Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Similar documents
Three-terminal quantum-dot thermoelectrics

Quantum Effects in Thermal and Thermo-Electric Transport in Semiconductor Nanost ructu res

arxiv: v1 [cond-mat.mes-hall] 28 Mar 2016

Quantum physics in quantum dots

Chapter 3 Properties of Nanostructures

Single Electron Tunneling Examples

Scattering theory of thermoelectric transport. Markus Büttiker University of Geneva

Electron counting with quantum dots

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Quantum Information Processing with Semiconductor Quantum Dots

Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

Thermoelectric Properties of Few-Electron Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

single-electron electron tunneling (SET)

Lecture 2: Double quantum dots

Lecture 8, April 12, 2017

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT

A Tunable Kondo Effect in Quantum Dots

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

SUPPLEMENTARY FIGURES

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Electrical spin-injection into semiconductors

Charges and Spins in Quantum Dots

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

arxiv: v1 [cond-mat.mes-hall] 6 May 2008

Coulomb Blockade and Kondo Effect in Nanostructures

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Failure of the Wiedemann-Franz law in mesoscopic conductors

Quantum Confinement in Graphene

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001

Master thesis. Thermoelectric effects in quantum dots with interaction

Quantum Transport through Coulomb-Blockade Systems

Carbon Nanotubes part 2 CNT s s as a toy model for basic science. Niels Bohr Institute School 2005

Recent developments in spintronic

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Physics of Semiconductors

Cotunneling and Kondo effect in quantum dots. Part I/II

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures

Spin Currents in a 2D Electron Gas

Thermoelectricity with cold atoms?

Building blocks for nanodevices

Mesoscopic physics: normal metals, ferromagnets, and magnetic semiconductors

Chapter 8: Coulomb blockade and Kondo physics

Classification of Solids

Thermoelectric transport of ultracold fermions : theory

Graphene and Carbon Nanotubes

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Physics of Low-Dimensional Semiconductor Structures

SUPPLEMENTARY INFORMATION

All-electrical measurements of direct spin Hall effect in GaAs with Esaki diode electrodes.

LECTURE 3: Refrigeration

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures

Current-driven Magnetization Reversal in a Ferromagnetic Semiconductor. (Ga,Mn)As/GaAs/(Ga,Mn)As Tunnel Junction

Electronic transport in low dimensional systems

Kubala, Björn & König, Jürgen & Pekola, Jukka Violation of the Wiedemann-Franz Law in a Single-Electron Transistor

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Commensurability-dependent transport of a Wigner crystal in a nanoconstriction

Supporting Online Material for

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Spin injection. concept and technology

Evidence of anisotropic Kondo coupling in nanostructured devices

Thermal transport in strongly correlated nanostructures J. K. Freericks

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description:

3.45 Paper, Tunneling Magnetoresistance

Coulomb blockade and single electron tunnelling

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime

Spin-Polarized Current in Coulomb Blockade and Kondo Regime

The Kondo Effect in the Unitary Limit

GeSi Quantum Dot Superlattices

Mott Relation for Anomalous Hall and Nernst effects in

Nano-Electro-Mechanical Systems (NEMS) in the Quantum Limit

Electronic Quantum Transport in Mesoscopic Semiconductor Structures

SUPPLEMENTARY INFORMATION

Lecture 9: Metal-semiconductor junctions

Coherence and Correlations in Transport through Quantum Dots

Electronic Transport. Peter Kratzer Faculty of Physics, University Duisburg-Essen

Electron spins in nonmagnetic semiconductors

Presented by: Göteborg University, Sweden

Impact of disorder and topology in two dimensional systems at low carrier densities

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES

Formation of unintentional dots in small Si nanostructures

Manipulation of Majorana fermions via single charge control

From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Enhancement-mode quantum transistors for single electron spin

Graphite, graphene and relativistic electrons

Spin and Charge transport in Ferromagnetic Graphene

Branislav K. Nikolić

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Material Science II. d Electron systems

To Quantum Dots and Qubits with electrons on helium

Universal valence-band picture of. the ferromagnetic semiconductor GaMnAs

Final exam. Introduction to Nanotechnology. Name: Student number:

Metallic: 2n 1. +n 2. =3q Armchair structure always metallic = 2

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Transcription:

Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg

Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential T temperature V voltage, electrostatic potential difference T V e T L T L T L T L J J J e I Q Q 1 1 11 11 e T L e T e ST L 1 S T T L 1 L 1 L From: R.D. Barnard Thermoelectricity in Metals and Alloys (197)

Thermoelectric Properties T e K M L G Q I / Onsager-relation: M = -LT fluxes forces T I S R Q V K GT S K T Q ST G M I Q I T 0 0 1 G L T e S I 0 / Diffusion Thermopower

Thermoelectric Properties 0 0 0 ) ( ) ( ) ( T k E E E t E f de e k h e T K T k E E E t E f de e k h e L E t E f de h e G B F B B F B Landauer-Büttiker-Formalism: G L T e S I 0 / et E S E f T k E E B F odd function in E L large for t(e) asymmetric around E F

Thermopower (S) Kelvin-Onsager relation (1931) L S G T Heike s formula S 1 S e I 0 1 k e B ln E et g f ln g i Q TS (spin) entropy contribution thermal energy to transfer one electron from a hot to a cold reservoir Mott relation S 3 k q B kbt G dg de E F linear response

Thermopower (S) Measurement of the Thermopower S lim0 T V T th I 0 reservoir 1 reservoir cold? µ,t l l µ,t sample r r hot

Thermopower Measurement reservoir 1 reservoir cold? µ,t l l µ,t sample r r hot S : V th lim T T 0 I 0

Current Heating Technique V th V 1 V S dot S qpc T e T L

Current Heating Technique V th V 1 V S dot S qpc T e T L energy dissipation at the channel entrance only hot electron gas within channel (1 ps ee << eph 0. ns) energy relaxation in the reservoir diffusion thermopower T = 10 mk, x = 500 nm 0 K/mm QD and QPC create thermovoltages which can be measured as voltage difference between V 1 and V V 1 -V = (S QD -S QPC ) T = S QD T S QPC can be adjusted to zero ac-excitation and detection: P heat ~ [I sin(t)] ~ sin(t) (z

First Experiments: Thermopower of a QPC In semiconductors, at low T, 100 ps. e p nearly thermalized hot electron distribution in the heating channel

Step-by-step Barrier Each channel in the point contact acts as a potential barrier, hence the thermopower shows a series of peaks L.W. Molenkamp et al., Phys. Rev. Lett. 65, 105 (1990).

Thermopower of a QPC H. van Houten et al., Semicond. Sci. Technol. 7, B15 (199) 1 1 0 ln 1 ln 1 / exp ln 1 n B B F B n n e e e k h e L T k E T k fde 1 ; if ln 1 N E E N e k S N F B 1 if 1 1 N e k S B quantized thermopower E 1 E 1 ; if 0 N E E S N F

Reference QPC Voltage Probes have to be at same temperature and of the same material QPC can be used as a reference since TP of QPC is known (can be adjusted to zero) G of QPC is quantized and therefore, so is S. This can be used as one method of temperature calibration V V V T,A V T,B V T,A V T,B L.W. Molenkamp et al., Phys. Rev. Lett. 65, 105 (1990). L.W. Molenkamp et al., Phys. Rev. Lett. 68, 3765 (199). A.A.M. Staring et al., Europhys. Lett., 57 (1993). S. Möller et al., Phys. Rev. Lett. 81, 5197 (1998). S.F. Godijn et al., Phys. Rev. Lett. 8, 97 (1999). R. Scheibner et al., Phys. Rev. Lett. 95, 17660 (005). R. Scheibner et al., Phys. Rev. B75, 041301(R) (007).

Peltier Coefficient Theoretical estimate for Peltier coefficient is within factor of from observed signal. L.W. Molenkamp et al., Phys. Rev. Lett. 68, 3765 (199).

Thermal Conductance again within factor of from the observed signal. Wiedemann-Franz yields thermal conductance quantum. L.W. Molenkamp et al., Phys. Rev. Lett. 68, 3765 (199).

Next: quantum dots surface GaAs/AlGaAs - DEG n =.3 10 11 cm -, µ = 10 6 cm /Vs Ti/Au-surface electrodes (opt. and e-beam lithography) Au/AuGe - ohmic contacts growth direction 17 nm Al 0.33 Ga 0.67 As 38 nm 1.33 x 10 18-3 cm Si 0 nm 0.4 m GaAs Al 0.33 Ga 0.67 As GaAs DEG ohmic contacts QD semiconducting GaAs substrate B valence band conduction band C Au-gates electron heating channel DEG A F E D quantum dot

Quantum Dot (QD) Constant Interaction model: QD = small capacitor energies depend linearly on V gate coefficients do not depend on N (number of electrons) Energy needed to add one electron: qm. Energy E qm ~ 100 µev Coulomb Interaction E C = ½ e /C ~ mev E C = E qm + E C QD C S Parameters accessible in conventional transport experiments V SD C D C gate V gate

Transport Properties linear transport non-linear transport: - capacitive coupling of leads and QD - strong influence on hybridization of leads and QD

Thermopower of a QD e - like sequential tunneling + positive contribution to the thermovoltage V th zero thermovoltage V gate N-1 N N+1

Thermopower of a QD e - like sequential tunneling + positive contribution to the thermovoltage V th zero thermovoltage h - like V gate N-1 N N+1 negative contribution to the thermovoltage

Thermopower of a QD e - like sequential tunneling + positive contribution to the thermovoltage V th zero thermovoltage h - like V gate zero thermovoltage N-1 N N+1 negative contribution to the thermovoltage

Thermopower of a QD sequential tunneling + V T E gap T V th h - like V gate N-1 N N+1

Thermopower of a QD sequential tunneling Large, metallic-like QD N ~ 300 T ~ 30 mk E C ~ 0.3 mev E C / k B T ~ 15 A.A.M. Staring et al., Europhys. Lett., 57 (1993).

Thermopower of a QD sequential tunneling S G (e /h) - V T (µv) 0.04 0.0 0.00 3.0.0 1.0 0.0-1.0 -.0-3.0-1.0-0.9-0.8-0.7-0.6-0.5 V E (V) small QD N ~ 15 T ~ 1.5 K E C ~ mev E C / k B T ~ 15 Sample: Bo_I13C

cotunneling contribution Thermopower of a QD suppression of thermovoltage

cotunneling contribution Thermopower of a QD [M. Turek and K.A. Matveev, PRB, 65, 11533 (001)] -8.0 V T * (µv) -6.0-4.0 -.0 0.0.0 T ~ 100 mk T ~ 1.5 K N ~ 15 E C ~ mev E C / k B T ~ 30 4.0 6.0 8.0-1.0-0.8-0.6 V E (V) R. Scheibner et al., PRB 75, 041301 (007)

cotunneling contribution Thermopower of a QD no signatures of cotunneling processes in the CB regime R. Scheibner et al., PRB 75, 041301 (007)

700 nm Chaotic Quantum Dot 800 nm dot gate n s = 3.4 x 10 11 cm - G qpc = 4 e / h = 1 x 10 6 cm / (V sec) (N qpc = )

V = 0.46 V th Thermovoltage Fluctuations T = 0 mk statistical ensemble V Th / V -750 V gate = 10 mv B / mt -700 V / mv gate -650-600 -550 Th -500 gate -450-100 -50 0 50 100 B/mT I heating = 40 na T 35 mk V gate = - 550 mv

Thermopower Fluctuation Distribution RMT: G E c( ) 1 G(1 G) = analytic form for N 1 = N = 1 p(s) = 1 here: N 1 = N = S / a.u. 4 3 6 5 4 P(S) 1 P(S) 3 1 0-60 -40-0 0.0 0 40 60 S / ( V / K ) 0-60 -40-0 0.0 0 40 60 S / ( V / K ) S. Godijn et al., PRL 8, 97 (1999)

Residual Charging Energy DEG dot characteristic time scale: Luttinger liquid theory: DEG erg dwell E / h U * / h * U 0(1 ) N U t (Flensberg, 1993, 1994) chaotic QD: (Aleiner and Glazman, 1998) E U 0 t 1 1 t ln U E 0

Scaling Experiment tunneling regime (G << e /h) L e L scanned 1 G = 0.06...0.8 G 0

Scaling Results Thermovoltage Thermopower 0.06 Theory k B T/U* = 0. 0.19 0.5 0.9 0.38 0.43 0.8 0.30 0.33 0.37 0.45 F I heating = 40 na T e = 55 mk, T L = 40 mk

Scaling 1.0 0.8 chaotic behaviour 0.6 extrapolation t 1 U* / U 0 0.4 0. Luttinger liquid behaviour 0 0 0. 0.4 0.6 0.8 1.0 theory E = 3 ev U 0 = 100 ev U * exp ( t 1) 0. 45 U 0 U * E U 0 U 0 ln 0.49 U 0 U 0 E S. Möller et al., PRL 81, 5197 (1998)

Spin-Correlated QD existence of a magnetic moment on the QD can lift the CB Kondo Resonance transport mechanism: spin scattering hybridization of free electrons in the leads with localized magnetic moment leads to resonance at the Fermi edge

Spin-Correlated QD.0 0.0 1.5 Conductance di/dv Bias Thermovoltage V th 15.0 1.0 10.0 (di/dv) / (e /h) 0.5 0.0 5.0 0.0 Vthermo / µv -0.5-5.0-1.0-10.0 0.4 0.6 0.8 1.0 1. 1.4 1.6 - V gate E / Volt strong coupling Kondo Regime weak coupling Cotunnel-Regime

Spin-Correlated QD e - like 0.4 4.0 0..0 (di/dv) / (e /h) 0.0-0. ~ 1 ev V thermo / µv 0.0 -.0 h - like Conductance di/dv Bias -0.4 Thermovoltage V th Mott - Thermopower (scaled to fit) -4.0 0.8 0.9 1.0 1.1 1. Asymmetry between electron- and hole-like transport: Mixed-valence regime Scheibner et al. PRL 95, 17660 (005)

Spin-Entropy Transport Entropy change S adding one electron to an empty site: S = k B (ln g f - ln g i ) = k B (ln -ln1) = k B ln -V g 1.. 3. 4. 1. e-like transport from the hot to the cold reservoir S = k B (ln g f - ln g i ) = k B (ln - ln 1) = k B ln S SE =-k B /e ln S 0. h-like transport from the cold to the hot reservoir S = k B (ln g f - ln g i ) = k B (ln 1 - ln ) = -k B ln S SE =-k B /e ln S SE S 3. e-like transport from the hot to the cold reservoir S = k B (ln g f - ln g i ) = k B (ln 1 - ln ) = -k B ln S SE =k B /e ln 4. h-like transport from the cold to the hot reservoir S = k B (ln g f - ln g i ) = k B (ln - ln 1) = k B ln S SE =k B /e ln g s = 1 g s = g s = 1 R. Scheibner et al., PRL 95, 17660 (005) R. Scheibner, PhD-Thesis, Würzburg 007

Spin entropy contributions

Thermal Rectifier R. Scheibner et al., NJP 10, 083016 (008)

Thermal Rectifier R. Scheibner et al., NJP 10, 083016 (008)

Thermal Rectifier asymmetrically coupled states

Thermal Rectifier G QD (e /h) 0.8 0.6 0.4 0. N+1 N+ J tot de h f ( E, T ) f ( E, T ) t( E) L R e (electron) E (energy) 0.0 S L L 1 11 e df Th de E t( E) de e df h de t( E) de S QD (k B /e) 0 - -4 / t( E) A f E EZ, T / E -.0 -.15 -.10 -.05 V P (V) R. Scheibner et al., NJP 10, 083016 (008)

Thermopower in (Ga,Mn)As First (Ga,Mn)As data by Shi group (Pu et al., Phys. Rev. Lett. 97, 036601 (006). - Signal too large compared to band model (claim Fermi level in impurity band) - Dependence on field direction mimics AMR, not band structure Data dominated by phonon drag?

Measure Diffusion Thermopower, only. Apply current heating technique to (Ga,Mn)As 0 nm (Ga,Mn)As (3% Mn) 60 nm n-gaas ( x 10 19 cm -3 ) ohmics 5nm Ti/ 30 nm Au No counter point contact: T el inferred from weak localization peak in channel

30nm Au 5nm Ti 0nm LT GaMnAs 1nm LT GaAs 60nm n+- GaAs 00nm HT GaAs GaAs

Large Device (no UTF) V T I I V T

Flashback: TAMR in (Ga,Mn)As C. Gould et al., Phys. Rev. Lett. 93, 11703 (004). Device Contact GaMnAs AlOx Au Au 3000 980 GaMnAs Device Contact Resistance () 960 940 90 900 880 860-60 -40-0 0 0 40 60 B (mt) A tunnel barrier between a non-magnetic metal (Au) and ferromagnetic (Ga,Mn)As can exhibit a huge magnetoresistance that can show the signature of a spin valve.

Spin-Valve like TMR in (Ga,Mn)As/AlOx/Non-magnet devices h c1 h c 0 deg. 180 deg. R () 3700 3600 3500 3400 3300 300 3100 3000 170 deg. 900-100 -80-60 -40-0 0 0 40 60 80 100 B(mT) R() 3700 3600 3500 3400 3300 300 3100 3000 350 deg. 900 100 80 60 40 0 0-0 -40-60 -80-100 B(mT) Dependence of the magnetoresistance effect on the in-plane field angle (angle with respect to [100]). Effect due to biaxial anisotropy and anisotropic d.o.s. Now back to thermopower experiment...

Tunnel Anisotropic Magneto Thermopower 90 T. Naydenova et al., Phys. Rev. Lett. 107, 19701 (011) 16 135 45 1 Thermo Voltage (µv) 48.8 48.6 48.4 48. 48.0 47.8 47.6 47.4 47. I=370pA (T=14K) h c1 0 60 h c Thermo Voltage (µv) 08 04 08 1 16 180 5 I=730pA (T=0K) Signal at saturation (300 mt), shows well-known (Ga,Mn)As symmetry... 70 0 315 Sweep Angle (Degrees) 0.6 47.0 0 0.5 46.8-00 -150-100 -50 0 50 100 150 00 B (mt) Temperature (K) 18 16 14 0.4 0.3 0. 0.1 I² (ma)² Signal with hysteresis, shows expected angle Thermo Voltage (µv) dependence...and is quadratic with current 1 0 50 100 150 00 0.0

hc1 and hc for various field directions 40 47.16 Magnetic field (mt) 0 0 0 49.6 48.8 48.0 47.04 46.9-0.03 0.00 0.03 40 47. -0.3-0. -0.1 0.0 0.1 0. 0.3 T. Naydenova et al., Phys. Rev. Lett. 107, 19701 (011) Model (originally for Fe/GaAs):

Thermopower Model and Simulation Energy (a.u.) DOS (a.u.) Energy (a.u.) J + E F J - E F DOS (a.u.) Signal amplitude fully in agreement with band model S 0.4 V/K (Ga,Mn)As 4. K GaAs:Si 4. K + T

Conclusions Current heating is a flexible technique for thermoelectric measurements on nanostructures. Avoids phonon drag, substrate effects. Many detailed investigations of quantum dot transport First observation of Kondo thermopower on a single impurity Discovered TAMT in a n-gaas/(ga,mn)as junction Collaborators: Stefan Möller, Sandra Godijn, Ralph Scheibner, Tsvetelina Naydenova, Holger Thierschmann. Hartmut Buhmann, Charles Gould Funding: DFG