Transverse dynamics of gravity-capillary periodic water waves

Similar documents
A Dimension-Breaking Phenomenon for Steady Water Waves with Weak Surface Tension

Spectral stability of periodic waves in dispersive models

Model Equation, Stability and Dynamics for Wavepacket Solitary Waves

Steady Water Waves. Walter Strauss. Laboratoire Jacques-Louis Lions 7 November 2014

TRANSVERSE INSTABILITY FOR PERIODIC WAVES OF KP-I AND SCHRÖDINGER EQUATIONS

Finite-wavelength stability of capillary-gravity solitary waves

Steady Rotational Water Waves

The Whitham Equation. John D. Carter April 2, Based upon work supported by the NSF under grant DMS

Lecture 6: Derivation of the KdV equation for surface and internal waves

Three-dimensional gravity-capillary solitary waves in water of finite depth and related problems. Abstract

Stability of traveling waves with a point vortex

On the Whitham Equation

Physics Letters A 374 (2010) Contents lists available at ScienceDirect. Physics Letters A.

Waves on deep water, II Lecture 14

Diagonalization of the Coupled-Mode System.

FAST COMMUNICATION THREE-DIMENSIONAL LOCALIZED SOLITARY GRAVITY-CAPILLARY WAVES

Mathematical Aspects of Classical Water Wave Theory from the Past 20 Year

Long time existence of space periodic water waves

KAM for quasi-linear KdV

Gravitational perturbations on branes

y = h + η(x,t) Δϕ = 0

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem

Waves on deep water, I Lecture 13

Derivation of Generalized Camassa-Holm Equations from Boussinesq-type Equations

M ath. Res. Lett. 17 (2010), no. 1, c International Press 2010 A SIMPLE CRITERION OF TRANSVERSE LINEAR INSTABILITY FOR SOLITARY WAVES

Existence and stability of solitary-wave solutions to nonlocal equations

The instability of periodic surface gravity waves

Painlevé Test for the Certain (2+1)-Dimensional Nonlinear Evolution Equations. Abstract

Numerical computations of solitary waves in a two-layer fluid

Nonlinear Modulational Instability of Dispersive PDE Models

154 Chapter 9 Hints, Answers, and Solutions The particular trajectories are highlighted in the phase portraits below.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Stability of gravity-capillary waves generated by a moving pressure disturbance in water of finite depth

Numerical Methods 2: Hill s Method

Lecture 15: Waves on deep water, II

Mathematisches Forschungsinstitut Oberwolfach. Mathematical Theory of Water Waves

Kelvin Helmholtz Instability

Large-amplitude solitary water waves with discontinuous vorticity. A Dissertation. presented to. the Faculty of the Graduate School

Slow Modulation & Large-Time Dynamics Near Periodic Waves

Stability and instability of nonlinear waves:

Lecture 7: Oceanographic Applications.

Rogue periodic waves for mkdv and NLS equations

Key words. water waves, Boussinesq system, spectral stability, transverse perturbation, solitary waves, cnoidal waves

Modulation and water waves

Physica D. Spectral stability of traveling water waves: Eigenvalue collision, singularities, and direct numerical simulation

c Copyright 2014 Olga Trichtchenko

1. Introduction and results 1.1. The general Boussinesq abcd model. In this work, we are concerned with the Boussinesq

Variational theory of Bernoulli free-boundary problems

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

Physics Letters A 374 (2010) Contents lists available at ScienceDirect. Physics Letters A.

Introduction LECTURE 1

OWELL WEEKLY JOURNAL

Interfaces between rolls in the Swift-Hohenberg equation

Math 4263 Homework Set 1

Highly Nonlinear Electrokinetic Simulations Using a Weak Form

Lecture 1: Introduction to Linear and Non-Linear Waves

Transverse spectral stability of small periodic traveling waves for the KP equation

arxiv: v1 [math.ap] 25 Jan 2018

Modified Serre Green Naghdi equations with improved or without dispersion

Continuous limits and integrability for a semidiscrete system Zuo-nong Zhu Department of Mathematics, Shanghai Jiao Tong University, P R China

Physica D 241 (2012) Contents lists available at SciVerse ScienceDirect. Physica D. journal homepage:

Exponential Energy Decay for the Kadomtsev-Petviashvili (KP-II) equation

On the highest wave for the Whitham equation

RELAXED VARIATIONAL PRINCIPLE FOR WATER WAVE MODELING

gravity-capillary flows

Modulation and water waves

The Finite Element Method

ORBITAL STABILITY OF SOLITARY WAVES FOR A 2D-BOUSSINESQ SYSTEM

Free-surface potential flow of an ideal fluid due to a singular sink

Stability of periodic waves in the defocusing cubic NLS equation

Periodic Solutions of the Serre Equations. John D. Carter. October 24, Joint work with Rodrigo Cienfuegos.

Equation for three dimensional nonlinear waves in liquid with gas bubbles

Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water

Solitary Wave Interactions of the Euler Poisson Equations

A bifurcation approach to non-planar traveling waves in reaction-diffusion systems

Kelvin-Helmholtz instabilities in shallow water

Dust acoustic solitary and shock waves in strongly coupled dusty plasmas with nonthermal ions

Rigorous Justification of the Whitham Modulation Equations for the Generalized Korteweg-de Vries Equation

Dmitry Pelinovsky 1,2, * 1. Introduction

The effect of disturbances on the flows under a sluice gate and past an inclined plate

Fachrichtung 6.1 Mathematik

1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system:

arxiv: v2 [math.ap] 18 Dec 2012

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Lecture 4: Birkhoff normal forms

Available online at J. Math. Comput. Sci. 2 (2012), No. 1, ISSN:

Periodic finite-genus solutions of the KdV equation are orbitally stable

In this section, mathematical description of the motion of fluid elements moving in a flow field is

Prof. Krstic Nonlinear Systems MAE281A Homework set 1 Linearization & phase portrait

MATH 31BH Homework 5 Solutions

Evans function review

Marine Hydrodynamics Lecture 19. Exact (nonlinear) governing equations for surface gravity waves assuming potential theory

Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities

MAE210C: Fluid Mechanics III Spring Quarter sgls/mae210c 2013/ Solution II

1. Introduction. We study the spectral stability of small-amplitude periodic traveling waves in scalar Hamiltonian partial differential equations:

Solitary wave Solutions of a fifth order model equation for steady capillary-gravity waves over a bump with the Bond number near 1/3

Three types of generalized Kadomtsev Petviashvili equations arising from baroclinic potential vorticity equation

examples of equations: what and why intrinsic view, physical origin, probability, geometry

Modulational instability in the presence of damping

Domain Wall Brane in Eddington Inspired Born-Infeld Gravity

Transcription:

of gravity-capillary periodic water waves Mariana Haragus LMB, Université de Franche-Comté, France IMA Workshop Dynamical Systems in Studies of Partial Differential Equations September 24-28, 2012

Water waves Water-wave problem Two-dimensional waves

Water waves Water-wave problem Two-dimensional waves

Water waves Water-wave problem Two-dimensional waves

Water-wave problem Water waves Water-wave problem Two-dimensional waves

Water-wave problem Two-dimensional waves Water-wave problem gravity-capillary water waves three-dimensional inviscid fluid layer constant density ρ gravity and surface tension irrotational flow

Water-wave problem Two-dimensional waves Water-wave problem y z x gravity-capillary water waves three-dimensional inviscid fluid layer constant density ρ gravity and surface tension irrotational flow

Water-wave problem Water waves Water-wave problem Two-dimensional waves y = h + η(x,z,t) (free surface) y x z y = 0 (flat bottom) Domain D η = {(x,y,z) : x,z R, y (0,h + η(x,z,t))} depth at rest h

Water-wave problem Water waves Water-wave problem Two-dimensional waves y = h + η(x,z,t) (free surface) y x z y = 0 (flat bottom) Domain D η = {(x,y,z) : x,z R, y (0,h + η(x,z,t))} depth at rest h

Euler equations Water waves Water-wave problem Two-dimensional waves Laplace s equation φ xx + φ yy + φ zz = 0 in D η boundary conditions φ y = 0 on y = 0 η t = φ y η x φ x η z φ z on y = h + η φ t = 1 2 (φ2 x + φ2 y + φ2 z ) gη + σ ρ K on y = h + η

Euler equations Water waves Water-wave problem Two-dimensional waves Laplace s equation φ xx + φ yy + φ zz = 0 in D η boundary conditions φ y = 0 on y = 0 η t = φ y η x φ x η z φ z on y = h + η φ t = 1 2 (φ2 x + φ2 y + φ2 z ) gη + σ ρ K on y = h + η velocity potential φ; [ free surface ] [ h + η ] η mean curvature K = x η + z parameters ρ, g, σ, h 1+η 2 x +η 2 z 1+η 2 x x +ηz 2 z

Water-wave problem Two-dimensional waves Euler equations moving coordinate system, speed c dimensionless variables characteristic length h characteristic velocity c

Euler equations Water waves Water-wave problem Two-dimensional waves moving coordinate system, speed c dimensionless variables characteristic length h characteristic velocity c parameters inverse square of the Froude number α = gh Weber number β = σ ρhc 2 c 2

Euler equations Water waves Water-wave problem Two-dimensional waves φ xx + φ yy + φ zz = 0 for 0 < y < 1 + η φ y = 0 on y = 0 φ y = η t + η x + η x φ x + η z φ z on y = 1 + η ( ) φ t + φ x + 1 φ 2 2 x + φ2 y + φ2 z + αη βk = 0 on y = 1 + η η x K = 1 + ηx 2 + η2 z x η z + 1 + ηx 2 + η2 z z

Water-wave problem Two-dimensional waves Euler equations very rich dynamics difficulties variable domain (free surface) nonlinear boundary conditions symmetries, Hamiltonian structure many particular solutions

Two-dimensional traveling waves Water-wave problem Two-dimensional waves periodic wave solitary waves generalized solitary waves solitary waves [Nekrasov, Levi-Civita, Struik, Lavrentiev, Friedrichs & Hyers,... Amick, Kirchgässner, Iooss, Buffoni, Groves, Toland, Lombardi, Sun,...]

Three-dimensional traveling waves Water-wave problem Two-dimensional waves [Groves, Mielke, Craig, Nicholls, H., Kirchgässner, Deng, Sun, Sandstede, Iooss, Plotnikov, Wahlen,...]

Solitary wave Water waves Water-wave problem Two-dimensional waves

Periodic waves Water waves Water-wave problem Two-dimensional waves

Water-wave problem Two-dimensional waves Questions Existence two- and three-dimensional waves Dynamics 2D stability 3D stability new solutions (bifurcations) (Numerical results; Model equations; Cauchy problem;...)

Water-wave problem Two-dimensional waves Dynamics of solitary waves capillary-gravity waves β > 1 3 2D stability 3D instability (linear and nonlinear) bifurcations : dimension-breaking [H. & Scheel; Mielke; Groves, H. & Sun; Pego & Sun; Rousset & Tzvetkov]

Water-wave problem Two-dimensional waves Dynamics of solitary waves capillary-gravity waves β > 1 3 2D stability 3D instability (linear and nonlinear) bifurcations : dimension-breaking [H. & Scheel; Mielke; Groves, H. & Sun; Pego & Sun; Rousset & Tzvetkov] capillary-gravity waves 0 < β < 1 3 2D stability 3D instability (linear) bifurcations : dimension-breaking [Buffoni; Groves & Wahlen; Groves, Wahlen & Sun]

Water-wave problem Two-dimensional waves Dynamics of solitary waves capillary-gravity waves β > 1 3 2D stability 3D instability (linear and nonlinear) bifurcations : dimension-breaking [H. & Scheel; Mielke; Groves, H. & Sun; Pego & Sun; Rousset & Tzvetkov] capillary-gravity waves 0 < β < 1 3 2D stability 3D instability (linear) bifurcations : dimension-breaking [Buffoni; Groves & Wahlen; Groves, Wahlen & Sun] gravity waves β = 0 2D stability [Pego & Sun]

Dynamics of periodic waves Water-wave problem Two-dimensional waves gravity waves β = 0 Benjamin-Feir instability [Bridges & Mielke]

Water-wave problem Two-dimensional waves Dynamics of periodic waves gravity waves β = 0 Benjamin-Feir instability [Bridges & Mielke] gravity-capillary waves β > 1 3 3D instability (linear) bifurcations : dimension-breaking (see [Groves, H. & Sun, 2001, 2002])

Water-wave problem Two-dimensional waves Predictions : model equations gravity-capillary waves β > 1 3 2D stability : Korteweg-de Vries equation [Angulo, Bona & Scialom; Bottman & Deconinck; Deconinck & Kapitula] 3D instability : Kadomtsev-Petviashvili-I equation [H.; Johnson & Zumbrun; Hakkaev, Stanislavova & Stefanov]

Euler equations Water waves Spatial dynamics 2D periodic waves φ xx + φ yy + φ zz = 0 for 0 < y < 1 + η φ y = 0 on y = 0 φ y = η t + η x + η x φ x + η z φ z on y = 1 + η ( ) φ t + φ x + 1 φ 2 2 x + φ2 y + φ2 z + αη βk = 0 on y = 1 + η η x K = 1 + ηx 2 + η2 z x η z + 1 + ηx 2 + η2 z z parameters : β > 1 3, α 1

Spatial dynamics 2D periodic waves Questions 3D instability bifurcations : new solutions

Spatial dynamics 2D periodic waves Spatial dynamics : Hamiltonian formulation time-like variable z [Kirchgässner, 1982] fixed domain R (0,1) : variable y = y/(1+η)

Spatial dynamics 2D periodic waves Spatial dynamics : Hamiltonian formulation time-like variable z [Kirchgässner, 1982] fixed domain R (0,1) : variable y = y/(1+η) Hamiltonian H(η, ω, φ, ξ) [Groves, H. & Sun, 2001] T H(η,ω,φ,ξ) = { 12 } 1 αη2 + β (β 2 W 2 ) 1/2 (1 + η 2x yφ yξ )1/2 dx dt W = ω + T R 0 1 + η dy T 1 { + (η t + η x)yφ y (1 + η)(φ t + φ x) 1 + η T 0 R 2 space X s,δ, s (0,1/2), δ > 1/2 ( φ x yηxφy 1 + η ) 2 + ξ2 φ 2 } y dx dy dt 2(1 + η) X s,δ = H s+1 δ (0,L) Hδ s (0,L) Hs+1 δ ((0,L) (0,1)) Hδ s ((0,L) (0,1)) { H s δ (0,L) = u = u m(x)e imπt/t u m H s (0,L), u 2 s,δ = } + m m Z m Z(1 2 ) 2δ u m 2 s

Hamiltonian system Water waves Spatial dynamics 2D periodic waves Hamilton s equations u = (η,ω,φ,ξ) u z = Du t + F(u)

Hamiltonian system Water waves Spatial dynamics 2D periodic waves Hamilton s equations u = (η,ω,φ,ξ) u z = Du t + F(u) Du = (0,φ y=1,0,0), F(u) = (f 1 (u),f 2 (u),f 3 (u),f 4 (u)) ( ) 1 + η 2 1/2 1 f 1 (u) = W x yφ yξ β 2 W 2, W = ω + 0 1 + η dy f 2 (u) = { 1 ξ 2 φ 2 y 0 2(1 + η) 2 + 1 2 ( ) β 2 W 2 1/2 + αη η x + W 1 + ηx 2 x (1 + η) 2 f 3 (u) = ξ 1 + η + yφyw ( ) 1 + η 2 1/2 x 1 + η β 2 W 2 ( φ x + yφyηx )( φ x yφyηx ) ( + [yφ y φ x yφyηx )] 1 + η 1 + η 1 + η x ( ) 1 + η 2 1/2 1 x β 2 W 2 yφ yξdy + φ y=1 x 0 f 4 (u) = φyy 1 + η [ [ ( ] (1 + η)φ x yη xφ y x + yη x φ x yφyηx )] + (yξ)yw 1 + η y 1 + η } dy ( ) 1 + η 2 1/2 x β 2 W 2

Hamiltonian system Water waves Spatial dynamics 2D periodic waves Hamilton s equations u = (η,ω,φ,ξ) u z = Du t + F(u) Du = (0,φ y=1,0,0), F(u) = (f 1 (u),f 2 (u),f 3 (u),f 4 (u)) boundary conditions φ y = b(u) t + g(u) on y = 0,1 b(u) = yη, g(u) = y(1+η)(1+φ x )η x yη 2 x Φ y +yξw ( ) 1+η 2 1/2 x β 2 W 2

Spatial dynamics 2D periodic waves 2D periodic waves parameters α = 1 + ε, β > 1/3 [Kirchgässner, 1988] family of 2D periodic waves, ε small η (x) = εη KdV (ε 1/2 x) + O(ε 2 ) φ (x,y) = ε 1/2 φ KdV (ε 1/2 x) + O(ε 3/2 ) η KdV solution of KdV : ( β 1 ) η = η + 3 3 2 η2 φ KdV = η KdV

Periodic solutions of KdV Spatial dynamics 2D periodic waves ( β 1 ) η = η + 3 3 2 η2 family of periodic waves η KdV (X) = P a (k a X), a I R P a even function, 2π periodic

2D periodic waves Water waves Spatial dynamics 2D periodic waves scaling x = k a x, η = ε η, φ = ε 1/2 φ, ω = ε ω, ξ = ε 1/2 ξ Hamilton s equations u = ( η, ω, φ, ξ) boundary conditions u z = D ε u t + F ε (u) φ y = b ε (u) t + g ε (u) on y = 0,1

2D periodic waves Water waves Spatial dynamics 2D periodic waves scaling x = k a x, η = ε η, φ = ε 1/2 φ, ω = ε ω, ξ = ε 1/2 ξ Hamilton s equations u = ( η, ω, φ, ξ) boundary conditions u z = D ε u t + F ε (u) φ y = b ε (u) t + g ε (u) on y = 0,1 equilibria (F ε (u a ) = 0) Q a = u a = (η a,0,φ a,0) = (P a,0,q a,0) + O(ε) x P a(ζ)dζ 0

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Questions 3D instability bifurcations : new solutions analysis of the linearized problem

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Linear operator linearized system boundary conditions u z = D ε u t + DF ε (u a )u φ y =Db ε (u a )u t + Dg ε (u a )u on y = 0,1

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Linear operator linearized system boundary conditions u z = D ε u t + DF ε (u a )u φ y =Db ε (u a )u t + Dg ε (u a )u on y = 0,1 linear operator L ε := DF ε (u a ) boundary conditions φ y = Dg ε (u a )u on y = 0,1 space of symmetric functions (x x) X s = H 1 e (0,2π) L2 e (0,2π) H1 o ((0,2π) (0,1)) L2 o ((0,2π) (0,1))

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Linear operator L ε = L 0 ε + L1 ε ω η L 0 ω β ε φ = εk 2 a βηxx + (1 + ǫ)η kaφx y=1, L 1 ε ξ ξ εk 2 aφxx φyy η ω φ ξ g 1 = g 2 G 1 G 2 g 1 = (1 + εk2 a η2 ax )1/2 β { 1 g 2 = 0 [ + G 1 = εηaξ G 2 = ( ω + 1 1 + εη a εk 2 φayφy aφaxφx 1 (1 + εη a) 2 + εφ 2 0 ) yφ ayξ dy ω β εk 2 a yφayφx + εk2 a yφaxφy 2ε2 k 2 a y2 η axφ ayφ y 1 + εη a ε + εk 2 a βηxx εk2 a β [ ay η (1 + εη a) 3 ε 3 k 2 a y 2 ηax 2 φayφy (1 + εη a) 2 ε 3 k 2 a y 2 η axφ 2 ay ηx (1 + εη a) 2 + ε 3 k 2 a y 2 ηax 2 φ2 ay η (1 + εη a) 3 2 k 2 a y 2 φ 2 ay ηx + ε 3 k 2 a y 2 η axφ 2 ay η ] } 1 + εη a (1 + εη a) 2 dy x ] η x (1 + ε 3 k 2 a η2 ax )3/2 + (1 + ε 3 k 2 a ηax 2 )1/2 1 + εη a β(1 + εη a) ] [ εηaφ (1 + εη a) + εφaη (1 + η a) 2 ( ω + x 1 1 + εη a 1 0 ) yφ ayξdy yφ ay ε 2 k 2 a [ηaφx + φaxη yφayηx yηaxφy]x yy [ + ε 2 k 2 a yη axφ x + yφ axη x + ε2 y 2 ηax 2 φayη (1 + εη a) 2 εy 2 η 2 ax φ y 2εy ] 2 ηaxφayη x 1 + εη a 1 + εη a y

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Spectrum of L ε Theorem The linear operator L ε has the following properties (ε small) : pure point spectrum spec(l ε ); spec(l ε ) ir = { iεk ε,iεk ε } ; ±iεk ε are simple eigenvalues; resolvent estimate (L ε iλi) 1 c, λ λ λ

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Proof operator with compact resolvent spectral analysis pure point spectrum λ λ λ λ λ εl

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Proof STEP I : λ λ no eigenvalues L ε small relatively bounded perturbation of L 0 ε operator with constant coefficients L 0 ε a priori estimates

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Proof STEP II : λ λ reduction to a scalar operator B ε,l in L 2 o (0,2π) scaling λ = εl, ω = ε ω, ξ = ε ξ decomposition φ(x,y) = φ 1 (x)+φ 2 (x,y)

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Proof STEP II : λ λ reduction to a scalar operator B ε,l in L 2 o (0,2π) scaling λ = εl, ω = ε ω, ξ = ε ξ decomposition φ(x,y) = φ 1 (x)+φ 2 (x,y) B ε,l φ 1 = λ = εl eigenvalue iff B ε,l φ 1 = 0 ( β 1 ) k 4 a 3 φ 1xxxx k 2 a φ 1xx + l 2 (1 + ǫ)φ 1 3k 2 a (P aφ 1x ) x +...

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking... β 1 1 ω = (1 + ǫ 3 ηx 2 (η + ikη) )1/2 1 + ǫη yφ y ξdy, 0 ξ = (1 + ǫη )(Φ + ikφ) ǫyφ y (η + ikη) (1 + ǫ) ǫ 2 η 1 ǫ 2 Φx y=1 1 ǫ βηxx ikβ(hǫ 1 + ikη) = hǫ 2 B ǫ 0 = B ǫ (η,φ) = ǫη x + B ǫ 0 + Bǫ 1, ǫη Φ y 1 + ǫη + ǫφy η (1 + ǫη ) 2, y=1 B ǫ 1 = ǫ 2 η x Φx + ǫ2 Φ x ηx + ǫ4 ηx 2 Φ y η (1 + ǫη ) 2 ǫ 3 η 2 x Φy 1 + ǫη 1 ǫ Φxx 1 ǫ 2 Φyy ik(hǫ 1 + ikφ) = Hǫ 2, h ǫ 2 = ω g ǫ 2, ˆΦ yy + q 2ˆΦ = ǫ 2 (Ĥ2 ǫ + ikĥǫ 1 ), 0 < y < 1 H ǫ 2 = ξ G ǫ ˆΦ y = 0, y = 0 2 h1 ǫ = ω β ikη ǫµ ˆΦ 2ˆΦ 3 iµ(ĥ y 1 + ǫ + βq 2 = ǫ 2 ǫ + ikβĥǫ 1 ) 1 + ǫ + βq 2 + ˆB ǫ 0 + ˆB ǫ 1, y = 1 1 1 = β(1 + ǫη yφ y ) [ ǫyφ y (ikη + η ) + (1 + ǫη )(ikφ + Φ )]dy 0 ( ) cosh qy (1 + ǫ + βq 2 )coshq(1 ζ) + (ǫµ 2 /q) 1 + (1 + ǫ 3 ηx 2 1 η ikη + )1/2 (1 + ǫ 3 ηx 2, coshq q 2 (1 + ǫ + βq 2 )qtanhq ǫ )1/2 G(y,ζ) = H ǫ 1 = ξ ikφ cosh qζ (1 + ǫ + βq 2 )coshq(1 y) + (ǫµ 2 /q) = (1 + ǫη )Φ + ikǫη Φ ǫyφ y (η coshq q + ikη). 2 (1 + ǫ + βq 2 )qtanhq

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking... ˆΦ 1 = { 1 + ǫ 1 1 ǫ 2 (k 2 (1 + ǫ) + µ 2 + (β 1/3)µ 4 ) ǫ 2 (ˆξ iµĝ2,2 ǫ + ikĥǫ 1 )dζ ǫq2 ˆp 2 ǫ dζ 0 0 } ǫ3 iµ(ĥ2 ǫ + ikβĥǫ 1 ) 1 + ǫ + βq 2 + ǫ µ 2ˆp 2 ǫ ζ=1 1 + ǫ + βq 2, ˆΦ 2 1 1 1 = G 1 (ˆξ iµĝ ǫ 2,2 + ikĥǫ 1 )dζ G 1ζ Ĝ ǫ 2,1 dζ + (ǫk 2 + µ 2 )G 1ˆp ǫ 2 dζ + ǫˆpǫ 2 0 0 0 ( G 1 ζ=1 ǫiµ(ĥǫ 2 + ikβĥǫ 1 ) + µ 2 ǫ ) ζ=1, 1 + ǫ + βq 2 1 + ǫ + βq 2 1 1 ˆΦ = Gǫ 2 (ˆξ ıµĝ ǫ 2,2 + ıkĥǫ 1 )dζ G ζ ǫ 2 Ĝ ǫ 2,1 dζ + ǫ3 ıµg ζ=1 (ĥ2 ǫ + ıkβĥǫ 1 ) 1 0 0 1 + ǫ + βq 2 + ǫq 2 Gˆp ǫ 2 dζ + ǫˆpǫ 2 ǫ2 µ 2 0 1 1 ǫq 2 Gˆp ǫ 2 dζ + ǫˆpǫ 2 ǫ2 µ 2 G ζ=1ˆp 2 ǫ ζ=1 0 1 + ǫ + βq 2 1 1 = Gǫˆp 2ζζ ǫ dζ ǫg ζ=1ˆp 2ζ ǫ ζ=1 = Gǫ 2 (Ĝ2,0 ǫ ) ζζdζ G ζ=1ˆb 0 ǫ, 0 0 1 1 ˆΦ 1 + ˆΦ 2 = Gǫ 2 (ˆξ ıµĝ ǫ 2,2 + ıkĥǫ 1 )dζ G ζ ǫ 2 Ĝ ǫ 2,1 dζ 0 0 + ǫ3 ıµg ζ=1 (ĥ2 ǫ + ıkβĥǫ 1 ) 1 ǫq 2 Gˆp ǫ 2 dζ + ǫˆpǫ 2 ǫ2 µ 2 G ζ=1ˆp 2 ǫ ζ=1 1 + ǫ + βq 2 + 0 1 + ǫ + βq 2,

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking... ıµĥ ǫ 2 = [ ıµˆω + ıµf 1 { 1 ǫ 2 ǫφ x Φx Φ y Φy 0 (1 + ǫη ) 2 + ǫφ 2 y η (1 + ǫη ) 3 ǫ 3 y 2 η 2 x Φ y Φy (1 + ǫη ) 2 ǫ 3 y 2 η x Φ 2 y ηx (1 + ǫη ) 2 + ǫ 4 y (1 [ { + µ2 1 ǫ F yφ y Φx + yφ x Φy 2ǫy2 ηx ΦyΦ y 0 1 + ǫη ǫy 2 Φ 2 y ηx 1 + ǫη + ǫ 2 y 2 η x Φ 2 y η } ] [ (1 + ǫη ) 2 dy βµ2 ǫ F (1 + [ F 1 ǫıµĥ2 ǫ ] [ ] [ 1 + ǫ + βq 2 = F 1 1 1 + ǫ + βq 2 F[(Φ 1x Φ 1x) x] + F 1 µ 2 [ 1 ] ] 1 + ǫ + βq 2 F yφ x Φ 2ydy 0 [ [ ( + {F 1 1 1 1 + ǫ + βq 2 F Φ 2x Φ 1x + Φ x Φ Φ y 2x 2 0 ǫ(1 + ǫη ) 2 + Φy (1 + ǫη ) 3 ǫ2 y 2 ηx 2 y Φy (1 + ǫη ) 2 ǫ 2 y 2 η x Φ 2 y ηx (1 + ǫη ) 2 + ǫ 3 y 2 η x Φ 2 y η ) ] (1 + ǫη ) 3 dy [ ( ıµ 1 1 + ǫ + βq 2 F yφ y Φx 2ǫy2 ηx Φ y Φy 0 1 + ǫη ǫy 2 Φ 2 y ηx 1 + ǫη + ǫ 2 y 2 η x Φ 2 y η ) ] (1 + ǫη ) 2 dy [ ]]} [ βıµ + 1 + ǫ + βq 2 F η x (1 + ǫ 3 ηx 2 ηx + F 1 ǫıµˆω ] )3/2 1 + ǫ + βq x [ ] [ = F 1 1 1 + ǫ + βq 2 F[(Φ 1x Φ 1x) x] + F 1 µ 2 [ 1 ] ] 1 + ǫ + βq 2 F yφ x Φ 2ydy 0 + (L(ǫΦ 1x,Φ 2x,Φ 2y,ǫ 2 η,ǫ 4 η x)) x + ǫ 1/2 (L(ǫΦ x,ǫ 2 Φ 2y,ǫ 4 η,ǫ 3 η x)) x + ǫ 1/2 L(ω ),

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking... = [ F 1 µ 2 [ 1 ] ] [ 1 + ǫ + βq 2 F yφ x Φ 2ydy = F 1 µ 2 [ 1 1 0 1 + ǫ + βq 2 F Φ 1x Φ 2 y=1 Φ 1x Φ 2dy + yφ 2x Φ 2y 0 0 [ [F 1 µ 1/2 1 + ǫ + βq 2 µ1/2 F[Φ 1x Φ 1 1 2 y=1 ] 1 + ǫ + βq 2 (Φ 1x Φ µ 1 ]] 2) xdy + 0 1 + ǫ + βq 2 yφ 2x Φ 2ydy 0 x = ǫ 1/4 (L(Φ 2 )) x + (L(Φ 2,Φ 2x,ǫ 1/2 Φ 2y )) x, [ F 1 ǫıµĥ2 ǫ ] [ ] 1 + ǫ + βq 2 = F 1 1 1 + ǫ + βq 2 F[(Φ 1x Φ 1x) x] + ǫ 1/4 (L(Φ 2 )) x + ǫ 1/2 (L(ǫΦ x,ǫ 2 Φ 2y,ǫ 4 η,ǫ 3 η x) x + (L(ǫΦ 1x,Φ 2,Φ 2x,Φ 2y,ǫ 2 η,ǫ 4 η x) x + H. [ F 1 ǫıµ.ıkĥ 1 ǫ ] [ ] 1 + ǫ + βq 2 = (L(Φ 2,ǫ 2 η)) x + ǫ 2 k 2 (L(Φ 1 )) x + H, F 1 µ ǫ 2ˆp 2 ζ=1 1 + ǫ + βq 2 = ǫ 1/4 (L(Φ 2,ǫη)) 1 ] F [(ǫk 1 2 + µ 2 ) ˆp ǫ 2 dζ = k 2 L(ǫΦ 2,ǫ 2 η) + (L(Φ 2,Φ 2x,ǫη,ǫη x)) x 0 1 (ξ (G ǫ 2,2 )x + ıkhǫ 1 )dζ = (η Φ 1x ) x + (Φ 1x η)x + (L(Φ 2x,Φ 2y,ǫη,ǫη x)) x + 0 [ ] (β 1/3)Φ 1xxxx Φ 1xx + k 2 (1 + ǫ)φ 1 = (η Φ 1x ) x + (Φ 1x η)x + 1 F 1 1 + ǫ + βq 2 F[(Φ 1x Φ 1x) x] + (L(ǫ 1/2 Φ 1x [,ǫ 1/4 Φ 2,Φ] 2x,Φ 2y,ǫ 3/4 η,ǫη x)) x + k 2 [L(ǫΦ 1,ǫΦ 2,ǫ 2 η) + ǫ 2 L(Φ 1 ) x] + H, η = F 1 ıµˆφ 1 1 + ǫ + βq 2 + L(ǫΦ 1x,ǫ 3/4 Φ 2,Φ 2x,Φ 2y,ǫ 3 η,ǫ 7/2 η x) + k 2 ǫ 3 L(Φ 1 ) + H.

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Proof STEP II a : εl λ λ no eigenvalues B ε,l small relatively bounded perturbation of ( C ε,l = β 1 ) k 4 a 3 φ 1xxxx k 2 a φ 1xx + l 2 (1 + ǫ)φ 1 B ε,l selfadjoint operator with constant coefficients a priori estimates

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Proof STEP II b : λ εl two simple eigenvalues ±iεκ ε B ε,l small relatively bounded perturbation of B 0,l ( B 0,l = k 2 a xa x + l 2 A = β 1 ) k 2 a 3 xx 1 3P a

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Proof STEP II b : λ εl two simple eigenvalues ±iεκ ε B ε,l small relatively bounded perturbation of B 0,l ( B 0,l = k 2 a xa x + l 2 A = β 1 ) k 2 a 3 xx 1 3P a spectrum of A is known (KdV!) x A x : one simple negative eigenvalue ω 2 a perturbation arguments...

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Spectrum of L ε Theorem The linear operator L ε has the following properties (ε small) : pure point spectrum spec(l ε ); spec(l ε ) ir = { iεk ε,iεk ε } ; ±iεk ε are simple eigenvalues; resolvent estimate (L ε iλi) 1 c, λ λ λ

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Transverse linear instability linearized system boundary conditions u z = D ε u t + DF ε (u a )u φ y =Db ε (u a )u t + Dg ε (u a )u on y = 0,1

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Transverse linear instability linearized system boundary conditions u z = D ε u t + DF ε (u a )u φ y =Db ε (u a )u t + Dg ε (u a )u on y = 0,1 Definition The periodic wave u a is linearly unstable if the linearized system possesses a solution u(t,x,y,z) = e λt v λ (x,y,z) with λ C, Reλ > 0, v λ bounded function.

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Transverse linear instability bounded solutions of boundary conditions v z = λd ε v + DF ε (u a )v φ y =λdb ε (u a )v + Dg ε (u a )v on y = 0,1

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Transverse linear instability bounded solutions of boundary conditions v z = λd ε v + DF ε (u a )v φ y =λdb ε (u a )v + Dg ε (u a )v on y = 0,1 Theorem For any λ R sufficiently small, there exists a solution v λ which is 2π periodic in x and periodic in z. The periodic wave u a is linearly unstable with respect to 3D periodic perturbations.

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Proof bounded solutions of boundary conditions v z = λd εv + DF ε(u a)v φ y =λdb ε(u a)v + Dg ε(u a)v on y = 0, 1 the linear operator L ε,λ := λd ε + DF ε (u a ) possesses two purely imaginary eigenvalues

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Proof bounded solutions of boundary conditions v z = λd εv + DF ε(u a)v φ y =λdb ε(u a)v + Dg ε(u a)v on y = 0, 1 the linear operator L ε,λ := λd ε + DF ε (u a ) possesses two purely imaginary eigenvalues for small and real λ, L ε,λ is a small relatively bounded perturbation of L ε ; L ε possesses two simple eigenvalues ±iεκ ε ; reversibility z z; boundary conditions...

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Transverse linear instability Theorem For λ R sufficiently small, there exists a solution v λ, 2π periodic in x and periodic in z. The periodic wave u a is linearly unstable with respect to 3D periodic perturbations.

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking 3D solutions Hamiltonian system boundary conditions u z = F ε (u) φ y = g ε (u) on y = 0,1

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking 3D solutions Hamiltonian system boundary conditions u z = F ε (u) φ y = g ε (u) on y = 0,1 family of equilibria (F ε (u a ) = 0) Q a = u a = (η a,0,φ a,0) = (P a,0,q a,0) + O(ε) x P a(ζ)dζ 0 3D solutions : u = u a + v

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Dimension-breaking Theorem A family of 3D doubly periodic waves u a,b (x,y,z), b small, emerges from the 2D periodic wave u a (x,y) in a dimension-breaking bifurcation : u a,b (x,y,z) = u a (x,y)+o( b ); u a,b and u a have the same period in x; u a,b is periodic in z with period 2π/κ, κ = εκ ε + O( b 2 ).

Spectral analysis Transverse linear instability Bifurcations : dimension-breaking Proof Lyapunov center theorem Hamiltonian formulation spectrum of L ε : spec(l ε ) ir = { iεκ ε,iεκ ε } boundary conditions...

2D periodic water waves β > 1 3 transverse linear instability dimension-breaking Questions transverse nonlinear instability other periods in the direction of propagation parameter β < 1 3 2D stability (spectral, linear, nonlinear)...

Q.E.D.