Cheng and S.T. Yau: Differenial equaions on Riemannian manifolds and heir geomeric applicaions, Comm. Pure Appl. Mah. 8 (1975), 333 354. [4] E.B. Davies: Hea Kernels and Specral Theory, Cambridge Univ. Press, Cambridge, 1989. [5] G.-Y. Huang, H.-Z. Li: Gradien esimaes and enropy formulae of porous medium and fas diffusion equaions for he Wien Laplacian, (01), arxiv:mah.dg/103.548v1. [6] G.-Y. Huang and B.-Q. Ma: Gradien esimaes for a nonlinear parabolic equaion on Riemannian manifolds, Arch. Mah. (Basel) 94 (010), 65 75. [7] X.-D. Li: Liouville heorems for symmeric diffusion operaors on complee Riemannian manifolds, J. Mah. Pures Appl. (9) 84 (005), 195 1361. [8] L. Ma: Gradien esimaes for a simple ellipic equaion on complee non-compac Riemannian manifolds, J. Func. Anal. 41 (006), 374 38. [9] L. Ma: Hamilon ype esimaes for hea equaions on manifolds, (010), arxiv:mah.dg/ 1009.0603v1.

56 L. ZHAO [10] L. Ma: Liouville ype heorem and uniform bound for he Lichnerowicz equaion and he Ginzburg Landau equaion, C.R. Mah. Acad. Sci. Paris 348 (010), 993 996. [11] L. Ma and S.-H. Du: Exension of Reilly formula wih applicaions o eigenvalue esimaes for drifing Laplacians, C.R. Mah. Acad. Sci. Paris 348 (010), 103 106. [1] E.R. Negrín: Gradien esimaes and a Liouville ype heorem for he Schrödinger operaor, J. Func. Anal. 17 (1995), 198 03. [13] Z. Qian: A comparison heorem for an ellipic operaor, Poenial Anal. 8 (1998), 137 14. [14] X. Song and L. Zhao: Gradien esimaes for he ellipic and parabolic Lichnerowicz equaions on compac manifolds, Z. Angew. Mah. Phys. 61 (010), 655 66. [15] J.-Y. Wu: Upper bounds on he firs eigenvalue for a diffusion operaor via Bakry-Émery Ricci curvaure, J. Mah. Anal. Appl. 361 (010), 10 18. [16] J.-Y. Wu: Li Yau ype esimaes for a nonlinear parabolic equaion on complee manifolds, J. Mah. Anal. Appl. 369 (010), 400 407. [17] J. Zhang and B. Ma: Gradien esimaes for a nonlinear equaion ½ f u cu «0 on complee noncompac manifolds, Commun. Mah. 19 (011), 73 84. [18] X. Zhu: Hamilon s gradien esimaes and Liouville heorems for fas diffusion equaions on noncompac Riemannian manifolds, Proc. Amer. Mah. Soc. 139 (011), 1637 1644. Deparmen of Mahemaics Nanjing Universiy of Aeronauics and Asronauics Nanjing 10016 P.R. China e-mail: zhaozongliang09@163.com