SAS Example 3: Deliberately create numerical problems

Similar documents
Regression without measurement error using proc calis

Instrumental variables regression on the Poverty data

* IVEware Analysis Examples Replication for ASDA 2nd Edition * Berglund April 2017 * Chapter 13 ;

UNIVERSITY OF TORONTO MISSISSAUGA April 2009 Examinations STA431H5S Professor Jerry Brunner Duration: 3 hours

Introduction to Confirmatory Factor Analysis

Introduction to Structural Equation Modeling with Latent Variables

The Role of Leader Motivating Language in Employee Absenteeism (Mayfield: 2009)

C:\Users\Rex Kline\AppData\Local\Temp\AmosTemp\AmosScratch.amw. Date: Friday, December 5, 2014 Time: 11:20:30 AM

Multi-sample structural equation models with mean structures, with special emphasis on assessing measurement invariance in cross-national research

Chapter 13 Introduction to Structural Equation Modeling

The use of structural equation modeling to examine consumption of pornographic materials in Chinese adolescents in Hong Kong

EVALUATION OF STRUCTURAL EQUATION MODELS

DATE: 9/ L I S R E L 8.80

SEM Day 1 Lab Exercises SPIDA 2007 Dave Flora

THE GENERAL STRUCTURAL EQUATION MODEL WITH LATENT VARIATES

Covariance Structure Approach to Within-Cases

Measuring relationships among multiple responses

CONFIRMATORY FACTOR ANALYSIS

SC705: Advanced Statistics Instructor: Natasha Sarkisian Class notes: Model Building Strategies

Contrasting Marginal and Mixed Effects Models Recall: two approaches to handling dependence in Generalized Linear Models:

Handout 1: Predicting GPA from SAT

CONFIRMATORY FACTOR ANALYSIS

dm'log;clear;output;clear'; options ps=512 ls=99 nocenter nodate nonumber nolabel FORMCHAR=" = -/\<>*"; ODS LISTING;

Psychology 454: Latent Variable Modeling How do you know if a model works?

SEM Day 3 Lab Exercises SPIDA 2007 Dave Flora

Odor attraction CRD Page 1

Step 2: Select Analyze, Mixed Models, and Linear.

Confirmatory Factor Analysis. Psych 818 DeShon

E X P L O R E R. R e l e a s e A Program for Common Factor Analysis and Related Models for Data Analysis

THE GENERAL STRUCTURAL EQUATION MODEL WITH LATENT VARIATES

SAS/STAT 14.1 User s Guide. Introduction to Structural Equation Modeling with Latent Variables

Repeated Measures Part 2: Cartoon data

This is a Randomized Block Design (RBD) with a single factor treatment arrangement (2 levels) which are fixed.

9.2 User s Guide SAS/STAT. The CALIS Procedure. (Book Excerpt) SAS Documentation

SPECIAL TOPICS IN REGRESSION ANALYSIS

MIXED MODELS FOR REPEATED (LONGITUDINAL) DATA PART 2 DAVID C. HOWELL 4/1/2010

Chapter 9. Multivariate and Within-cases Analysis. 9.1 Multivariate Analysis of Variance

Inference using structural equations with latent variables

Structural Equation Modeling and Confirmatory Factor Analysis. Types of Variables

STA 431s17 Assignment Eight 1

Case of single exogenous (iv) variable (with single or multiple mediators) iv à med à dv. = β 0. iv i. med i + α 1

Subject-specific observed profiles of log(fev1) vs age First 50 subjects in Six Cities Study

Introduction to SAS proc mixed

Failure Time of System due to the Hot Electron Effect

7.3 Ridge Analysis of the Response Surface

Title. Description. Remarks and examples. stata.com. stata.com. Variable notation. methods and formulas for sem Methods and formulas for sem

Class Notes: Week 8. Probit versus Logit Link Functions and Count Data

Compiled by: Assoc. Prof. Dr Bahaman Abu Samah Department of Professional Developmentand Continuing Education Faculty of Educational Studies

Introduction to SAS proc mixed

Booklet of Code and Output for STAC32 Final Exam

Cointegration and Error-Correction

Multi-group analyses for measurement invariance parameter estimates and model fit (ML)

CO2 Handout. t(cbind(co2$type,co2$treatment,model.matrix(~type*treatment,data=co2)))

Lecture 8. Using the CLR Model

Chapter 8 (More on Assumptions for the Simple Linear Regression)

Using the same data as before, here is part of the output we get in Stata when we do a logistic regression of Grade on Gpa, Tuce and Psi.

Introduction to Structural Equation Modeling

5.3 Three-Stage Nested Design Example

over Time line for the means). Specifically, & covariances) just a fixed variance instead. PROC MIXED: to 1000 is default) list models with TYPE=VC */

Topic 23: Diagnostics and Remedies

Chapter 5. Introduction to Path Analysis. Overview. Correlation and causation. Specification of path models. Types of path models

Package semgof. February 20, 2015

Psychology 454: Latent Variable Modeling How do you know if a model works?

STAT 350. Assignment 4

Effect of Centering and Standardization in Moderation Analysis

STAT 5200 Handout #23. Repeated Measures Example (Ch. 16)

Variance. Standard deviation VAR = = value. Unbiased SD = SD = 10/23/2011. Functional Connectivity Correlation and Regression.

SAS Syntax and Output for Data Manipulation: CLDP 944 Example 3a page 1

Chapter 3: Testing alternative models of data

Example 7b: Generalized Models for Ordinal Longitudinal Data using SAS GLIMMIX, STATA MEOLOGIT, and MPLUS (last proportional odds model only)

Latent Variable Analysis

An Introduction to Mplus and Path Analysis

Pelatihan Statistika. Jonathan Sarwono

SAS Code: Joint Models for Continuous and Discrete Longitudinal Data

Introduction to Structural Equation Modelling Answers to Exercises

An Introduction to Path Analysis

Evaluation of structural equation models. Hans Baumgartner Penn State University

Using Structural Equation Modeling to Conduct Confirmatory Factor Analysis

EXST7015: Estimating tree weights from other morphometric variables Raw data print

Exploring Cultural Differences with Structural Equation Modelling

Interactions in Logistic Regression

ECON 594: Lecture #6

Manual Of The Program FACTOR. v Windows XP/Vista/W7/W8. Dr. Urbano Lorezo-Seva & Dr. Pere Joan Ferrando

Introduction to Confirmatory Factor Analysis

Week 7.1--IES 612-STA STA doc

Answers to Problem Set #4

Topic 20: Single Factor Analysis of Variance

unadjusted model for baseline cholesterol 22:31 Monday, April 19,

Chapter 11. Analysis of Variance (One-Way)

EXST Regression Techniques Page 1. We can also test the hypothesis H :" œ 0 versus H :"

Chapter 5: Multivariate Analysis and Repeated Measures

The Common Factor Model. Measurement Methods Lecture 15 Chapter 9

Multivariate Regression: Part I

Probit Estimation in gretl

Package factorqr. R topics documented: February 19, 2015

ST505/S697R: Fall Homework 2 Solution.

Week 3: Simple Linear Regression

Model Estimation Example

MLMED. User Guide. Nicholas J. Rockwood The Ohio State University Beta Version May, 2017

****Lab 4, Feb 4: EDA and OLS and WLS

Transcription:

SAS Example 3: Deliberately create numerical problems Four experiments 1. Try to fit this model, failing the parameter count rule. 2. Set φ 12 =0 to pass the parameter count rule, but still not identifiable. 3. Set β 1 =β 2 instead -- still not identifiable. 4. Set β 1 =β 2, but do not force ω>0. Page 1 of 18

/* calculus3.sas */ options linesize=79 pagesize=500 noovp formdlim='_' nodate; title 'Calculus 3: Deliberately cause trouble with identifiability'; title2 'By adding measurement error to response variable'; data math; infile 'calculus.data' firstobs=2; input id hscalc hsengl hsgpa test grade; /* Exclude some output you really don't want to see. The (persist) option means keep doing it. */ ods exclude Calis.ModelSpec.LINEQSEqInit (persist) Calis.ModelSpec.LINEQSVarExogInit (persist) Calis.ModelSpec.LINEQSCovExogInit (persist) Calis.ML.SqMultCorr (persist) Calis.izedResults.LINEQSEqStd (persist) Calis.izedResults.LINEQSVarExogStd (persist) Calis.izedResults.LINEQSCovExogStd (persist) ; proc calis cov ; /* Analyze the covariance matrix (Default is corr) */ title3 'Fails parameter count test'; var grade hsgpa test; /* Declare observed vars */ lineqs /* Simultaneous equations, separated by commas */ Fgrade = beta1 hsgpa + beta2 test + epsilon, grade = Fgrade + e; std /* Variances (not standard deviations) */ hsgpa = phi11, test = phi22, epsilon = psi, e = omega; cov /* Covariances */ hsgpa test = phi12; /* Unmentioned pairs get covariance zero */ bounds 0.0 < phi11, 0.0 < phi22, 0.0 < psi, 0.0 < omega; Log file says: WARNING: The estimation problem is not identified: There are more parameters to estimate ( 7 ) than the total number of mean and covariance elements ( 6 ). NOTE: Convergence criterion (ABSGCONV=0.00001) satisfied. NOTE: The Moore-Penrose inverse is used in computing the covariance matrix for parameter estimates. WARNING: errors and t values might not be accurate with the use of the Moore-Penrose inverse. WARNING: Critical N is not computable for df= -1. Page 2 of 18

Calculus 3: Deliberately cause trouble with identifiability 1 By adding measurement error to response variable Fails parameter count test Covariance Structure Analysis: Model and Initial Values Modeling Information Data Set WORK.MATH N Records Read 287 N Records Used 287 N Obs 287 Model Type LINEQS Analysis Covariances s in the Model Endogenous Manifest grade Latent Fgrade Exogenous Manifest hsgpa test Latent Error e epsilon Number of Endogenous s = 2 Number of Exogenous s = 4 Calculus 3: Deliberately cause trouble with identifiability 2 By adding measurement error to response variable Fails parameter count test Covariance Structure Analysis: Descriptive Statistics Simple Statistics Mean Std Dev grade 60.98955 17.73355 hsgpa 80.98293 5.97063 test 8.81533 3.56910 Calculus 3: Deliberately cause trouble with identifiability 3 By adding measurement error to response variable Fails parameter count test Covariance Structure Analysis: Optimization Initial Estimation Methods 1 Observed Moments of s 2 McDonald Method 3 Two-Stage Least Squares Optimization Start Parameter Estimates Page 3 of 18

N Parameter Estimate Gradient Lower Bound Upper Bound 1 beta1 1.46805 1.2905E-17.. 2 beta2 1.34956 1.404E-17.. 3 phi11 35.64841 1.0173E-18 0. 4 phi22 12.73851 2.8469E-18 0. 5 psi 185.72484 2.89877E-7 0. 6 omega 0.01000 2.89877E-7 0. 7 phi12 7.24928-5.581E-18.. Value of Objective Function = 0 Calculus 3: Deliberately cause trouble with identifiability 4 By adding measurement error to response variable Fails parameter count test Covariance Structure Analysis: Optimization Levenberg-Marquardt Optimization Scaling Update of More (1978) Parameter Estimates 7 Functions (Observations) 6 Lower Bounds 4 Upper Bounds 0 Optimization Start Active Constraints 0 Objective Function 0 Max Abs Gradient Element 2.8987665E-7 Radius 1 Optimization Results Iterations 0 Function Calls 4 Jacobian Calls 1 Active Constraints 0 Objective Function 0 Max Abs Gradient Element 2.8987665E-7 Lambda 0 Actual Over Pred Change 0 Radius 1 Convergence criterion (ABSGCONV=0.00001) satisfied. NOTE: The Moore-Penrose inverse is used in computing the covariance matrix for parameter estimates. WARNING: errors and t values might not be accurate with the use of the Moore-Penrose inverse. NOTE: Covariance matrix for the estimates is not full rank. Page 4 of 18

NOTE: The variance of some parameter estimates is zero or some parameter estimates are linearly related to other parameter estimates as shown in the following equations: omega = -6407030 + 34497 * psi Calculus 3: Deliberately cause trouble with identifiability 5 By adding measurement error to response variable Fails parameter count test Covariance Structure Analysis: Maximum Likelihood Estimation Fit Summary Modeling Info N Observations 287 N s 3 N Moments 6 N Parameters 7 N Active Constraints 0 Baseline Model Function Value 0.6496 Baseline Model Chi-Square 185.7968 Baseline Model Chi-Square DF 3 Pr > Baseline Model Chi-Square <.0001 Absolute Index Fit Function 0.0000 Chi-Square 0.0000 Chi-Square DF -1 Pr > Chi-Square. Z-Test of Wilson & Hilferty. Hoelter Critical N. Root Mean Square Residual (RMSR) 0.0041 ized RMSR (SRMSR) 0.0000 Goodness of Fit Index (GFI) 1.0000 Parsimony Index Adjusted GFI (AGFI). Parsimonious GFI -0.3333 RMSEA Estimate. Probability of Close Fit. ECVI Estimate 0.0426 ECVI Lower 90% Confidence Limit. ECVI Upper 90% Confidence Limit. Akaike Information Criterion 14.0000 Bozdogan CAIC Schwarz Bayesian Criterion 46.6164 39.6164 McDonald Centrality 0.9983 Incremental Index Bentler Comparative Fit Index 0.9945 Bentler-Bonett NFI 1.0000 Bentler-Bonett Non-normed Index. Bollen Normed Index Rho1. Bollen Non-normed Index Delta2 0.9946 James et al. Parsimonious NFI -0.3333 WARNING: Indices for models with negative degrees of freedom may not be interpretable. Page 5 of 18

Calculus 3: Deliberately cause trouble with identifiability 6 By adding measurement error to response variable Fails parameter count test Covariance Structure Analysis: Maximum Likelihood Estimation Linear Equations Fgrade = 1.4680*hsgpa + 1.3496*test + 1.0000 epsilon Std Err 0.1435 beta1 0.2401 beta2 t Value 10.2280 5.6206 grade = 1.0000 Fgrade + 1.0000 e Estimates for Variances of Exogenous s Type Parameter Estimate Error t Value Observed hsgpa phi11 35.64841 2.98107 11.95826 test phi22 12.73851 1.06525 11.95826 Disturbance epsilon psi 185.72484 7.76596 23.91523 Error e omega 0.01000 7.76596 0.00129 Covariances Among Exogenous s Var1 Var2 Parameter Estimate Error t Value hsgpa test phi12 7.24928 1.33099 5.44653 Earlier output Linear Equations grade = 1.4680*hsgpa + 1.3496*test + 1.0000 epsilon Std Err 0.1435 beta1 0.2401 beta2 t Value 10.2283 5.6207 Estimates for Variances of Exogenous s Type Parameter Estimate Error t Value Observed hsgpa phi11 35.64841 2.98107 11.95826 test phi22 12.73851 1.06525 11.95826 Error epsilon psi 185.72484 15.53109 11.95826 Covariances Among Exogenous s Var1 Var2 Parameter Estimate Error t Value hsgpa test phi12 7.24928 1.33099 5.44653 Page 6 of 18

proc calis cov ; /* Analyze the covariance matrix (Default is corr) */ title3 'Non-ident but passes parameter count test with phi12=0'; var grade hsgpa test; /* Declare observed vars */ lineqs /* Simultaneous equations, separated by commas */ Fgrade = beta1 hsgpa + beta2 test + epsilon, grade = Fgrade + e; std /* Variances (not standard deviations) */ hsgpa = phi11, test = phi22, epsilon = psi, e = omega; /* No covariance between expl vars */ cov /* Covariances */ hsgpa test = 0; bounds 0.0 < phi11, 0.0 < phi22, 0.0 < psi, 0.0 < omega; Log file says NOTE: Convergence criterion (ABSGCONV=0.00001) satisfied. NOTE: The Moore-Penrose inverse is used in computing the covariance matrix for parameter estimates. WARNING: errors and t values might not be accurate with the use of the Moore-Penrose inverse. WARNING: Critical N is not computable for df= 0. List file says Optimization Start Active Constraints 0 Objective Function 0.1229884791 Max Abs Gradient Element 2.8987665E-7 Radius 1 Optimization Results Iterations 0 Function Calls 4 Jacobian Calls 1 Active Constraints 0 Objective Function 0.1229884791 Max Abs Gradient Element 2.8987665E-7 Lambda 0 Actual Over Pred Change 0 Radius 1 Convergence criterion (ABSGCONV=0.00001) satisfied. NOTE: The Moore-Penrose inverse is used in computing the covariance matrix for parameter estimates. WARNING: errors and t values might not be accurate with the use of the Moore-Penrose inverse. NOTE: Covariance matrix for the estimates is not full rank. Page 7 of 18

NOTE: The variance of some parameter estimates is zero or some parameter estimates are linearly related to other parameter estimates as shown in the following equations: omega = -6407030 + 34497 * psi Calculus 3: Deliberately cause trouble with identifiability 11 By adding measurement error to response variable Non-ident but passes parameter count test with phi12=0 Covariance Structure Analysis: Maximum Likelihood Estimation Fit Summary Modeling Info N Observations 287 N s 3 N Moments 6 N Parameters 6 N Active Constraints 0 Baseline Model Function Value 0.6496 Baseline Model Chi-Square 185.7968 Baseline Model Chi-Square DF 3 Pr > Baseline Model Chi-Square <.0001 Absolute Index Fit Function 0.1230 Chi-Square 35.1747 Chi-Square DF 0 Pr > Chi-Square. Z-Test of Wilson & Hilferty. Hoelter Critical N. Root Mean Square Residual (RMSR) 13.4541 ized RMSR (SRMSR) 0.1637 Goodness of Fit Index (GFI) 0.9284 Parsimony Index Adjusted GFI (AGFI). Parsimonious GFI 0.0000 RMSEA Estimate. Probability of Close Fit. ECVI Estimate 0.0426 ECVI Lower 90% Confidence Limit. ECVI Upper 90% Confidence Limit. Akaike Information Criterion Bozdogan CAIC 47.1747 75.1316 Schwarz Bayesian Criterion 69.1316 McDonald Centrality 0.9406 Incremental Index Bentler Comparative Fit Index 0.8076 Bentler-Bonett NFI 0.8107 Bentler-Bonett Non-normed Index. Bollen Normed Index Rho1. Bollen Non-normed Index Delta2 0.8107 James et al. Parsimonious NFI 0.0000 Page 8 of 18

Calculus 3: Deliberately cause trouble with identifiability 12 By adding measurement error to response variable Non-ident but passes parameter count test with phi12=0 Covariance Structure Analysis: Maximum Likelihood Estimation Linear Equations Fgrade = 1.4680*hsgpa + 1.3496*test + 1.0000 epsilon Std Err 0.1350 beta1 0.2258 beta2 t Value 10.8767 5.9771 grade = 1.0000 Fgrade + 1.0000 e Estimates for Variances of Exogenous s Type Parameter Estimate Error t Value Observed hsgpa phi11 35.64841 2.98107 11.95826 test phi22 12.73851 1.06525 11.95826 Disturbance epsilon psi 185.72484 7.76596 23.91523 Error e omega 0.01000 7.76596 0.00129 Covariances Among Exogenous s Var1 Var2 Estimate Error t Value hsgpa test 0 Page 9 of 18

proc calis cov ; /* Analyze the covariance matrix (Default is corr) */ title3 'beta1 = beta2 = beta but phi12 ne 0'; var grade hsgpa test; /* Declare observed vars */ lineqs /* Simultaneous equations, separated by commas */ Fgrade = beta hsgpa + beta test + epsilon, grade = Fgrade + e; std /* Variances (not standard deviations) */ hsgpa = phi11, test = phi22, epsilon = psi, e = omega; /* No covariance between expl vars */ cov /* Covariances */ hsgpa test = phi12; bounds 0.0 < phi11, 0.0 < phi22, 0.0 < psi, 0.0 < omega; proc calis cov ; /* Analyze the covariance matrix (Default is corr) */ title3 'beta1 = beta2 = beta, phi12 ne 0, no bound on omega'; var grade hsgpa test; /* Declare observed vars */ lineqs /* Simultaneous equations, separated by commas */ Fgrade = beta hsgpa + beta test + epsilon, grade = Fgrade + e; std /* Variances (not standard deviations) */ hsgpa = phi11, test = phi22, epsilon = psi, e = omega; cov /* Covariances */ hsgpa test = phi12; bounds 0.0 < phi11, 0.0 < phi22, 0.0 < psi; Log file says WARNING: There are 1 active boundary or linear inequality constraints at the solution. The standard errors and chi-square test statistic assume that the solution is located in the interior of the parameter space; hence, they do not apply if it is likely that some different set of inequality constraints could be active. NOTE: The degrees of freedom are increased by the number of active constraints. The number of parameters used to calculate fit indices is decreased by the number of active constraints. To turn off the adjustment, use the NOADJDF option. WARNING: The estimated variance of error variable e is zero or very close to zero. WARNING: Although all predicted variances for the observed and latent variables are positive, the corresponding predicted covariance matrix is not positive definite. It has one zero eigenvalue. Page 10 of 18

Optimization Start Active Constraints 0 Objective Function 0.0005028148 Max Abs Gradient Element 0.0052378258 Radius 1 Actual Max Abs Over Rest Func Act Objective Obj Fun Gradient Pred Iter arts Calls Con Function Change Element Lambda Change 1* 0 4 1 0.0004825 0.000020 4.088E-7 111E-16 1.000 Optimization Results Iterations 1 Function Calls 7 Jacobian Calls 3 Active Constraints 1 Objective Function 0.0004825473 Max Abs Gradient Element 4.08842E-7 Lambda 1.110223E-14 Actual Over Pred Change 0.9999215546 Radius 2 Convergence criterion (ABSGCONV=0.00001) satisfied. Earlier results with beta1=beta2 Optimization Start Active Constraints 0 Objective Function 0.0005028133 Max Abs Gradient Element 0.0052381077 Radius 1 Actual Max Abs Over Rest Func Act Objective Obj Fun Gradient Pred Iter arts Calls Con Function Change Element Lambda Change 1 0 4 0 0.0004825 0.000020 1.091E-7 0 1.000 Optimization Results Iterations 1 Function Calls 7 Jacobian Calls 3 Active Constraints 0 Objective Function 0.0004825446 Max Abs Gradient Element 1.0907832E-7 Lambda 0 Actual Over Pred Change 1 Radius 0.0127338107 Page 11 of 18

Covariance Structure Analysis: Maximum Likelihood Estimation Linear Equations Fgrade = 1.4304*hsgpa + 1.4304*test + 1.0000 epsilon Std Err 0.1016 beta 0.1016 beta t Value 14.0720 14.0720 grade = 1.0000 Fgrade + 1.0000 e Estimates for Variances of Exogenous s Type Parameter Estimate Error t Value Observed hsgpa phi11 35.64841 2.98107 11.95826 test phi22 12.73851 1.06525 11.95826 Disturbance epsilon psi 185.82860 15.53977 11.95826 Error e omega 0 0. Covariances Among Exogenous s Var1 Var2 Parameter Estimate Error t Value hsgpa test phi12 7.24928 1.33099 5.44653 Earlier results with beta1=beta2 Reduced model with beta1 = beta2 = beta Covariance Structure Analysis: Maximum Likelihood Estimation Linear Equations grade = 1.4304*hsgpa + 1.4304*test + 1.0000 epsilon Std Err 0.1016 beta 0.1016 beta t Value 14.0724 14.0724 Estimates for Variances of Exogenous s Type Parameter Estimate Error t Value Observed hsgpa phi11 35.64841 2.98107 11.95826 test phi22 12.73851 1.06525 11.95826 Error epsilon psi 185.81825 15.53890 11.95826 Covariances Among Exogenous s Var1 Var2 Parameter Estimate Error t Value hsgpa test phi12 7.24928 1.33099 5.44653 Page 12 of 18

With omega unconstrained, log file says NOTE: The Moore-Penrose inverse is used in computing the covariance matrix for parameter estimates. WARNING: errors and t values might not be accurate with the use of the Moore-Penrose inverse. WARNING: The estimated variance of error variable e is negative. WARNING: Although all predicted variances for the observed and latent variables are positive, the corresponding predicted covariance matrix is not positive definite. It has one negative eigenvalue. WARNING: Critical N is not computable for df= 0. List file is very similar, except... Estimates for Variances of Exogenous s Type Parameter Estimate Error t Value Observed hsgpa phi11 35.64841 2.98107 11.95826 test phi22 12.73851 1.06525 11.95826 Disturbance epsilon psi 185.82860 7.76945 23.91785 Error e omega -0.01035 7.76945-0.00133 Page 13 of 18

Stay in the parameter space with different starting values From calculus2 with grade = beta hsgpa + beta test + epsilon, had Linear Equations grade = 1.4304*hsgpa + 1.4304*test + 1.0000 epsilon Std Err 0.1016 beta 0.1016 beta t Value 14.0724 14.0724 Estimates for Variances of Exogenous s Type Parameter Estimate Error t Value Observed hsgpa phi11 35.64841 2.98107 11.95826 test phi22 12.73851 1.06525 11.95826 Error epsilon psi 185.81825 15.53890 11.95826 Covariances Among Exogenous s Var1 Var2 Parameter Estimate Error t Value hsgpa test phi12 7.24928 1.33099 5.44653 /* calculus3b.sas */ options linesize=79 pagesize=500 noovp formdlim='_' ; title 'Calculus 3b: Start at another point on the maximum surface'; title2 'Deeper in parameter space'; data math; infile 'calculus.data' firstobs=2; input id hscalc hsengl hsgpa test grade; /* Exclude less output this time */ ods exclude Calis.ML.SqMultCorr (persist) Calis.izedResults.LINEQSEqStd (persist) Calis.izedResults.LINEQSVarExogStd (persist) Calis.izedResults.LINEQSCovExogStd (persist) ; /* Specify starting values to be final answer from calculus2, except split the variance of 185.81825 between psi and omega. */ proc calis cov ; /* Analyze the covariance matrix (Default is corr) */ title3 'beta1 = beta2 = beta, no bound on variances'; var grade hsgpa test; /* Declare observed vars */ lineqs /* Simultaneous equations, separated by commas */ Fgrade = beta (1.4304) hsgpa + beta (1.4304) test + epsilon, grade = Fgrade + e; std /* Variances (not standard deviations) */ hsgpa = phi11 (35.64841), test = phi22 (12.73851), epsilon = psi (100), e = omega (85.81825); cov /* Covariances */ hsgpa test = phi12 (7.24928); Page 14 of 18

Calculus 3b: Start at another point on the maximum surface 1 Deeper in parameter space beta1 = beta2 = beta, no bound on variances Covariance Structure Analysis: Model and Initial Values Modeling Information Data Set WORK.MATH N Records Read 287 N Records Used 287 N Obs 287 Model Type LINEQS Analysis Covariances s in the Model Endogenous Manifest grade Latent Fgrade Exogenous Manifest hsgpa test Latent Error e epsilon Number of Endogenous s = 2 Number of Exogenous s = 4 Initial Estimates for Linear Equations Fgrade = 1.4304*hsgpa + 1.4304*test + 1.0000 epsilon beta beta grade = 1.0000 Fgrade + 1.0000 e Initial Estimates for Variances of Exogenous s Type Parameter Estimate Observed hsgpa phi11 35.64841 Disturbance test epsilon phi22 psi 12.73851 100.00000 Error e omega 85.81825 Initial Estimates for Covariances Among Exogenous s Var1 Var2 Parameter Estimate hsgpa test phi12 7.24928 Page 15 of 18

Calculus 3b: Start at another point on the maximum surface 2 Deeper in parameter space beta1 = beta2 = beta, no bound on variances Covariance Structure Analysis: Descriptive Statistics Simple Statistics Mean Std Dev grade 60.98955 17.73355 hsgpa 80.98293 5.97063 test 8.81533 3.56910 Calculus 3b: Start at another point on the maximum surface 3 Deeper in parameter space beta1 = beta2 = beta, no bound on variances Covariance Structure Analysis: Optimization Initial Estimation Methods 1 User Specifications 2 Observed Moments of s Optimization Start Parameter Estimates N Parameter Estimate Gradient 1 beta 1.43040 7.73673E-6 2 phi11 35.64841 8.2795E-19 3 phi22 12.73851 2.9964E-18 4 psi 100.00000 1.0903E-7 5 omega 85.81825 1.0903E-7 6 phi12 7.24928-5.421E-18 Value of Objective Function = 0.0004825446 Calculus 3b: Start at another point on the maximum surface 4 Deeper in parameter space beta1 = beta2 = beta, no bound on variances Covariance Structure Analysis: Optimization Levenberg-Marquardt Optimization Scaling Update of More (1978) Parameter Estimates 6 Functions (Observations) 6 Optimization Start Active Constraints 0 Objective Function 0.0004825446 Max Abs Gradient Element 7.7367309E-6 Radius 1 Page 16 of 18

Optimization Results Iterations 0 Function Calls 4 Jacobian Calls 1 Active Constraints 0 Objective Function 0.0004825446 Max Abs Gradient Element 7.7367309E-6 Lambda 0 Actual Over Pred Change 0 Radius 1 Convergence criterion (ABSGCONV=0.00001) satisfied. NOTE: The Moore-Penrose inverse is used in computing the covariance matrix for parameter estimates. WARNING: errors and t values might not be accurate with the use of the Moore-Penrose inverse. NOTE: Covariance matrix for the estimates is not full rank. NOTE: The variance of some parameter estimates is zero or some parameter estimates are linearly related to other parameter estimates as shown in the following equations: omega = -3452756 + 34528 * psi Calculus 3b: Start at another point on the maximum surface 5 Deeper in parameter space beta1 = beta2 = beta, no bound on variances Covariance Structure Analysis: Maximum Likelihood Estimation Fit Summary Modeling Info N Observations 287 N s 3 N Moments N Parameters 6 6 N Active Constraints 0 Baseline Model Function Value 0.6496 Baseline Model Chi-Square 185.7968 Baseline Model Chi-Square DF 3 Pr > Baseline Model Chi-Square <.0001 Absolute Index Fit Function 0.0005 Chi-Square 0.1380 Chi-Square DF 0 Pr > Chi-Square. Z-Test of Wilson & Hilferty. Hoelter Critical N. Root Mean Square Residual (RMSR) 0.4367 ized RMSR (SRMSR) 0.0057 Goodness of Fit Index (GFI) 0.9997 Parsimony Index Adjusted GFI (AGFI). Parsimonious GFI 0.0000 RMSEA Estimate. Probability of Close Fit. Page 17 of 18

Calculus 3b: Start at another point on the maximum surface 6 Deeper in parameter space beta1 = beta2 = beta, no bound on variances Covariance Structure Analysis: Maximum Likelihood Estimation Linear Equations Fgrade = 1.4304*hsgpa + 1.4304*test + 1.0000 epsilon Std Err 0.1016 beta 0.1016 beta t Value 14.0725 14.0725 grade = 1.0000 Fgrade + 1.0000 e Estimates for Variances of Exogenous s Type Parameter Estimate Error t Value Observed hsgpa phi11 35.64841 2.98107 11.95826 test phi22 12.73851 1.06525 11.95826 Disturbance epsilon psi 100.00000 7.76945 12.87092 Error e omega 85.81825 7.76945 11.04560 Covariances Among Exogenous s Var1 Var2 Parameter Estimate Error t Value hsgpa test phi12 7.24928 1.33099 5.44653 Again, compare Linear Equations grade = 1.4304*hsgpa + 1.4304*test + 1.0000 epsilon Std Err 0.1016 beta 0.1016 beta t Value 14.0724 14.0724 Estimates for Variances of Exogenous s Type Parameter Estimate Error t Value Observed hsgpa phi11 35.64841 2.98107 11.95826 test phi22 12.73851 1.06525 11.95826 Error epsilon psi 185.81825 15.53890 11.95826 Covariances Among Exogenous s Var1 Var2 Parameter Estimate Error t Value hsgpa test phi12 7.24928 1.33099 5.44653 Page 18 of 18