In situ rainfall infiltration studies at a hillside in Hubei Province, China

Similar documents
An Hypothesis Concerning a Confined Groundwater Zone in Slopes of Weathered Igneous Rocks

Discussion of Response of a residual soil slope to rainfall 1

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

Which map shows the stream drainage pattern that most likely formed on the surface of this volcano? A) B)

Infiltration Characteristics of Granitic Residual Soil of Various Weathering Grades

Climate effects on landslides

University of Pretoria. Matthys Dippenaar and Louis van Rooy Engineering Geology and Hydrogeology, Geology Department July 2017, Livingstone, Zambia

Soil Mechanics for Unsaturated Soils

Prof. Stephen A. Nelson EENS 111. Groundwater

STABILITY OF SLOPES IN RESIDUAL SOILS Laurence D Wesley, University of Auckland (retired)

Unsaturated seepage behavior study using soil column test

STABILITY OF RESIDUAL SOIL SLOPES BASED ON SPATIAL DISTRIBUTION OF SOIL PROPERTIES. Harianto Rahardjo*, Alfrendo Satyanaga


Dynamic Landslide Warning from Rainfall and Soil Suction Measurement

1 Water Beneath the Surface

What is a water table? What is an aquifer? What is the difference between a spring and a well?

Predicting the soil-water characteristics of mine soils

A. V T = 1 B. Ms = 1 C. Vs = 1 D. Vv = 1

Geology and Soil Mechanics /1A ( ) Mark the best answer on the multiple choice answer sheet.

5. Which surface soil type has the slowest permeability rate and is most likely to produce flooding? A) pebbles B) sand C) silt D) clay A) B) C) D)

Quantifying shallow subsurface flow and salt transport in the Canadian Prairies

Analysis of soil failure modes using flume tests

Experiment and Modeling of Soil-Water Characteristic Curve of Unsaturated Soil in Collapsing Erosion Area

Theoretical Model and Numerical Analysis on Unsaturated Expansive Soil Slope during Digging and Climate Change Courses (II)-Numerical Analysis

Numerical Modeling of Rainfall-induced Slope Failure

Field instrumentation for performance assessment of Geobarrier System

USING UNSATURATED SOIL SHEAR STRENGTH

Study of heterogeneous vertical hyporheic flux via streambed temperature at different depths

How & Where does infiltration work? Summary of Geologic History Constraints/benefits for different geologic units

Seepage Analysis for Shurijeh Reservoir Dam Using Finite Element Method. S. Soleymani 1, A. Akhtarpur 2

Influence of Soil Characteristic and Rainfall Intensity on Matric Suction of Unsaturated Weathered Soil Slope

HYDROLOGICAL CONDITION LEADING TO LANDSLIDE INITIATION

RAINFALL-INDUCED SLOPE FAILURES: MECHANISM AND ASSESSMENT. H. Rahardjo, E.C. Leong & R.B. Rezaur

CHARACTERISTICS OF RAIN INFILTRATION IN SOIL LAYERS ON THE HILLSLOPE BEHIND IMPORTANT CULTURAL ASSET

12 SWAT USER S MANUAL, VERSION 98.1

Analysis of soil failure modes using flume tests

Stability Analysis of Landslide Dam under Rainfall

Degree of saturation effect on the grout-soil interface shear strength of soil nailing

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

3/8/17. #20 - Landslides: Mitigation and Case Histories. Questions for Thought. Questions for Thought

Water on the Earth. The distribution of all the water found on the earth's surface.

1. Water in Soils: Infiltration and Redistribution

AGENDA ITEM 6 APPENDIX /0151/DET GROUND WATER & SURFACE WATER MANAGEMENT PLAN

16 Rainfall on a Slope

,Baynes Lake. TO...?&.?...A 2...KO.?'!!&... Sr. *logical Engineer

Appendix A Landslide Probability Classification Chart

Effect of long duration rainstorm on stability of Red-clay slopes

Relationship between Shear Strength and Soil Water Characteristic Curve of an Unsaturated Granitic Residual Soil

Slope Stability Model of the Questa Rock Pile Phase 2


C) D) 3. Which graph best represents the relationship between soil particle size and the rate at which water infiltrates permeable soil?

Haiti and Dominican Republic Flash Flood Initial Planning Meeting

A Preliminary Finite-Element Analysis of a Shallow Landslide in the Alki Area of Seattle, Washington

Unloading Test with Remolded Marine Soil Sample and Disturbance Degree Assessment

Essentials of Geology, 11e

Freshwater. 1. The diagram below is a cross-sectional view of rain falling on a farm field and then moving to the water table.

MONITORING SEEPAGE FLOW THROUGH CARUACHI LEFT EMBANKMENT DAM DURING INITIAL RESERVOIR FILLING

Background. Valley fills Sites in the Area. Construction over Mine Spoil Fills

TAKING THE MYSTERY OUT OF USACE S ER DRILLING IN EARTH EMBANKMENT DAMS AND LEVEES

Research on the Concrete Dam Damage and Failure Rule under the Action of Fluid-Solid Coupling

HYDROGEOLOGICAL PROPERTIES OF THE UG2 PYROXENITE AQUIFERS OF THE BUSHVELD COMPLEX

THE MINISTRY OF ENERGY AND ENERGY INDUSTRIES MINERALS DIVISION MINE DESIGN TEMPLATE OPERATOR NAME: OPERATOR ADDRESS: PHONE NUMBER: FACSIMILE:

Monitoring and Characterization of the Meadowview Lane Landslide: Boyd County, KY

Deformation Forecasting of Huangtupo Riverside Landslide in the Case of Frequent Microseisms

Advanced Hydrology Prof. Dr. Ashu Jain Department of Civil Engineering Indian Institute of Technology, Kanpur. Lecture 6

The CPT in unsaturated soils

Mass Wasting. Revisit: Erosion, Transportation, and Deposition

2 Development of a Physically Based Hydrologic Model of the Upper Cosumnes Basin

AWRA PMAS Engineers Club of Philadelphia. A Geologic Perspective on Stormwater

Hillslope Hydrology Q 1 Q Understand hillslope runoff processes. 2. Understand the contribution of groundwater to storm runoff.

SLOPE STABILITY EVALUATION AND ACCEPTANCE STANDARDS

UGRC 144 Science and Technology in Our Lives/Geohazards

SLOPE STABILITY LAB INTRODUCTION

Observations on Surface Water in the Seminary Fen in Spring, Prepared 6/4/13 by Sam Wetterlin; updated 7/28/13

Gotechnical Investigations and Sampling

Lab 9: Petroleum and groundwater

Studies of rainfall-induced slope failures

On Compaction Characteristics and Particle Breakage of Soil-aggregate Mixture

POSSIBILITY OF UNDRAINED FLOW IN SUCTION-DEVELOPED UNSATURATED SANDY SOILS IN TRIAXIAL TESTS

Evaluation of the hydraulic gradient at an island for low-level nuclear waste disposal

LANDSLIDES IN THE WHITE MOUNTAIN (GEOTECHNICAL STUDIES AND ENGINEERING TESTS)

Forest Hydrology: Lect. 9. Contents. Runoff, soil water and infiltration

Cyclic Triaxial Behavior of an Unsaturated Silty Soil Subjected to Suction Changes

Using Weather and Climate Information for Landslide Prevention and Mitigation

Wisconsin s Hydrogeology: an overview

PREDICTING SOIL SUCTION PROFILES USING PREVAILING WEATHER

Detection of Collapse Position in Mountainous Slope by Underground Sound Method

INVESTIGATIONS OF LARGE SCALE SINKHOLE COLLAPSES, LAIBIN, GUANGXI, CHINA

Surface Processes Focus on Mass Wasting (Chapter 10)

SI Planning & Laboratory Testing for Hill-Site Development

FLOOD1 report: Appendix 3

Determining In Situ Properties of Claystone Aquitards Using Pore Pressure Responses from Grouted-in Pressure Transducers

Modeling the Interconnection between Surface and Groundwater

Table of Contents Chapter 1 Introduction to Geotechnical Engineering 1.1 Geotechnical Engineering 1.2 The Unique Nature of Soil and Rock Materials

In all of the following equations, is the coefficient of permeability in the x direction, and is the hydraulic head.

Prepared By: John Blair Sean Donahue Celeste Hoffman Kimberly Klinkers Megan Slater

Geology 229 Engineering Geology. Lecture 7. Rocks and Concrete as Engineering Material (West, Ch. 6)

WATER ON AND UNDER GROUND. Objectives. The Hydrologic Cycle

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

SOIL AND AGGREGATE FUNDAMENTALS STUDENT GUIDE AMRC April, 2006 AREA MANAGER ROADS CERTIFICATION PROGRAM FOR EDUCATIONAL PURPOSES ONLY

Transcription:

Engineering Geology 57 (2000) 31 38 www.elsevier.nl/locate/enggeo In situ rainfall infiltration studies at a hillside in Hubei Province, China J. Zhang a, J.J. Jiao b,*, J. Yang c a Yangtze River Scientific Research Institute, Wuhan 430010, People s Republic of China b Department of Earth Sciences, The University of Hong Kong, Hong Kong, People s Republic of China c Wuhan University of Hydraulic and Electric Engineering, Wuhan 430072, People s Republic of China Received 12 April 1999; accepted for publication 07 September 1999 Abstract Field infiltration tests were conducted at a hillside near the ship lock of the Three Gorges Dam in Hubei Province, China. The test site consists of residual soil and decomposed granite. The infiltration rate is estimated from the in situ tests to be 1.465 2.778 10 6 m s 1, depending on the initial water content. The rate at which the infiltration front moves down through the soil matrix within 2 m of the ground surface is estimated to be ca. 0.26 m day 1 on average. At the end of the in situ tests, the matric suction profiles show that the soil below a depth of 80 cm remained unsaturated, while the zone above was almost fully saturated. This finding was unexpected. The site was excavated after the test to examine the abnormal behaviour of the matric suction profiles in the depth. A relic joint was identified at a depth of 78 cm at an attitude almost parallel to the slope surface. It is surmised that the joint transmitted water laterally and limited further penetration of the wetting front. The water in the zone above the joint appeared to be perched. This experiment indicates that, to describe thoroughly the infiltration process within a weathered jointed granite profile for slope engineering design purposes, a model based on the assumption of a uniform porous media is inadequate. The model should include the discontinuities. This is challenging since it requires field studies to identify the pattern and distribution of the joints. The implications of the experimental results on slope stability are discussed. The in situ tests provide important information for further studying groundwater seepage under rainfall conditions and a dewatering system design for the slope above the ship lock of the Three Gorges Dam in China. 2000 Elsevier Science B.V. All rights reserved. Keywords: Groundwater; Infiltration test; Landslides; Slope failure; Soil suction; Unsaturated flow 1. Introduction slope is extremely important and requires extensive studies on the mechanical, hydraulic and The Three Gorges Dam is located at the hydrologic properties of the saturated and unsatu- Yichang County, Hubei Province, P.R. China. The rated geological materials. ship lock of the dam is excavated in granite to a Rainfall is one of the most popular triggers of depth of some 170 m. The upper some 40 m of the slope instability. The mechanisms by which raincut are in decomposed granite. The stability of the storms can lead to slope instability in the unsatu- rated zone in weathered igneous rock profiles * Corresponding author. Fax: +852-2517-6912. include rainfall infiltration, percolation in the E-mail address: jjiao@hku.hk (J. Jiao) unsaturated part of a slope, and saturated ground- 0013-7952/00/$ - see front matter 2000 Elsevier Science B.V. All rights reserved. PII: S0013-7952(99)00126-X

32 J. Zhang et al. / Engineering Geology 57 (2000) 31 38 water flow resulting in rise in groundwater tables. The annual rainfall in Yichang County is ca. However, the mechanisms are not yet fully understood. 1150 mm and most rainfall occurs from May to Experimental studies on unsaturated soils August. The maximum calendar daily rainfall was are generally costly, time-consuming and difficult 386 mm. In order to avoid the uncertainty of the to conduct ( Wang and Benson, 1995). Field natural rainfall, artificial rainfall was used for the infiltration tests have been commonly used by tests and the test period was chosen to be in the many researchers to understand groundwater dry season (March to April ). A canvas-covered recharge for water supply purposes, but the field shelter was built over the site to protect the monitoring studies of matric suction (negative pore infiltration apparatus system from natural rainfall. pressure) and rain infiltration in slopes in weathered The regional water table is >24 m below the igneous rock profiles for geotechnical ground surface and the tested soil is far above the purposes are relatively rare (Geotechnical Control regional water table. Office, 1982; Krahn et al., 1989; Lim, et al., 1996). In this paper, the result of field infiltration tests at a decomposed granite hillside near the ship lock 3. Infiltration apparatus and field measuring system of the Three Gorges Dam Area in Hubei Province, China, is reported. The in situ matric suction The emphasis of this preliminary study is to profiles are analysed and the infiltration capacity understand the infiltration rate and the hydraulic is estimated. After the test, the site was excavated features of the highly decomposed unsaturated in an attempt to understand the anomalous behaviour granitic materials. The vegetation changes signifi- of the profiles. The implications of the experi- cantly over the hillslope. The influence of vegeta- ment results on slope stability study are discussed. tion and slope angle on infiltration is complicated. The in situ tests provide important information For this preliminary study, the effect of vegetation for further studying groundwater seepage under and slope angle is avoided by selecting a relatively rainfall conditions and a dewatering system design flat area on the hillside and removing the top part for the slope above the ship lock of the Three (ca. 5 cm) of the vegetation and root zone. Gorges Dam in China. Considering the difficulties in finding a large flat area at the hillside and providing a large amount of water supply to the infiltration system, the test 2. Site description area was chosen to be 1 1m2 (Fig. 1). The main body of the artificial rain apparatus The test materials are residual soil and completely is a box of Plexiglas reinforced with a steel sheeting. decomposed granite. The colour is yellow Columns and rows of outlets are arranged on the to grey. The soil consists of 95% of medium to box bottom at a uniform spacing of 5 cm. A small coarse gravel. The dry unit weight of the soil is plastic cap is fixed at each outlet, so that a syringe ca. 2.0 g cm 3 and the porosity is ca. 0.27. The needle can be easily put in and taken off. Various hydraulic conductivity was estimated to be of the rain intensities can be simulated by adjusting water order of 10 7 ms 1 (Zhang et al., 1997). Apart pressure in the box and using different types of from the very surficial zone which is structureless syringe needle. The box can be turned over, which and has vegetation roots, the relic structure and makes it convenient to exchange syringe needles if texture of the granite remain in the soil. There are necessary. The four supporters can be screwed up well-preserved joints. The horizontal linear joint and down to set the box in a horizontal position. density is ca 0.85 2.1 m 1. The relic features will Before testing, the water pressure in the box and be destroyed after disturbance and thereby the the flow rate out of the syringe needles were mechanical and hydraulic properties will be carefully adjusted until the desirable rain intensity changed. In situ experiments can avoid disturbance to the natural soil and provide data more representative of the natural soil. is achieved. This experiment was designed to measure the two vertical suction profiles (Profiles A and B)

J. Zhang et al. / Engineering Geology 57 (2000) 31 38 33 Fig. 1. Schematic plan view of the test site. inside and near the test area (Fig. 1). At each profile, two holes of 3 cm diameter were drilled to install tensiometers. In each hole six tensiometers were installed, so one profile consists of 12 tensiometers. The vertical distance between the tensiometers in the two holes was 15 cm. The deepest tensiometer was installed at a depth of ca. 1.80 m below the surface. The horizontal distance between the two holes is small (ca. 20 cm) and at a given time during the test the difference in suction at a given depth is assumed to be negligible. There are plastic pipes connecting the tensiometers and the reading board on the ground surface. Each time after a tensiometer was installed, the hole immediately above the tensiometer was first refilled using the soil originally dug from the hole and then some grouting (cement) was added. The grouting between two tensiometers was ca. 10 cm thick. The purposes of the grouting were to fix the plastic pipes of the tensiometers and avoid any infiltration short cut between the two tensiometers. The aim of the tensiometers outside the rainfall area was to monitor the lateral dispersion of the infiltration. The tensiometer can sense the change of suction via the porous ceramic cup. After filled with de-aired water inside the cup, the surface of it will generate a film of water. When the suction is between 1 and 760 mm Hg height, water can pass through the cup but not air. After a tensiometer is installed, air-bubble-free water is filled into the tensiometer. Some water will pass through the cup, seep into the soil nearby, which influences the reading of the natural soil suction. To ensure the tensiometer to provide the correct reading, the tensiometers were installed 1 week before the test was started. It was believed that, by the time of the actual testing, the suction of the soil near the cup reached the equilibrium with the natural soil nearby. At equilibrium, the water in the tensiometer has the same negative pressure as the pore water in the soil. 4. Infiltration test The tensiometers were installed on 31 March. The infiltration test was conducted between 5 April and 9 April 1997. Before the test started, readings of the matric suction of the tensiometers were taken. They are presented in Figs. 2 and 3. The two plots show the change of suction with depth at the two profiles. As can be seen, ca. 6 days after the tensiometers were installed, a few tensiometers

34 J. Zhang et al. / Engineering Geology 57 (2000) 31 38 near the ground surface indicated a temporal increase in suction. This could be attributed to evaporation. Readings of tensiometers below 40 cm were stable and reflected the natural distribution of soil suction at this site. Two rainfall intensities were used for the test. The test actually had three periods with low rain intensity, no rain and high rain intensity (Table 1). The high rainfall period had an intensity of 2.778 10 6 ms 1, which was close to the maximum daily rain intensity in the Dam area during 1960 1968. The low rain intensity was 1.389 1.465 10 6 m s 1, equal to about half of the high intensity. The three periods lasted 64, 32 and 6.2 h, respectively. 4.1. Analysis of the infiltration test in Period I Fig. 2. Matric suction profile inside the test area (Profile A) before the 1997 test. During Period I, no surface water was ponded. Figs. 4 and 5 show the profile of suction distribution near the centre (Profile A) and the area beyond the boundary (Profile B) of the test area, respectively. As expected, the wetting front near the centre moved much faster than the area beyond the boundary. The profile in Fig. 4 shows that the Fig. 3. Matric suction profile outside the test area (Profile B) Fig. 4. Matric suction profile inside the test area (Profile A) before the 1997 test. during infiltration period I.

J. Zhang et al. / Engineering Geology 57 (2000) 31 38 35 Table 1 Test periods, time duration and rain intensity Test period Period I No rainfall Period II Time duration (h) 64 32 6.2 Starting time of different periods 5 April, 14:00 pm 6 April, 1:00 am 8 April, 6:00 am 9 April, 14:00 pm Accumulative time (h) 11 64 96 102.2 Rain intensity (10 6 ms 1) 1.465 1.389 0.0 2.778 based on the suction distribution at Profile A and water characteristic curves obtained from labora- tory testing of the same kind of soil. Details of the calculation and laboratory testing can be found in Zhang, et al. (1997). Fig. 6 shows the advance of the infiltration front with time. The front reached the depth of 70 cm after 63.5 h. The rate at which the front moved was ca 0.26 m day 1. On basis of Fig. 6, the net increase of water amount in the soil near the centre area with time can be calculated. This net increase should equal the infiltration. Fig. 7 shows how the calculated cumulative infiltration (I ) at the centre of the centre site and observed cumulative rainfall (R) change with time. As shown in Fig. 7, I calculated centre from this experiment is much less than R. For example, when t=20 h, R is ca. 2.5 times greater suction at the centre area decreased significantly at time=3 h. The significant change of the suction at a depth indicated that the infiltration front had reached the depth. At 3 h, the profile shows that the front reached somewhere between the second and the third tensiometers. The suction of the Profile B, however, did not show any change at this time. This indicates that the lateral dispersion of infiltration did not reach this location yet. At Profile A, after 30 h, the soil above 60 cm became almost fully saturated. However, some tensiometers above 60 cm at Profile B still showed negative pressure. Even after 64 h, the soil suction below 80 cm did not change much. Fig. 6 is the water content profile calculated Fig. 5. Matric suction profile outside the test area (Profile B) Fig. 6. Water content profile inside the test area (Profile A) during infiltration period I. during infiltration period I.

36 J. Zhang et al. / Engineering Geology 57 (2000) 31 38 Fig. 7. Observed cumulative rainfall (R) and calculated cumulative infiltration at the centre (I centre ) via time in Period I. than I centre. It appears that a large portion of infiltrated water somehow disappeared from the system. Another interesting point is that, even after 64 h infiltration, matric suction below 80 cm did not indicate much change, as shown in Figs. 4 and 5. It seems that the infiltration front stopped for some reasons at the depth of ca. 80 cm. 4.2. Analysis of the infiltration test in Period II After Period I, the infiltration stopped for 32 h before Period II started. The rain intensity in Fig. 9. Matric suction profile outside the test area (Profile B) during infiltration period II. Period II was 2.778 10 6 ms 1. Figs. 8 and 9 show the matric suction profile before and during Period II. It can be seen that suction increased slightly at the end of no rain period (see the curve at time=95 h 51 min), which indicates the redistribution of soil moisture. However, suction of below 80 cm depth again did not show any visible change. About 10 min after the infiltration in Period II, surface water ponding was generated, but the ponding was not significant even after 6 h of infiltration and the thickness of the water on the surface was <1 cm. The matric suction in the shallow zone responded to rainfall quickly and the soil became saturated soon, but the matric suction in the deep zone remained almost unchanged. 5. Excavation of the site after the test Fig. 8. Matric suction profile inside the test area (Profile A) during infiltration period II. After the test, the site was excavated in an attempt to understand the anomalous behaviour of the suction profiles and to check if the tensiometers were installed properly. The excavation started from the downhill side of the test area and gradually advanced to the centre of the site. At the

J. Zhang et al. / Engineering Geology 57 (2000) 31 38 37 include the discontinuities. This is challenging since it requires field studies to identify the pattern and distribution of the joints. The infiltration pattern can be significantly dis- turbed by the presence of geological discontinuities. On the basis of this infiltration test, the (I ) calculated from a model based on a con- influence of the joint on infiltration can be shown centre tinuous soil medium was much lower than the schematically in Fig. 10. Due to presence of the actual infiltration rate (R). relic joint, at the end of both test periods, the soil In addition, excavation showed that all the below 80 cm remained unsaturated, while the shaltensiometers were installed properly, but the bore low zone was almost fully saturated. This locally holes were not quite vertical and the depth of some saturated zone may behave like a perched aquifer tensiometers was slightly different from expected. to some degree, although it is conceptually very The vertical location of the tensiometers was then different from the conventional perched aquifer corrected before the data were used for analysis. which requires a relatively low permeability layer The excavation also showed that the lateral penetration of the cement was limited and it is believed improve the stability of the slope since it reduces (Todd, 1980). The lateral flow due to the joint can that the influence of the cement on the overall significantly the supply of rainwater to the regional permeability of the soil was insignificant. distance of 85 cm from the northern boundary of the test area and at a depth of 1.2 1.3 m, there was a horizontal seepage zone and it was quite obvious that the seepage came from the infiltrated water. After a careful examination, the water was found to seep out along a relic joint. Further excavation toward the centre of the test site indicated that the joint had a gentle dip angle (<20 ) with roughly the same dip direction as the slope. The joint extended all the way beyond the southern side of the test area and cut through the centre of the test site at a depth of 78 cm. It is suggested that the discontinuity is a controlling factor in the process of infiltration. The existence of the joint explained abnormal behaviour of the vertical suction distribution. Rainfall penetrated down until it reached the joint at 78 cm. After that a large portion of water flowed laterally along the morepermeable joint zone. Consequently, the suction and water content below that joint did not change much. This also explained why the infiltration rate Fig. 10. Schematic diagram showing the influence of a joint on infiltration. 6. Discussion and summary The in situ experiments showed that, during the test periods, the initial infiltration rate of the surface soil is >1.465 10 6 ms 1. When the infiltration increased to 2.778 10 6 ms 1, surface water ponding was generated. It can be seen that the infiltration rate depends on the initial water content in the soil. This experiment also indicates that, to describe thoroughly the infiltration process, a model based on the assumption of a uniform porous media is inadequate and should groundwater. If the structure of the joint is vertical, there is direct access of rain to the ground water which may lead to a direct failure during or just after rain. Although the lateral flow due to such a joint can improve the stability of the slope as a whole, it may cause small scale increase in pressure near the crest of the slope. A large amount of the rainwater may be directed toward the area around point A (see Fig. 10) if the joint is persistent. In the case where the lateral flow is greater than the spring can discharge (the worst case is that the spring area is blocked), then pore pressure may be built up locally in the area around the point A and a landslide may occur while the slope is still

38 J. Zhang et al. / Engineering Geology 57 (2000) 31 38 generally unsaturated as a whole. The failure of Committee on Research and Conference Grants this kind is usually of a small scale but may occur (CRCG), the University of Hong Kong. Chen rather quickly in response to rainfall. Jingsong, Xu Jijun, Wang Fuqing, Zhang Wei, While rainwater will flow laterally, there is still Zhu Guosheng, Wang Manxing and Ding Yong a portion of water which will infiltrate further were involed in the in situ infiltration tests. The down to join the regional ground water in the authors are grateful to Perry Rahn, Andrew form of matrix flow. Based on the suction change Malone and an anonymous reviewer whose constructive in the first 70 cm, the infiltration rate through the comments led to a significant improvein matrix is estimated to be ca. 0.26 m day 1. The ment of the manuscript. rate may be greater near the water table since the material is at higher water content and the hydraulic conductivity is therefore greater, but still it may References take many days for the infiltration to reach the water table if the original water table is at a depth Geotechnical Control Office, 1982. Mid-Level Study: Geology of many meters. Based on the rate of descent of and Hydrology. Geotechnical Control Office, Hong Kong. Krahn, J., Fredlund, D.G., Klassen, M.J., 1989. Effect of soil the infiltration front estimated from this field suction on slope stability at Notch Hill. Canadian Geotechexperiment, it is quite reasonable to believe that nical Journal 26, 269 278. there may be a significant time lag between the Lim, T.T., Rahardjo, H., Chang, M.F., Fredlund, D.G., 1996. slope failure and rainstorms if the water table Effect of rainfall on matric suctions in a residual soil slope. response is delayed by several days. Canadian Geotechnical Journal 33, 618 628. Todd, D.K., 1980. in: Groundwater Hydrology, second ed., Wiley, New York, p, 43. Wang, X., Benson, C.H., 1995. Infiltration and saturated hydraulic conductivity of compacted clay. Journal of Acknowledgements Geotechnical Engineering 121 (10), 713 722. Zhang, J., Zhang, W., Zhu, G., Wang, M., 1997. An experimental This study was partially supported by Yangtze study on the rain infiltration into the slope mountain by the ship lock of Three Gorges Project. Report 97-264. Yangtze River Scientific Research Institute and the River Scientific Research Institute, Wuhan. in Chinese.