Waves on deep water, II Lecture 14

Size: px
Start display at page:

Download "Waves on deep water, II Lecture 14"

Transcription

1 Waves on deep water, II Lecture 14 Main question: Are there stable wave patterns that propagate with permanent form (or nearly so) on deep water? Main approximate model: i" # A + $" % 2 A + &" ' 2 A + ( A 2 A = 0 Nonlinear Schrödinger equation (NLS)

2 Waves on deep water 1. The story so far A uniform train of periodic waves is unstable on deep water, according to NLS and to experiments.

3 Waves on deep water 1. The story so far A uniform train of periodic waves is unstable on deep water, according to NLS and to experiments The 1-D NLS equation is completely integrable.

4 Waves on deep water 1. The story so far A uniform train of periodic waves is unstable on deep water, according to NLS and to experiments The 1-D NLS equation is completely integrable. For focussing NLS in 1-D on ("#,#), arbitrary initial data evolve into a finite number of envelope solitons, plus a modulated wavetrain that disperses (so its amplitude decays) as " # $

5 Waves on deep water 1. The story so far A uniform train of periodic waves is unstable on deep water, according to NLS and to experiments The 1-D NLS equation is completely integrable! For focussing NLS in 1-D on ("#,#), arbitrary initial data evolve into a finite number of envelope solitons, plus a modulated wavetrain that disperses (so its amplitude decays) as " # $ Envelope solitons are stable in 1-D NLS. [For defocussing NLS, dark solitons are stable.]

6 Chapter 2: Waves on deep water Near recurrence of initial states a) Lake, Yuen, Rungaldier & Ferguson, 1977 proposed (correctly) that with periodic boundary conditions, focussing NLS should exhibit near recurrence of initial states, just as KdV does.

7 Waves on deep water b) What is near recurrence of initial states? Example from linearized equations on deep water, with periodic boundary conditions: N "(x,t) = # a m cos{mx $% m t + & m }, % 2 m = gm. m=1

8 Waves on deep water b) What is near recurrence of initial states? Example from linearized equations on deep water, with periodic boundary conditions: "(x,t) = N # a m cos{mx $% m t + & m }, % 2 m = gm. m=1 Frequencies are not rationally related: " m = " 1 m η(x,t) is not periodic in time, but for finite N the solution returns close to its initial state, over and over again

9 Experimental evidence of recurrence in deep water Lake et al, 1977 Initial frequency: ω = 3.6 Hz λ = 12 cm [First physical observation of FPU recurrence?]

10 Q: Stable wave patterns on deep water? A#1. NLS in 1-D with periodic b.c.: A uniform train of oscillatory plane waves is unstable But a continuous wave train exhibits near recurrence of initial states.

11 Q: Stable wave patterns on deep water? A#1. NLS in 1-D with periodic b.c.: A uniform train of oscillatory plane waves is unstable But a continuous wave train exhibits near recurrence of initial states. A#2. NLS in 1-D with localized initial data: Envelope solitons are stable (Envelope solitons have played an important role in communication through optical fibers)

12 Q: What about a 2-D free surface? (so a 3-D fluid flow) 1. 2-D NLS: σ = +1 for envelope solitons σ = -1 for dark solitons i" # A + " $ 2 A + %" & 2 A + 2' A 2 A = 0

13 Q: What about a 2-D free surface? (so a 3-D fluid flow) 1. 2-D NLS: σ = +1 for envelope solitons σ = -1 for dark solitons i" # A + " $ 2 A + %" & 2 A + 2' A 2 A = 0 2. Zakharov & Rubenchik, 1974 σ = +1: for either sign of β, envelope solitons are unstable to 2-D perturbations σ = -1: for either sign of β, dark solitons are unstable to 2-D perturbations The unstable perturbations have long transverse wavelengths (Problem in water waves, but not necessarily in optical fibers)

14 Recall experiment by Hammack on envelope soliton (a) 6 m from wavemaker (b) 30 m from wavemaker

15 Hammack repeated the experiment, using the same wavemaker, in a wider tank

16 Q: Stable patterns that propagate with (nearly) permanent form on 2-D surface in deep water? A. The story continues - stay tuned

17 Intermission: wave collapse in 2-d Zakharov & Synakh, 1976: Consider elliptic, focusing NLS in 2-D i" # A + " $ 2 A + " % 2 A + 2 A 2 A = 0 (same signs for all coefficients not gravity waves)

18 Intermission: wave collapse in 2-d Zakharov & Synakh, 1976: Consider elliptic, focussing NLS in 2-D i" # A + " 2 $ A + " 2 % A + 2 A 2 A = 0 (same signs for all coefficients not gravity waves) Conserved quantities (finite list): I 1 = [ A 2 ] "" d#d$, I 2 = [A" # A * $ A * " # A] %% d#d&, I 3 = [A" & A * $ A * " & A] %% d#d&, I 4 = H = [ "A 2 # A 4 ] $$ d%d&.

19 Intermission: wave collapse in 2-d i" # A + " $ 2 A + " % 2 A + 2 A 2 A = 0 Consider J(") = %% [(# 2 + $ 2 ) A 2 ] d#d$ If we interpret: A 2 (ξ, ζ, τ) as mass density, then I 1 = "" [ A 2 ] d#d$ is total mass, and J(τ) is moment of inertia. J(τ) 0.

20 Intermission: wave collapse in 2-d i" # A + " $ 2 A + " % 2 A + 2 A 2 A = 0 Consider Compute Find: J(") = %% [(# 2 + $ 2 ) A 2 ] d#d$ dj d" and d 2 J d" 2 d 2 J d" 2 = 8H = 8 [ #A 2 $ A 4 ] %% d&d'. If Η < 0, then J(τ) < 0 in finite time. (Bad!) This happens while I 1, I 2, I 3, H are conserved. [Wave collapse has been important in nonlinear optics.]

21 Back to the main story Q: Are there stable wave patterns that propagate with permanent form (or nearly so) on a 2-D free surface in deep water? More complication: Lake, Yuen, Rungaldier & Ferguson (1977) Recall near recurrence of initial states

22 Lake, Yuen, Rungaldier & Ferguson Frequency downshifting also seen in optics

23 Frequency downshifting different from recurrence Frequency downshifting does not occur in simulations based on NLS, in 1-D or 2-D It does not occur in simulations based on Dysthe s (1979) generalization of NLS It has been observed & studied in optics (Mollenauer, 1986; Gordon, 1986) My opinion: No satisfactory model of the process has been found

24 Q: Stable patterns that propagate with (nearly) permanent form on 2-D surface in deep water? 1990s Joe Hammack built a new tank to study 2-D wave patterns (so 3-D fluid flows) on deep water

25 Experimental evidence of apparently stable wave patterns in deep water - ( 3 Hz frequency 4 Hz 17.3 cm wavelength 9.8 cm

26 How to reconcile the experimental observations with Benjamin-Feir instability? Options Modulational instability afflicts 1-D plane waves, but not 2-D periodic patterns The Penn State tank is too short to observe the (relatively slow) growth of the instability Other (please specify)

27 More experimental results ( 3 Hz 2 Hz old water new water

28 Main results The modulational (or Benjamin-Feir) instability is valid for waves in deep water without dissipation

29 Main results The modulational (or Benjamin-Feir) instability is valid for waves in deep water without dissipation But any amount of damping (of the right kind) stabilizes the instability (according to NLS & exp s) This dichotomy (with vs. without damping) applies to both 1-D plane waves and to 2-D periodic surface patterns Segur, Henderson, Carter, Hammack, Li, Pheiff, Socha, 2005 Controversial

30 Stability vs. existence in full water-wave equations Recall: Craig & Nicholls (2000) prove that the full equations of (inviscid) water waves, with gravity and surface tension, admit solutions with 2-D, periodic surface patterns of permanent form on deep water. Iooss & Plotnikov (2008) prove the existence of such patterns for (some) pure gravity waves on deep water. Neither paper considers stability.

31 Reconsider stability of plane waves in 1-D i(" t A + c g " x A) + #[$" x 2 A + % A 2 A ] = 0 [" = t # x c g, X = $ x c g ] i" X A + #" $ 2 A + % A 2 A = 0

32 Reconsider stability of plane waves in 1-D, with damping i(" t A + c g " x A) + #[$" x 2 A + % A 2 A +i"a] = 0 [" = t # x c g, X = $ x c g ] " # 0 i" X A + #" $ 2 A + % A 2 A +i"a = 0 [A(", X) = e #$X A (", X)] i" X A + #" $ 2 A + % & e '2(X A 2 A = 0

33 NLS in 1-D, cont d i" X A + #" $ 2 A + % & e '2(X A 2 A = 0 Hamiltonian equation, but dh dx " 0 H = i % [" # $ A 2 & ' 2 e&2(x A 4 ]d$ Conjugate variables: A, A*

34 i" X A + #" $ 2 A + % & e '2(X A 2 A = 0, cont d Uniform (in ξ) wave train: 1# A = A 0 exp{i" A 0 2 e#2$x ( 2$ Perturb: )} 1$ A (",X) = exp{i# A 0 2 e$2%x ( 2% algebra.. )}[ A 0 +µ(u + iv)]} + O(µ 2 ) d 2 ˆ u dx 2 + ["m 2 ("m 2 # 2$ % e #2&X A 0 2 )] % ˆ u = 0

35 a d 2 ˆ u dx 2 + ["m 2 ("m 2 # 2$ % e #2&X A 0 2 )] % ˆ u = 0 Hasegawa &Kodama (1995)

36 d 2 u ˆ dx + ["m 2 ("m 2 # 2$ % e #2&X A )] % u ˆ = 0, cont d

37 d 2 u ˆ dx + ["m 2 ("m 2 # 2$ % e #2&X A )] % u ˆ = 0 There is a growing mode if, cont d ["m 2 ("m 2 # 2$ % e #2&X A 0 2 )] < 0

38 d 2 u ˆ dx + ["m 2 ("m 2 # 2$ % e #2&X A )] % u ˆ = 0 There is a growing mode if, cont d ["m 2 ("m 2 # 2$ % e #2&X A 0 2 )] < 0

39 d 2 u ˆ dx + ["m 2 ("m 2 # 2$ % e #2&X A )] % u ˆ = 0 There is a growing mode if, cont d ["m 2 ("m 2 # 2$ % e #2&X A 0 2 )] < 0 For any δ > 0, growth stops eventually No mode grows forever Total growth is bounded

40 What is linearized stability? (Lyapunov) A uniform wave train solution is linearly stable if for every ε > 0 there is a Δ(ε) > 0 such that if a perturbation (u,v) satisfies # [u 2 (",0) + v 2 (",0)]d" < $(%) at X = 0, then necessarily # [u 2 (",X) + v 2 (", X)]d" < $ for all X > 0.

41 1-D NLS with damping, conclusion d 2 ˆ u dx 2 + ["m 2 ("m 2 # 2$ % e #2&X A 0 2 )] % ˆ u = 0 There is a universal bound, B: the total growth of any Fourier mode cannot exceed B To demonstrate stability, choose Δ(ε) so that "(#) < 1 B 2 $ # Nonlinear stability is similar, but more complicated

42 Experimental verification of theory (old) 1-D tank at Penn State

43 Experimental wave records X 1 X 8

44 Amplitudes of seeded sidebands (damping factored out of data) damped NLS theory Benjamin-Feir growth rate experimental data

45 Q: Are there stable wave patterns that propagate with permanent form (or nearly so) on deep water? A: YES, in the presence of (weak) damping Apparently NO, with no damping

46 Q: Stable wave patterns that propagate with nearly permanent form on deep water? A: YES, in the presence of (weak) damping Apparently NO, with no damping Q: Is this the final chapter of this story? A: Almost certainly not. Downshifting is still unexplained. Its physical importance is largely unexplored. More surprises?

47 Amplitudes of unseeded sidebands (damping factored out of data) damped NLS theory experimental data

48 Numerical simulations of full water wave equations, plus damping Wu, Liu & Yue 2006

Lecture 15: Waves on deep water, II

Lecture 15: Waves on deep water, II Lecture 15: Waves on deep water, II Lecturer: Harvey Segur. Write-up: Andong He June 23, 2009 1 Introduction. In the previous lecture (Lecture 14) we sketched the derivation of the nonlinear Schrödinger

More information

Modulational instability in the presence of damping

Modulational instability in the presence of damping Perspectives on Soliton Physics February 17, 2007 Modulational instability in the presence of damping Harvey Segur University of Colorado Joint work with: J. Hammack, D. Henderson, J. Carter, W. Craig,

More information

Waves on deep water, I Lecture 13

Waves on deep water, I Lecture 13 Waves on deep water, I Lecture 13 Main question: Are there stable wave patterns that propagate with permanent form (or nearly so) on deep water? Main approximate model: i" # A + $" % 2 A + &" ' 2 A + (

More information

arxiv: v1 [nlin.cd] 21 Mar 2012

arxiv: v1 [nlin.cd] 21 Mar 2012 Approximate rogue wave solutions of the forced and damped Nonlinear Schrödinger equation for water waves arxiv:1203.4735v1 [nlin.cd] 21 Mar 2012 Miguel Onorato and Davide Proment Dipartimento di Fisica,

More information

Plane-wave solutions of a dissipative generalization of the vector nonlinear Schrödinger equation

Plane-wave solutions of a dissipative generalization of the vector nonlinear Schrödinger equation Plane-wave solutions of a dissipative generalization of the vector nonlinear Schrödinger equation John D. Carter Mathematics Department, Seattle University, 91 12th Avenue, Seattle, WA 98122 Abstract The

More information

The Whitham Equation. John D. Carter April 2, Based upon work supported by the NSF under grant DMS

The Whitham Equation. John D. Carter April 2, Based upon work supported by the NSF under grant DMS April 2, 2015 Based upon work supported by the NSF under grant DMS-1107476. Collaborators Harvey Segur, University of Colorado at Boulder Diane Henderson, Penn State University David George, USGS Vancouver

More information

Stabilizing the Benjamin Feir instability

Stabilizing the Benjamin Feir instability J. Fluid Mech. (5), vol. 539, pp. 9 71. c 5 Cambridge University Press doi:1.117/s115563x Printed in the United Kingdom 9 Stabilizing the Benjamin Feir instability By HARVEY SEGUR 1, IANE HENERSON, JOHN

More information

The 3-wave PDEs for resonantly interac7ng triads

The 3-wave PDEs for resonantly interac7ng triads The 3-wave PDEs for resonantly interac7ng triads Ruth Mar7n & Harvey Segur Waves and singulari7es in incompressible fluids ICERM, April 28, 2017 What are the 3-wave equa.ons? What is a resonant triad?

More information

Dispersion in Shallow Water

Dispersion in Shallow Water Seattle University in collaboration with Harvey Segur University of Colorado at Boulder David George U.S. Geological Survey Diane Henderson Penn State University Outline I. Experiments II. St. Venant equations

More information

What Is a Soliton? by Peter S. Lomdahl. Solitons in Biology

What Is a Soliton? by Peter S. Lomdahl. Solitons in Biology What Is a Soliton? by Peter S. Lomdahl A bout thirty years ago a remarkable discovery was made here in Los Alamos. Enrico Fermi, John Pasta, and Stan Ulam were calculating the flow of energy in a onedimensional

More information

Experiments on nonlinear gravity capillary waves

Experiments on nonlinear gravity capillary waves J. Fluid Mech. (1999), vol. 38, pp. 25 232. Printed in the United Kingdom c 1999 Cambridge University Press 25 Experiments on nonlinear gravity capillary waves By LEV SHEMER AND MELAD CHAMESSE Department

More information

The Benjamin Feir instability and propagation of swell across the Pacific

The Benjamin Feir instability and propagation of swell across the Pacific Available online at www.sciencedirect.com Mathematics and Computers in Simulation 82 (2012) 1172 1184 The Benjamin Feir instability and propagation of swell across the Pacific Diane Henderson a,, Harvey

More information

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the soliton p. 7 The soliton concept in physics p. 11 Linear

More information

Model Equation, Stability and Dynamics for Wavepacket Solitary Waves

Model Equation, Stability and Dynamics for Wavepacket Solitary Waves p. 1/1 Model Equation, Stability and Dynamics for Wavepacket Solitary Waves Paul Milewski Mathematics, UW-Madison Collaborator: Ben Akers, PhD student p. 2/1 Summary Localized solitary waves exist in the

More information

Wave Turbulence and Condensation in an Optical Experiment

Wave Turbulence and Condensation in an Optical Experiment Wave Turbulence and Condensation in an Optical Experiment S. Residori, U. Bortolozzo Institut Non Linéaire de Nice, CNRS, France S. Nazarenko, J. Laurie Mathematics Institute, University of Warwick, UK

More information

Spatial evolution of an initially narrow-banded wave train

Spatial evolution of an initially narrow-banded wave train DOI 10.1007/s40722-017-0094-6 RESEARCH ARTICLE Spatial evolution of an initially narrow-banded wave train Lev Shemer 1 Anna Chernyshova 1 Received: 28 February 2017 / Accepted: 26 July 2017 Springer International

More information

arxiv: v1 [physics.flu-dyn] 14 Jun 2014

arxiv: v1 [physics.flu-dyn] 14 Jun 2014 Observation of the Inverse Energy Cascade in the modified Korteweg de Vries Equation D. Dutykh and E. Tobisch LAMA, UMR 5127 CNRS, Université de Savoie, Campus Scientifique, 73376 Le Bourget-du-Lac Cedex,

More information

Occurrence of Freak Waves from Envelope Equations in Random Ocean Wave Simulations

Occurrence of Freak Waves from Envelope Equations in Random Ocean Wave Simulations Occurrence of Freak Waves from Envelope Equations in Random Ocean Wave Simulations Miguel Onorato, Alfred R. Osborne, Marina Serio, and Tomaso Damiani Universitá di Torino, Via P. Giuria, - 025, Torino,

More information

Note on Breather Type Solutions of the NLS as Models for Freak-Waves

Note on Breather Type Solutions of the NLS as Models for Freak-Waves Physica Scripta. Vol. T8, 48^5, 1999 Note on Breather Type Solutions of the NLS as Models for Freak-Waves Kristian B. Dysthe 1 and Karsten Trulsen y 1 Department of Mathematics, University of Bergen, Johs.Brunsgt.1,

More information

Experiments on extreme wave generation using the Soliton on Finite Background

Experiments on extreme wave generation using the Soliton on Finite Background Experiments on extreme wave generation using the Soliton on Finite Background René H.M. Huijsmans 1, Gert Klopman 2,3, Natanael Karjanto 3, and Andonawati 4 1 Maritime Research Institute Netherlands, Wageningen,

More information

Stability of plane-wave solutions of a dissipative generalization of the nonlinear Schrödinger equation

Stability of plane-wave solutions of a dissipative generalization of the nonlinear Schrödinger equation Stability of plane-wave solutions of a dissipative generalization of the nonlinear Schrödinger equation John D. Carter Mathematics Department Seattle University 901 12th Avenue Seattle, WA 98122 Cynthia

More information

Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation

Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation Wave Motion 29 (1999) 341 361 Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation K.L. Henderson 1,, D.H. Peregrine, J.W. Dold 2 School of

More information

Breather propagation in shallow water. 1 Introduction. 2 Mathematical model

Breather propagation in shallow water. 1 Introduction. 2 Mathematical model Breather propagation in shallow water O. Kimmoun 1, H.C. Hsu 2, N. Homann 3,4, A. Chabchoub 5, M.S. Li 2 & Y.Y. Chen 2 1 Aix-Marseille University, CNRS, Centrale Marseille, IRPHE, Marseille, France 2 Tainan

More information

Experimental and numerical study of spatial and temporal evolution of nonlinear wave groups

Experimental and numerical study of spatial and temporal evolution of nonlinear wave groups Nonlin. Processes Geophys., 15, 91 942, 28 www.nonlin-processes-geophys.net/15/91/28/ Author(s) 28. This work is distributed under the Creative Commons Attribution. License. Nonlinear Processes in Geophysics

More information

Stability and instability of solitons in inhomogeneous media

Stability and instability of solitons in inhomogeneous media Stability and instability of solitons in inhomogeneous media Yonatan Sivan, Tel Aviv University, Israel now at Purdue University, USA G. Fibich, Tel Aviv University, Israel M. Weinstein, Columbia University,

More information

The role of dissipation in the evolution of ocean swell

The role of dissipation in the evolution of ocean swell JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 5074 5091, doi:10.1002/jgrc.20324, 2013 The role of dissipation in the evolution of ocean swell Diane M. Henderson 1 and Harvey Segur 2 Received 22 March

More information

Lecture 7: Oceanographic Applications.

Lecture 7: Oceanographic Applications. Lecture 7: Oceanographic Applications. Lecturer: Harvey Segur. Write-up: Daisuke Takagi June 18, 2009 1 Introduction Nonlinear waves can be studied by a number of models, which include the Korteweg de

More information

Long-time solutions of the Ostrovsky equation

Long-time solutions of the Ostrovsky equation Long-time solutions of the Ostrovsky equation Roger Grimshaw Centre for Nonlinear Mathematics and Applications, Department of Mathematical Sciences, Loughborough University, U.K. Karl Helfrich Woods Hole

More information

Modeling and predicting rogue waves in deep water

Modeling and predicting rogue waves in deep water Modeling and predicting rogue waves in deep water C M Schober University of Central Florida, Orlando, Florida - USA Abstract We investigate rogue waves in the framework of the nonlinear Schrödinger (NLS)

More information

Lecture 1: Introduction to Linear and Non-Linear Waves

Lecture 1: Introduction to Linear and Non-Linear Waves Lecture 1: Introduction to Linear and Non-Linear Waves Lecturer: Harvey Segur. Write-up: Michael Bates June 15, 2009 1 Introduction to Water Waves 1.1 Motivation and Basic Properties There are many types

More information

Evolution of random directional wave and rogue/freak wave occurrence

Evolution of random directional wave and rogue/freak wave occurrence Evolution of random directional wave and rogue/freak wave occurrence Takui Waseda 1,, Takeshi Kinoshita 1 Hitoshi Tamura 1 University of Tokyo, JAMSTEC Motivation Hypothesis Meteorological conditions and

More information

The Nonlinear Schrodinger Equation

The Nonlinear Schrodinger Equation Catherine Sulem Pierre-Louis Sulem The Nonlinear Schrodinger Equation Self-Focusing and Wave Collapse Springer Preface v I Basic Framework 1 1 The Physical Context 3 1.1 Weakly Nonlinear Dispersive Waves

More information

Evolution of a narrow-band spectrum of random surface gravity waves

Evolution of a narrow-band spectrum of random surface gravity waves J. Fluid Mech. (3), vol. 478, pp.. c 3 Cambridge University Press DOI:.7/S66 Printed in the United Kingdom Evolution of a narrow-band spectrum of random surface gravity waves By KRISTIAN B. DYSTHE, KARSTEN

More information

A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups

A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups PROC. ITB Eng. Science Vol. 35 B, No., 3, 39-53 39 A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups W. N. Tan,* & Andonowati Fakulti Sains, Universiti Teknologi Malaysia

More information

On deviations from Gaussian statistics for surface gravity waves

On deviations from Gaussian statistics for surface gravity waves On deviations from Gaussian statistics for surface gravity waves M. Onorato, A. R. Osborne, and M. Serio Dip. Fisica Generale, Università di Torino, Torino - 10125 - Italy Abstract. Here we discuss some

More information

Evolution of a nonlinear wave field along a tank: experiments and numerical simulations based on the spatial Zakharov equation

Evolution of a nonlinear wave field along a tank: experiments and numerical simulations based on the spatial Zakharov equation J. Fluid Mech. (), vol. 7, pp. 7 9. Printed in the United Kingdom c Cambridge University Press 7 Evolution of a nonlinear wave field along a tank: experiments and numerical simulations based on the spatial

More information

13.1 Ion Acoustic Soliton and Shock Wave

13.1 Ion Acoustic Soliton and Shock Wave 13 Nonlinear Waves In linear theory, the wave amplitude is assumed to be sufficiently small to ignore contributions of terms of second order and higher (ie, nonlinear terms) in wave amplitude In such a

More information

Enhancement of the Benjamin-Feir instability with dissipation. Abstract

Enhancement of the Benjamin-Feir instability with dissipation. Abstract Enhancement of the Benjamin-Feir instability with dissipation T.J. Bridges 1 and F. Dias 2 1 Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, England 2 CMLA, ENS Cachan, CNRS,

More information

Dispersion relations, stability and linearization

Dispersion relations, stability and linearization Dispersion relations, stability and linearization 1 Dispersion relations Suppose that u(x, t) is a function with domain { < x 0}, and it satisfies a linear, constant coefficient partial differential

More information

DYNAMICALLY ORTHOGONAL REDUCED-ORDER MODELING OF STOCHASTIC NONLINEAR WATER WAVES

DYNAMICALLY ORTHOGONAL REDUCED-ORDER MODELING OF STOCHASTIC NONLINEAR WATER WAVES DYNAMICALLY ORTHOGONAL REDUCED-ORDER MODELING OF STOCHASTIC NONLINEAR WATER WAVES Saviz Mowlavi Supervisors Prof. Themistoklis Sapsis (MIT) & Prof. François Gallaire (EPFL) Submitted in partial fulfillment

More information

On a fourth-order envelope equation for deep-water waves

On a fourth-order envelope equation for deep-water waves J. Fluid Mech. (1983), val. 126, pp. 1-11 Printed in Great Britain 1 On a fourth-order envelope equation for deep-water waves By PETER A. E. M. JANSSENt Applied Mathematics, California nstitute of Technology,

More information

Simulations and experiments of short intense envelope

Simulations and experiments of short intense envelope Simulations and experiments of short intense envelope solitons of surface water waves A. Slunyaev 1,), G.F. Clauss 3), M. Klein 3), M. Onorato 4) 1) Institute of Applied Physics, Nizhny Novgorod, Russia,

More information

Lecture 13: Triad (or 3-wave) resonances.

Lecture 13: Triad (or 3-wave) resonances. Lecture 13: Triad (or 3-wave) resonances. Lecturer: Harvey Segur. Write-up: Nicolas Grisouard June 22, 2009 1 Introduction The previous lectures have been dedicated to the study of specific nonlinear problems,

More information

Yair Zarmi Physics Department & Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev Midreshet Ben-Gurion, Israel

Yair Zarmi Physics Department & Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev Midreshet Ben-Gurion, Israel PERTURBED NONLINEAR EVOLUTION EQUATIONS AND ASYMPTOTIC INTEGRABILITY Yair Zarmi Physics Department & Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev Midreshet Ben-Gurion,

More information

FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR GRAVITY-CAPILLARY WAVES IN THE PRESENCE OF A THIN THERMOCLINE IN DEEP WATER

FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR GRAVITY-CAPILLARY WAVES IN THE PRESENCE OF A THIN THERMOCLINE IN DEEP WATER ANZIAM J. 43(2002), 513 524 FOURTH ORDER NONLINEAR EVOLUTION EQUATIONS FOR GRAVITY-CAPILLARY WAVES IN THE PRESENCE OF A THIN THERMOCLINE IN DEEP WATER SUMA DEBSARMA 1 andk.p.das 1 (Received 23 March 1999)

More information

Bifurcations of solitons and their stability

Bifurcations of solitons and their stability 1 Bifurcations of solitons and their stability E. A. Kuznetsov 1,2,3 & F. Dias 4,5 1 P.N. Lebedev Physical Institute, 119991 Moscow, Russia 2 L.D. Landau Institute for Theoretical Physics, 119334 Moscow,

More information

arxiv: v3 [physics.flu-dyn] 16 Nov 2018

arxiv: v3 [physics.flu-dyn] 16 Nov 2018 Maximum temporal amplitude and designs of experiments for generation of extreme waves Marwan 1,2, Andonowati 1, and N. Karjanto 3 1 Department of Mathematics and Center for Mathematical Modelling and Simulation

More information

Rogue Waves. Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy. 18 January /25

Rogue Waves. Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy. 18 January /25 1/25 Rogue Waves Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy 18 January 2019 2/25 What is a rogue wave Mechanisms causing rogue waves Where rogue waves have been reported Modelling

More information

Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a 3D wave basin

Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a 3D wave basin Statistical properties of mechanically generated surface gravity waves: a laboratory experiment in a 3D wave basin M. Onorato 1, L. Cavaleri 2, O.Gramstad 3, P.A.E.M. Janssen 4, J. Monbaliu 5, A. R. Osborne

More information

Relation between Periodic Soliton Resonance and Instability

Relation between Periodic Soliton Resonance and Instability Proceedings of Institute of Mathematics of NAS of Ukraine 004 Vol. 50 Part 1 486 49 Relation between Periodic Soliton Resonance and Instability Masayoshi TAJIRI Graduate School of Engineering Osaka Prefecture

More information

Korteweg-de Vries flow equations from Manakov equation by multiple scale method

Korteweg-de Vries flow equations from Manakov equation by multiple scale method NTMSCI 3, No. 2, 126-132 2015) 126 New Trends in Mathematical Sciences http://www.ntmsci.com Korteweg-de Vries flow equations from Manakov equation by multiple scale method Mehmet Naci Ozer 1 and Murat

More information

On the Whitham Equation

On the Whitham Equation On the Whitham Equation Henrik Kalisch Department of Mathematics University of Bergen, Norway Joint work with: Handan Borluk, Denys Dutykh, Mats Ehrnström, Daulet Moldabayev, David Nicholls Research partially

More information

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1 Physics 624, Quantum II -- Exam 1 Please show all your work on the separate sheets provided (and be sure to include your name) You are graded on your work on those pages, with partial credit where it is

More information

Waves Called Solitons

Waves Called Solitons Waves Called Solitons Concepts and Experiments Bearbeitet von Michel Remoissenet überarbeitet 2003. Buch. XXIII, 328 S. Hardcover ISBN 978 3 540 65919 8 Format (B x L): 15,5 x 23,5 cm Gewicht: 1510 g Weitere

More information

Ultra-short pulse propagation in dispersion-managed birefringent optical fiber

Ultra-short pulse propagation in dispersion-managed birefringent optical fiber Chapter 3 Ultra-short pulse propagation in dispersion-managed birefringent optical fiber 3.1 Introduction This chapter deals with the real world physical systems, where the inhomogeneous parameters of

More information

Bottom friction effects on linear wave propagation

Bottom friction effects on linear wave propagation Bottom friction effects on linear wave propagation G. Simarro a,, A. Orfila b, A. Galán a,b, G. Zarruk b. a E.T.S.I. Caminos, Canales y Puertos, Universidad de Castilla La Mancha. 13071 Ciudad Real, Spain.

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1

Lecture 4 Fiber Optical Communication Lecture 4, Slide 1 ecture 4 Dispersion in single-mode fibers Material dispersion Waveguide dispersion imitations from dispersion Propagation equations Gaussian pulse broadening Bit-rate limitations Fiber losses Fiber Optical

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

A short tutorial on optical rogue waves

A short tutorial on optical rogue waves A short tutorial on optical rogue waves John M Dudley Institut FEMTO-ST CNRS-Université de Franche-Comté Besançon, France Experiments in collaboration with the group of Guy Millot Institut Carnot de Bourgogne

More information

Derivation of the General Propagation Equation

Derivation of the General Propagation Equation Derivation of the General Propagation Equation Phys 477/577: Ultrafast and Nonlinear Optics, F. Ö. Ilday, Bilkent University February 25, 26 1 1 Derivation of the Wave Equation from Maxwell s Equations

More information

Solitons. Nonlinear pulses and beams

Solitons. Nonlinear pulses and beams Solitons Nonlinear pulses and beams Nail N. Akhmediev and Adrian Ankiewicz Optical Sciences Centre The Australian National University Canberra Australia m CHAPMAN & HALL London Weinheim New York Tokyo

More information

Collisionless Shocks and the Earth s Bow Shock

Collisionless Shocks and the Earth s Bow Shock Collisionless Shocks and the Earth s Bow Shock Jean-Luc Thiffeault AST 381 Gas Dynamics 17 November 1994 1 Introduction The mean free path for particle collisions in the solar wind at the boundary of the

More information

ChE 385M Surface Phenomena University of Texas at Austin. Marangoni-Driven Finger Formation at a Two Fluid Interface. James Stiehl

ChE 385M Surface Phenomena University of Texas at Austin. Marangoni-Driven Finger Formation at a Two Fluid Interface. James Stiehl ChE 385M Surface Phenomena University of Texas at Austin Marangoni-Driven Finger Formation at a Two Fluid Interface James Stiehl Introduction Marangoni phenomena are driven by gradients in surface tension

More information

Formation of Three-Dimensional Surface Waves on Deep-Water Using Elliptic Solutions of Nonlinear Schrödinger Equation

Formation of Three-Dimensional Surface Waves on Deep-Water Using Elliptic Solutions of Nonlinear Schrödinger Equation Publications 7-015 Formation of Three-Dimensional Surface Waves on Deep-Water Using Elliptic Solutions of Nonlinear Schrödinger Equation Shahrdad G. Sajjadi Embry-Riddle Aeronautical University Stefan

More information

Rogue waves in large-scale fully-non-linear High-Order-Spectral simulations

Rogue waves in large-scale fully-non-linear High-Order-Spectral simulations Rogue waves in large-scale fully-non-linear High-Order-Spectral simulations Guillaume Ducrozet, Félicien Bonnefoy & Pierre Ferrant Laboratoire de Mécanique des Fluides - UMR CNRS 6598 École Centrale de

More information

Experimental observation of dark solitons on water surface

Experimental observation of dark solitons on water surface Experimental observation of dark solitons on water surface A. Chabchoub 1,, O. Kimmoun, H. Branger 3, N. Hoffmann 1, D. Proment, M. Onorato,5, and N. Akhmediev 6 1 Mechanics and Ocean Engineering, Hamburg

More information

Nonlinear Wave Dynamics in Nonlocal Media

Nonlinear Wave Dynamics in Nonlocal Media SMR 1673/27 AUTUMN COLLEGE ON PLASMA PHYSICS 5-30 September 2005 Nonlinear Wave Dynamics in Nonlocal Media J.J. Rasmussen Risoe National Laboratory Denmark Nonlinear Wave Dynamics in Nonlocal Media Jens

More information

Perturbation theory for the defocusing nonlinear Schrödinger equation

Perturbation theory for the defocusing nonlinear Schrödinger equation Perturbation theory for the defocusing nonlinear Schrödinger equation Theodoros P. Horikis University of Ioannina In collaboration with: M. J. Ablowitz, S. D. Nixon and D. J. Frantzeskakis Outline What

More information

Superposition of electromagnetic waves

Superposition of electromagnetic waves Superposition of electromagnetic waves February 9, So far we have looked at properties of monochromatic plane waves. A more complete picture is found by looking at superpositions of many frequencies. Many

More information

Vector dark domain wall solitons in a fiber ring laser

Vector dark domain wall solitons in a fiber ring laser Vector dark domain wall solitons in a fiber ring laser H. Zhang, D. Y. Tang*, L. M. Zhao and R. J. Knize 1 School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

More information

Solitons optiques à quelques cycles dans des guides

Solitons optiques à quelques cycles dans des guides Solitons optiques à quelques cycles dans des guides couplés Hervé Leblond 1, Dumitru Mihalache 2, David Kremer 3, Said Terniche 1,4 1 Laboratoire de Photonique d Angers LϕA EA 4464, Université d Angers.

More information

Optical solitons and its applications

Optical solitons and its applications Physics 568 (Nonlinear optics) 04/30/007 Final report Optical solitons and its applications 04/30/007 1 1 Introduction to optical soliton. (temporal soliton) The optical pulses which propagate in the lossless

More information

Self-Phase Modulation in Optical Fiber Communications: Good or Bad?

Self-Phase Modulation in Optical Fiber Communications: Good or Bad? 1/100 Self-Phase Modulation in Optical Fiber Communications: Good or Bad? Govind P. Agrawal Institute of Optics University of Rochester Rochester, NY 14627 c 2007 G. P. Agrawal Outline Historical Introduction

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must

1/27/2010. With this method, all filed variables are separated into. from the basic state: Assumptions 1: : the basic state variables must Lecture 5: Waves in Atmosphere Perturbation Method With this method, all filed variables are separated into two parts: (a) a basic state part and (b) a deviation from the basic state: Perturbation Method

More information

Numerical Simulation of Water Waves Modulational Instability under the Effects of Wind s Stress and Gravity Force Relaxation

Numerical Simulation of Water Waves Modulational Instability under the Effects of Wind s Stress and Gravity Force Relaxation Open Journal of Marine Science, 016, 6, 93-10 Published Online January 016 in SciRes. http://www.scirp.org/journal/ojms http://dx.doi.org/10.436/ojms.016.61009 Numerical Simulation of Water Waves Modulational

More information

Numerical Study of Oscillatory Regimes in the KP equation

Numerical Study of Oscillatory Regimes in the KP equation Numerical Study of Oscillatory Regimes in the KP equation C. Klein, MPI for Mathematics in the Sciences, Leipzig, with C. Sparber, P. Markowich, Vienna, math-ph/"#"$"%& C. Sparber (generalized KP), personal-homepages.mis.mpg.de/klein/

More information

LECTURE 8: DYNAMICAL SYSTEMS 7

LECTURE 8: DYNAMICAL SYSTEMS 7 15-382 COLLECTIVE INTELLIGENCE S18 LECTURE 8: DYNAMICAL SYSTEMS 7 INSTRUCTOR: GIANNI A. DI CARO GEOMETRIES IN THE PHASE SPACE Damped pendulum One cp in the region between two separatrix Separatrix Basin

More information

A new integrable system: The interacting soliton of the BO

A new integrable system: The interacting soliton of the BO Phys. Lett., A 204, p.336-342, 1995 A new integrable system: The interacting soliton of the BO Benno Fuchssteiner and Thorsten Schulze Automath Institute University of Paderborn Paderborn & Germany Abstract

More information

Concepts from linear theory Extra Lecture

Concepts from linear theory Extra Lecture Concepts from linear theory Extra Lecture Ship waves from WW II battleships and a toy boat. Kelvin s (1887) method of stationary phase predicts both. Concepts from linear theory A. Linearize the nonlinear

More information

Intermittent onset of turbulence and control of extreme events

Intermittent onset of turbulence and control of extreme events Intermittent onset of turbulence and control of extreme events Sergio Roberto Lopes, Paulo P. Galúzio Departamento de Física UFPR São Paulo 03 de Abril 2014 Lopes, S. R. (Física UFPR) Intermittent onset

More information

Lecture 10: Whitham Modulation Theory

Lecture 10: Whitham Modulation Theory Lecture 10: Whitham Modulation Theory Lecturer: Roger Grimshaw. Write-up: Andong He June 19, 2009 1 Introduction The Whitham modulation theory provides an asymptotic method for studying slowly varying

More information

y = h + η(x,t) Δϕ = 0

y = h + η(x,t) Δϕ = 0 HYDRODYNAMIC PROBLEM y = h + η(x,t) Δϕ = 0 y ϕ y = 0 y = 0 Kinematic boundary condition: η t = ϕ y η x ϕ x Dynamical boundary condition: z x ϕ t + 1 2 ϕ 2 + gη + D 1 1 η xx ρ (1 + η 2 x ) 1/2 (1 + η 2

More information

Davydov Soliton Collisions

Davydov Soliton Collisions Davydov Soliton Collisions Benkui Tan Department of Geophysics Peking University Beijing 100871 People s Republic of China Telephone: 86-10-62755041 email:dqgchw@ibmstone.pku.edu.cn John P. Boyd Dept.

More information

Optical soliton pulses with relativistic characteristics

Optical soliton pulses with relativistic characteristics Optical soliton pulses with relativistic characteristics Mcdonald, GS, Christian, JM and Hodgkinson, TF Title Authors Type URL Published Date 1 Optical soliton pulses with relativistic characteristics

More information

Spectroscopy in frequency and time domains

Spectroscopy in frequency and time domains 5.35 Module 1 Lecture Summary Fall 1 Spectroscopy in frequency and time domains Last time we introduced spectroscopy and spectroscopic measurement. I. Emphasized that both quantum and classical views of

More information

Vector Solitons and Their Internal Oscillations in Birefringent Nonlinear Optical Fibers

Vector Solitons and Their Internal Oscillations in Birefringent Nonlinear Optical Fibers Vector Solitons and Their Internal Oscillations in Birefringent Nonlinear Optical Fibers By Jianke Yang In this article, the vector solitons in birefringent nonlinear optical fibers are studied first.

More information

Exponential asymptotics theory for stripe solitons in two-dimensional periodic potentials

Exponential asymptotics theory for stripe solitons in two-dimensional periodic potentials NLS Workshop: Crete 2013 Exponential asymptotics theory for stripe solitons in two-dimensional periodic potentials Jianke Yang University of Vermont Collaborators: Sean Nixon (University of Vermont) Triantaphyllos

More information

Convection Patterns. Physics 221A, Spring 2017 Lectures: P. H. Diamond Notes: Jiacong Li

Convection Patterns. Physics 221A, Spring 2017 Lectures: P. H. Diamond Notes: Jiacong Li Convection Patterns Physics 1A, Spring 017 Lectures: P. H. Diamond Notes: Jiacong Li 1 Introduction In previous lectures, we have studied the basics of dynamics, which include dimensions of (strange) attractors,

More information

Oscillatory spatially periodic weakly nonlinear gravity waves on deep water

Oscillatory spatially periodic weakly nonlinear gravity waves on deep water J. Fluid Mech. (1988), vol. 191, pp. 341-372 Printed in Great Britain 34 1 Oscillatory spatially periodic weakly nonlinear gravity waves on deep water By JUAN A. ZUFIRIA Applied Mathematics, California

More information

Evolution of solitary waves for a perturbed nonlinear Schrödinger equation

Evolution of solitary waves for a perturbed nonlinear Schrödinger equation University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2010 Evolution of solitary waves for a perturbed nonlinear Schrödinger

More information

Optical solitary wave solutions to nonlinear Schrödinger equation with cubic-quintic nonlinearity in non-kerr media

Optical solitary wave solutions to nonlinear Schrödinger equation with cubic-quintic nonlinearity in non-kerr media MM Research Preprints 342 349 MMRC AMSS Academia Sinica Beijing No. 22 December 2003 Optical solitary wave solutions to nonlinear Schrödinger equation with cubic-quintic nonlinearity in non-kerr media

More information

Dark Soliton Fiber Laser

Dark Soliton Fiber Laser Dark Soliton Fiber Laser H. Zhang, D. Y. Tang*, L. M. Zhao, and X. Wu School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 *: edytang@ntu.edu.sg, corresponding

More information

Experiments on capillary-gravity waves of solitary type on deep water

Experiments on capillary-gravity waves of solitary type on deep water Experiments on capillary-gravity waves of solitary type on deep water Michael Longuet-Higgins Institute for Nonlinear Science, University of California San Diego, La Jolla, California 92093-0402 Xin Zhang

More information

Fundamentals of Fluid Dynamics: Waves in Fluids

Fundamentals of Fluid Dynamics: Waves in Fluids Fundamentals of Fluid Dynamics: Waves in Fluids Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/ tzielins/ Institute

More information

NONLINEAR GRAVITY AND CAPILLARY-GRAVITY WAVES

NONLINEAR GRAVITY AND CAPILLARY-GRAVITY WAVES Annu. Rev. Fluid Mech. 1999. 31:301 46 Copyright c 1999 by Annual Reviews. All rights reserved NONLINEAR GRAVITY AND CAPILLARY-GRAVITY WAVES Frédéric Dias Institut Non-Linéaire de Nice, UMR 6618 CNRS-UNSA,

More information

NUMERICAL SOLITARY WAVE INTERACTION: THE ORDER OF THE INELASTIC EFFECT

NUMERICAL SOLITARY WAVE INTERACTION: THE ORDER OF THE INELASTIC EFFECT ANZIAM J. 44(2002), 95 102 NUMERICAL SOLITARY WAVE INTERACTION: THE ORDER OF THE INELASTIC EFFECT T. R. MARCHANT 1 (Received 4 April, 2000) Abstract Solitary wave interaction is examined using an extended

More information

4 Evolution of density perturbations

4 Evolution of density perturbations Spring term 2014: Dark Matter lecture 3/9 Torsten Bringmann (torsten.bringmann@fys.uio.no) reading: Weinberg, chapters 5-8 4 Evolution of density perturbations 4.1 Statistical description The cosmological

More information

Wave interactions. J. Vanneste. School of Mathematics University of Edinburgh, UK. vanneste < > - + Wave interactions p.

Wave interactions. J. Vanneste. School of Mathematics University of Edinburgh, UK.   vanneste < > - + Wave interactions p. Wave interactions J. Vanneste School of Mathematics University of Edinburgh, UK www.maths.ed.ac.uk/ vanneste Wave interactions p.1/50 Linear waves in conservative systems Small amplitude motion: linearize

More information