Polarimetry in the E-ELT era. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Fundamentals of Polarized Light

Similar documents
Brewster Angle and Total Internal Reflection

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Brewster Angle and Total Internal Reflection

Lecture 8: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Lecture 4: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline

Lecture 11: Polarized Light. Fundamentals of Polarized Light. Descriptions of Polarized Light. Scattering Polarization. Zeeman Effect.

Lecture 6: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Hanle Effect. Outline

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence

Electromagnetic Waves Across Interfaces

Polarization. Polarization. Physics Waves & Oscillations 4/3/2016. Spring 2016 Semester Matthew Jones. Two problems to be considered today:

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Chap. 2. Polarization of Optical Waves

What is polarization?

Chiroptical Spectroscopy

linear polarization: the electric field is oriented in a single direction circular polarization: the electric field vector rotates

16. More About Polarization

Polarized Light. Second Edition, Revised and Expanded. Dennis Goldstein Air Force Research Laboratory Eglin Air Force Base, Florida, U.S.A.

Waves & Oscillations

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11-13

Polarization of Light

Phys 2310 Mon. Oct. 30, 2017 Today s Topics. Begin Modern Optics Ch. 2: The Nature of Polarized Light Reading for Next Time

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Introduction to Polarization

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11 13

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

Lecture 2: Thin Films. Thin Films. Calculating Thin Film Stack Properties. Jones Matrices for Thin Film Stacks. Mueller Matrices for Thin Film Stacks

3.4 Elliptical Parameters of the Polarization Ellipse References

Jones calculus for optical system

Lecture 4: Polarisation of light, introduction

PMARIZED LI6HT FUNDAMENTALS AND APPLICATIONS EBWABD COLLETT. Measurement Concepts, Inc. Colts Neck, New Jersey

Polarimetry. Dave McConnell, CASS Radio Astronomy School, Narrabri 30 September kpc. 8.5 GHz B-vectors Perley & Carilli (1996)

Physics 313: Laboratory 8 - Polarization of Light Electric Fields

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems

POLARIZATION FUNDAMENTAL OPTICS POLARIZATION STATES 1. CARTESIAN REPRESENTATION 2. CIRCULAR REPRESENTATION. Polarization. marketplace.idexop.

17. Jones Matrices & Mueller Matrices

Light for which the orientation of the electric field is constant although its magnitude and sign vary in time.

Polarized sunglasses. Polarization

Polarizers and Retarders

[D] indicates a Design Question

Lab #13: Polarization

EM Waves. From previous Lecture. This Lecture More on EM waves EM spectrum Polarization. Displacement currents Maxwell s equations EM Waves

Chapter 1 - The Nature of Light

POLARISATION. We have not really discussed the direction of the Electric field other that that it is perpendicular to the direction of motion.

4: birefringence and phase matching

Optics of Liquid Crystal Displays

Calculating Thin Film Stack Properties

Quarter wave plates and Jones calculus for optical system

Chap. 4. Electromagnetic Propagation in Anisotropic Media

Phys102 Lecture Diffraction of Light

Polarimetry Techniques. K. Sankarasubramanian ISRO Satellite Centre Bangalore India

Astrophysical polarimetry

FUNDAMENTALS OF POLARIZED LIGHT

POLARIZATION AND BIREFRINGENCE

Polarization Mode Dispersion

POLARIZATION OF LIGHT

Experiment 5 Polarization and Modulation of Light

Summary of Fourier Optics

Dust in the Diffuse Universe

Chapter 33: ELECTROMAGNETIC WAVES 559

Fundamentals on light scattering, absorption and thermal radiation, and its relation to the vector radiative transfer equation

Physics I Keystone Institute Technology & Management Unit-II

(Total 1 mark) IB Questionbank Physics 1

Chapter 6. Polarization Optics

Coherent Superposition of Mueller-Jones States: Synthesizing Mueller Matrices with an Ellipsometer

Jones vector & matrices

4. Circular Dichroism - Spectroscopy

Chapter 9 - Polarization

Polarization of Light and Birefringence of Materials

Topic 4: Waves 4.3 Wave characteristics

2.4 Properties of the nonlinear susceptibilities

OPTICS LAB -ECEN 5606

Light Waves and Polarization

PRINCIPLES OF PHYSICAL OPTICS

Lecture 06. Fundamentals of Lidar Remote Sensing (4) Physical Processes in Lidar

Calculating Thin Film Stack Properties. Polarization Properties of Thin Films

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization

Chapter 4: Polarization of light

Lecture 3 : Electrooptic effect, optical activity and basics of interference colors with wave plates

Goal: The theory behind the electromagnetic radiation in remote sensing. 2.1 Maxwell Equations and Electromagnetic Waves

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Polarized Light. Nikki Truss. Abstract:

September 14, Monday 4. Tools for Solar Observations-II

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002

Waves & Oscillations

Deviations from Malus Law

Electromagnetic fields and waves

Intuitive interpretation of Mueller matrices of transmission. John Freudenthal Hinds Instruments, Inc.

UE SPM-PHY-S Polarization Optics

PHY410 Optics Exam #3

Optical and Photonic Glasses. Lecture 18. Rayleigh and Mie Scattering, Colloidal Metals and Photo-elastic Properties. Professor Rui Almeida

Polarized and unpolarised transverse waves, with applications to optical systems

Instrumentation for Astrophysical. spectrum. The following chapter deals with instruments and their components that

NAWAB SHAH ALAM KHAN COLLEGE OF ENGINEERING & TECHNOLOGY UNIT II-a POLARISATION

15. Polarization. Linear, circular, and elliptical polarization. Mathematics of polarization. Uniaxial crystals. Birefringence.

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color.

Chapter 34. Electromagnetic Waves

OPTI 501, Electromagnetic Waves (3)

Transcription:

Polarimetry in the E-ELT era Fundamentals of Polarized Light 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 1

Polarized Light in the Universe Polarization indicates anisotropy not all directions are equal Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients density gradients magnetic fields electrical fields Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 2

13.7 billion year old temperature fluctuations from WMAP BICEP2 results and Planck Dust Polarization Map Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 3

Solar Magnetic Field Maps from Longitudinal Zeeman Effect Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 4

Scattering Polarization 1 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 5

Scattering Polarization 2 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 6

Unified Model of Active Galactic Nuclei Miller et al., 1991, ApJ 378, 47-64 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 7

The Power of Polarimetry T Tauri in intensity MWC147 in intensity Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 8

The Power of Polarimetry T Tauri in Linear Polarization Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl MWC147 in Linear Polarization Erice 2015, Lecture 1: Polarization 9

Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 10

The Power of Polarimetry 2 R Cr B with HST in intensity R Cr B in Linear Polarization Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 11

Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 12

Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 13

Planetary Scattered Light solar-system planets show scattering polarization much depends on cloud height can be used to study exoplanets ExPo@WHT, SPHERE@VLT, EPICS@E-ELT Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 14

Other astrophysical applications interstellar magnetic field from polarized starlight supernova asymmetries stellar magnetic fields from Zeeman effect galactic magnetic field from Faraday rotation Magnetic Fields of TTauri Stars (Courtesy S.V.Jeffers) Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 15

Summary of Polarization Origin Plane Vector Wave ansatz E = E 0 e i( k x ωt) spatially, temporally constant vector E 0 lays in plane perpendicular to propagation direction k represent E 0 in 2-D basis, unit vectors e x and e y, both perpendicular to k E 0 = E x e x + E y e y. E x, E y : arbitrary complex scalars damped plane-wave solution with given ω, k has 4 degrees of freedom (two complex scalars) additional property is called polarization many ways to represent these four quantities if E x and E y have identical phases, E oscillates in fixed plane Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 16

Polarization at Non-Normal Incidence transmitted light is p-polarized (electric field in plane of incidence) reflected light is s-polarized (electric field perpendicular to plane of incidence) at Brewster angle, reflected light is 100% polarized transmitted light is moderately polarized Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 18

Polarization Ellipse Polarization Ellipse Polarization E (t) = E 0 e i( k x ωt) E 0 = E x e iδx e x + E y e iδy e y wave vector in z-direction e x, e y : unit vectors in x, y E x, E y : (real) amplitudes δ x,y : (real) phases Polarization Description 2 complex scalars not the most useful description at given x, time evolution of E described by polarization ellipse ellipse described by axes a, b, orientation ψ Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 19

Stokes and Mueller Formalisms Stokes Vector formalism to describe polarization of quasi-monochromatic light directly related to measurable intensities Stokes vector fulfills these requirements I = I Q U V = E x Ex + E y Ey E x Ex E y Ey E x Ey + E y Ex i ( E x Ey E y Ex ) = E x 2 + E y 2 E x 2 E y 2 2 E x E y cos δ 2 E x E y sin δ Jones vector elements E x,y, real amplitudes E x,y, phase difference δ = δ y δ x I 2 Q 2 + U 2 + V 2 can describe unpolarized (Q = U = V = 0) light Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 20

Stokes Vector Interpretation I I = Q U = V degree of polarization P = intensity linear 0 linear 90 linear 45 linear 135 circular left right Q 2 + U 2 + V 2 1 for fully polarized light, 0 for unpolarized light summing of Stokes vectors = incoherent adding of quasi-monochromatic light waves I Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 22

Linear Polarization horizontal: 1 1 0 0 vertical: 1 1 0 0 45 : 1 0 1 0 Circular Polarization left: 1 0 0 1 right: 1 0 0 1 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 23

Mueller Matrices 4 4 real Mueller matrices describe (linear) transformation between Stokes vectors when passing through or reflecting from media I = M I, M = M 11 M 12 M 13 M 14 M 21 M 22 M 23 M 24 M 31 M 32 M 33 M 34 M 41 M 42 M 43 M 44 N optical elements, combined Mueller matrix is M = M N M N 1 M 2 M 1 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 24

Polarizers polarizer: optical element that produces polarized light from unpolarized input light linear, circular, or in general elliptical polarizer, depending on type of transmitted polarization linear polarizers by far the most common large variety of polarizers Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 25

Vertical Linear Polarizer M pol (θ) = 1 2 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 Horizontal Linear Polarizer M pol (θ) = 1 2 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 Mueller Matrix for Ideal Linear Polarizer at Angle θ M pol (θ) = 1 2 1 cos 2θ sin 2θ 0 cos 2θ cos 2 2θ sin 2θ cos 2θ 0 sin 2θ sin 2θ cos 2θ sin 2 2θ 0 0 0 0 0 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 26

Wire Grid Polarizers parallel conducting wires, spacing d λ act as polarizer polarization perpendicular to wires is transmitted rule of thumb: d < λ/2 strong polarization d λ high transmission of both polarization states (weak polarization) mostly used in infrared Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 27

Polaroid-type Polarizers developed by Edwin Land in 1938 Polaroid sheet polarizers: stretched polyvynil alcohol (PVA) sheet, laminated to sheet of cellulose acetate butyrate, treated with iodine PVA-iodine complex analogous to short, conducting wire cheap, can be manufactured in large sizes Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 28

Crystal-Based Polarizers crystals are basis of highest-quality polarizers precise arrangement of atom/molecules and anisotropy of index of refraction separate incoming beam into two beams with precisely orthogonal linear polarization states work well over large wavelength range many different configurations calcite most often used in crystal-based polarizers because of large birefringence, low absorption in visible many other suitable materials Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 29

Retarders or Wave Plates retards (delays) phase of one electric field component with respect to orthogonal component anisotropic material (crystal) has index of refraction that depends on polarization direction Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 30

Retarder Properties does not change intensity or degree of polarization characterized by two Stokes vectors that are not changed eigenvectors of retarder depending on polarization described by eigenvectors, retarder is linear retarder circular retarder elliptical retarder linear retarders by far the most common type of retarder Mueller Matrix for Linear Retarder M r = 1 0 0 0 0 1 0 0 0 0 cos δ sin δ 0 0 sin δ cos δ Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 31

Variable Retarders sensitive polarimeters requires retarders whose properties (retardance, fast axis orientation) can be varied quickly (modulated) retardance changes (change of birefringence): liquid crystals Faraday, Kerr, Pockels cells piezo-elastic modulators (PEM) fast axis orientation changes (change of c-axis direction): rotating fixed retarder ferro-electric liquid crystals (FLC) Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 32

Liquid Crystals liquid crystals: fluids with elongated molecules at high temperatures: liquid crystal is isotropic at lower temperature: molecules become ordered in orientation and sometimes also space in one or more dimensions liquid crystals can line up parallel or perpendicular to external electrical field Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 33

Liquid Crystal Retarders dielectric constant anisotropy often large very responsive to changes in applied electric field birefringence δn can be very large (larger than typical crystal birefringence) liquid crystal layer only a few µm thick birefringence shows strong temperature dependence Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl Erice 2015, Lecture 1: Polarization 34