UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

Similar documents
UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

November 2005 TYD/TIME: 90 min PUNTE / MARKS: 35 VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER: HANDTEKENING/SIGNATURE:

JUNE 2005 TYD/TIME: 90 min PUNTE / MARKS: 50 VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER:

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA WTW263 NUMERIESE METODES WTW263 NUMERICAL METHODS EKSAMEN / EXAMINATION

Eksterne eksaminator / External examiner: Dr. P Ntumba Interne eksaminatore / Internal examiners: Prof. I Broere, Prof. JE vd Berg, Dr.

SEMESTERTOETS 1 / SEMESTER TEST 1

WTW 263 NUMERIESE METODES / NUMERICAL METHODS

EXAMINATION / EKSAMEN 19 JUNE/JUNIE 2013 AT / OM 08:00

EXAMINATION / EKSAMEN 17 JUNE/JUNIE 2011 AT / OM 12:00 Q1 Q2 Q3 Q4 Q5 Q6 TOTAL

EKSAMEN / EXAMINATION Q1 Q2 Q3 Q4 Q5 TOTAL. 2. No pencil work or any work in red ink will be marked.

WTW 158 : CALCULUS EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Me/Ms R Möller

WTW 158 : CALCULUS EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Prof NFJ van Rensburg

VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: FOONNO. GEDURENDE EKSAMENPERIODE / PHONE NO. DURING EXAM PERIOD:

VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER: Totaal / Total:

VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: HANDTEKENING / SIGNATURE: TELEFOON / TELEPHONE:

Punte: Intern Marks: Internal WTW 168 : CALCULUS. EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Me / Ms R Möller

[1a] 1, 3 [1b] 1, 0 [1c] 1, 3 en / and 1, 5 [1d] 1, 0 en / and 1, 0 [1e] Geen van hierdie / None of these

VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: HANDTEKENING / SIGNATURE: SEL NR / CELL NO:

WTW 161 : ALGEBRA. EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Dr F Theron

3. (d) None of these / Geen van hierdie

UNIVERSITY OF PRETORIA / UNIVERSITEIT VAN PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

CAMI EDUCATION. Graad 12 Vraestel I : Rekord eksamen Punte. Lees die volgende instruksies noukeurig deur voordat die vrae beantwoord word:

HOëRSKOOL STRAND WISKUNDE NOVEMBER 2016 GRAAD 11 VRAESTEL 2

MATHEMATICS GRADE 10 TASK 1 INVESTIGATION Marks: 55

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Oplos van kwadratiese vergelykings: die vind van die vergelyking *

Examination Copyright reserved. Eksamen Kopiereg voorbehou. Module EBN122 Elektrisiteit en Elektronika 13 November 2009

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Kwadratiese rye - Graad 11

Question 1. The van der Waals equation of state is given by the equation: a

Graad 12: Rye en Reekse

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING. Volpunte: Full marks: Instruksies / Instructions

TW 214 TOETS 2 - VOORBEREIDING 2018 TEST 2 - PREPARATION

LIMPOPO DEPARTEMENT VAN ONDERWYS LIMPOPO DEPARTMENT OF EDUCATION- LAERSKOOL WARMBAD

y =3x2 y 2 x 5 siny x y =6xy2 5x 4 siny

DEPARTEMENT SIVIELE EN BIOSISTEEM-INGENIEURSWESE DEPARTMENT OF CIVIL AND BIOSYSTEMS ENGINEERING MEGANIKA SWK 122 EKSAMEN MECHANICS SWK 122 EXAMINATION

Huiswerk Hoofstuk 22 Elektriese velde Homework Chapter 22 Electric fields

CMY 117 SEMESTERTOETS 2 / SEMESTER TEST 2

KOPIEREG VOORBEHOU / COPYRIGHT RESERVED

Eksamen Invulvraestel Kopiereg voorbehou. Exam Fill in paper Copyright reserved. Linear Systems ELI November 2010

Hoofstuk 29 Magnetiese Velde a.g.v Elektriese Strome

MATHEMATICS PAPER 1. GRADE 12 PRELIMINARY EXAMINATION 04 September :00 WISKUNDE VRAESTEL 1. GRAAD 12-REKORDEKSAMEN 04 September :00

UNIVERSITY OF PRETORIA

CMY 127 EKSAMEN / EXAMINATION

Universiteit Stellenbosch / Stellenbosch University Toegepaste Wiskunde / Applied Mathematics B252 Assessering 1 / Assessment 1:

Semester Test 1. Semestertoets 1. Module EIR221 Elektriese Ingenieurswese 20 Augustus Module EIR221 Electrical Engineering 20 August 2010

Semester Test 1 Semestertoets 1 FSK March 2011 / 16 Maart Time 2½ hours Max. Total 85 Marks Max Tyd 2½ ure Maks. Totaal 85 punte Maks

GRAAD 12 SEPTEMBER 2012 WISKUNDE V3 MEMORANDUM

FAKULTEIT INGENIEURSWESE FACULTY OF ENGINEERING

Winter Examination Copyright reserved. Wintereksamen Kopiereg voorbehou. Analoogelektronika ENE Junie 2004

a b

NATIONAL SENIOR CERTIFICATE GRADE 10 MATHEMATICS P3 PREPARATORY EXAMINATION 2008 NOVEMBER 2008

KLASTOETS GRAAD 11. FISIESE WETENSKAPPE: CHEMIE Toets 6: Chemiese verandering

3. How many gadgets must he make and sell to make a profit of R1000?

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12 JUNE/JUNIE 2018 MATHEMATICS P1/WISKUNDE V1 MARKING GUIDELINE/NASIENRIGLYN

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12 SEPTEMBER 2018 MATHEMATICS P1/WISKUNDE V1 MARKING GUIDELINE/NASIENRIGLYN

OpenStax-CNX module: m Meetkunde: Meting * basis loodregte hoogte. Figure 1. Figure 2

CMY 127 FINALE EKSAMEN / FINAL EXAMINATION AFDELING A / SECTION A

GRADE 9 - FINAL ROUND QUESTIONS GRAAD 9 - FINALE RONDTE VRAE

Universiteit van Pretoria

! 1. Gegee / Given! 1. f#x$dx! 12 en / and!4. f#x$dx is. Die waarde van. f#x$dx is / The value of!1. 1 a " 9 1 b 9 1 c 3 1 d 15.

NATIONAL SENIOR CERTIFICATE GRADE 10 GRAAD 10

NATIONAL SENIOR CERTIFICATE GRADE /GRAAD10

UNIVERSITY OF PRETORIA DEPT SlVlELE INGENIEURSWESE / DEPT OF CIVIL ENGINEERING

DEPRESSIE101. panic attacks - inside the brain TALKING about anxiety attacks. hanteer angstigheid beter snellers vir 'n paniekaanval

NASIONALE SENIOR SERTIFIKAAT GRAAD 10

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT NOVEMBER 2018 TECHNICAL MATHEMATICS P1/TEGNIESE WISKUNDE V1 MARKING GUIDELINE/NASIENRIGLYN

CHM 215 Eksamen / Examination

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

Question / Vraag 1: [12]

CHM 171 EKSAMEN / EXAMINATION

+ + SEPTEMBER 2016 MATHEMATICS PAPER 1 / WISKUNDE VRAESTEL 1 MEMORANDUM

Huiswerk Hoofstuk 23 Chapter 23 Homework

GRAAD 11 NOVEMBER 2012 WISKUNDIGE GELETTERDHEID V1 MEMORANDUM

GRADE 11 - FINAL ROUND QUESTIONS GRAAD 11 - FINALE RONDTE VRAE

GRADE/GRAAD 11 NOVEMBER 2018 TECHNICAL SCIENCES P1 TEGNIESE WETENSKAPPE V1 MARKING GUIDELINE/NASIENRIGLYN

OEFENVRAESTEL VRAESTEL 1

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12

GRADE 11 - FINAL ROUND QUESTIONS GRAAD 11 - FINALE RONDTE VRAE

Studentenommer: Student number: Volpunte: Full marks: 160 Open / closed book: Oopboek / toeboek: 21 Punt: Mark: BELANGRIK- IMPORTANT

Generalised density function estimation using moments and the characteristic function

NATIONAL SENIOR CERTIFICATE EXAMINATION GRADE 12 PHYSICAL SCIENCES: PHYSICS (P1) SEPTEMBER 2017 MEMORANDUM

Eksamen Invulvraestel Kopiereg voorbehou. Examination Fill in paper Copyright reserved. Vakkursus ERS November 2008

CHM 181 SURNAME AND INITIALS : VAN EN VOORLETTERS

GRAAD 12 SEPTEMBER 2015 WISKUNDE V2

NATIONAL SENIOR CERTIFICATE GRADE 11

GRAAD 12 SEPTEMBER 2018 WISKUNDE V1

GRADE 9 - FIRST ROUND QUESTIONS GRAAD 9 - EERSTE RONDTE VRAE

Eksperiment ROT: Rotation Kinematics. Experiment ROT: Rotation Kinematics

Semestertoets 2: 26 Oktober Semester Test 2: 26 October b x c. Internal examiners: Ms. T Cronjé Ms. F Reyneke Dr. M Graham Mr.

(i) 'N ALGORITME VIR KLEINSTEKWADRATE-BENADERING. deur. Voorgele ter vervulling van 'n deel van die vereistes vir die graad. (Toegepaste Wiskunde)

Funksies en Verwantskappe

MARKS / PUNTE: 80 Fakulteit Natuur- en Landbouwetenskappe CHM 171 EXAMINATION / EKSAMEN. Student number Studentenommer.

NATIONAL SENIOR CERTIFICATE/NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 10

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12

Die Wonderwerke van Jesus

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 10

GRAAD 11 NOVEMBER 2015 WISKUNDE V1

Transcription:

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS VAN/SURNAME: VOORNAME/FIRST NAMES: WTW 218 - CALCULUS SEMESTERTOETS / SEMESTER TEST 1 STUDENTENOMMER/STUDENT NUMBER: HANDTEKENING/SIGNATURE: 2010-03-04 TYD/TIME: 135 min PUNTE / MARKS: 55 Eksterne Eksaminator / External Examiner : Me M P Möller Interne Eksaminatore / Internal Examiners : Dr R Kufakunesu Prof M Sango Dr J H van der Walt PUNTE MARKS LEES DIE VOLGENDE INSTRUK- SIES 1. Die vraestel bestaan uit bladsye 1 tot 12 (vrae 1 tot 8). Kontroleer of jou vraestel volledig is. 2. Doen alle krapwerk op die teenblad. Dit word nie nagesien nie. 3. As jy meer as die beskikbare ruimte vir n antwoord nodig het, gebruik die teenblad en dui dit asseblief duidelik aan. 4. Geen potloodwerk of enige werk in rooi ink word nagesien nie. 5. As jy korrigeerink ( Tipp-Ex ) gebruik, verbeur jy die reg om nasienwerk te bevraagteken of om werk wat nie nagesien is nie aan te dui. READ THE FOLLOWING IN- STRUCTIONS 1. The paper consists of pages 1 to 12 (questions 1 to 8). Check whether your paper is complete. 2. Do all scribbling on the facing page. It will not be marked. 3. If you need more than the available space for an answer, use the facing page and please indicate it clearly. 4. No pencil work or any work in red ink will be marked. 5. If you use correcting fluid ( Tipp-Ex ), you lose the right to question the marking or to indicate work that had not been marked. 6. Geen sakrekenaars word toegelaat nie. 6. No pocket calculators are allowed. 7. Alle antwoorde moet volledig gemotiveer word. 8. Aangeheg tot hierdie vraestel is n bylae wat sekere stellings bevat. In jou argumente moet jy na hierdie stellings verwys, waar nodig. Outeursreg voorbehou 7. All answers have to be motivated completely. 8. Attached to this question paper is an appendix containing certain theorems. You should refer to these theorems in your arguments, when necessary. Copyright reserved 0

VRAAG 1 QUESTION 1 Beskou die funksie Consider the function f(x, y) = 2x2 + xy y 2, y x x + y (1.1) Bereken f 1 (2, 3) en f 2 (2, 3). (1.1) Determine f 1 (2, 3) and f 2 (2, 3). [2] (1.2) Bepaal die vergelyking van die raakvlak aan die oppervlak z = f(x, y) by die punt (2, 3, 1). (1.2) Determine the equation of the tangent plane to the surface z = f(x, y) at the point (2, 3, 1). [2] (1.3) Gebruik jou antwoord in (1.2) om f(2.5, 2.5) te benader. (1.3) Use your answer in (1.2) to approximate f(2.5, 2.5). [1] 1

(1.4) Bepaal die tempo van verandering van f by (2, 3) in die rigting van die vektor v = 2i + j. (1.4) Determine the rate of change of f at (2, 3) in the direction of the vector v = 2i + j. (1.5) In watter rigting styg die funksie f die vinnigste by (2, 3)? (1.5) In which direction does the function f increase the fastest at (2, 3)? [1] (1.6) Bepaal die vergelyking van die raaklyn aan die kontoer kromme van f by die punt (2, 3). (1.6) Determine the equation of the tangent line to the level curve of the function f at (2, 3). 2

(1.7) Gebruik gepaste limiet wette om die volgende limiet te bepaal. Motiveer jou antwoord volledig. (1.7) Use suitable limit laws to determine the following limit. Justify your solution in full. lim f(x, y) (x,y) (a, a) (1.8) Hoe kan die funksie f(x, y) op die lyn y = x gedefinieer word sodat die nuwe funksie kontinu sal wees op die hele xy-vlak? (1.8) How can the function f(x, y) be defined along the line y = x so that the resulting function is continuous on the whole xy-plane? [1] 3

VRAAG 2 QUESTION 2 Laat u = f(x, y) waar x = h(r, t) en y = g(r, t), terwyl r = k(t). Aanvaar dat die funksies f, g, h en k almal kontinue parsiële afgeleides van alle ordes het. Let u = f(x, y) where x = h(r, t) and y = g(r, t), while r = k(t). Assume that the functions f, g, h and k all have continuous partial derivatives of all orders. (2.1) Skryf n gepaste weergawe van die Ketting Reël neer vir die afgeleides u u r en t. (2.1) Write down an appropriate version of the Chain Rule for the derivatives u u r and t. [4] (2.2) Aanvaar nou dat h 1 (r, t) = A en g 1 (r, t) = B vir alle (r, t), waar A en B konstantes is. Druk 2 u uit r 2 in terme van A, B en die parsiële afgeleides van f. (2.2) Assume that h 1 (r, t) = A and g 1 (r, t) = B for all (r, t), where A and B are constants. Express 2 u r 2 in terms of A, B and the partial derivatives of f. 4

VRAAG 3 QUESTION 3 Beskou die stelsel vergelykings Consider the system of equations xe y + u cos v = 2 u cos y + x 2 v y = 1 (3.1) Toon aan dat die stelsel opgelos kan word vir u en v as funksies van x en y naby die punt P 0 waar (x, y) = (2, 0) en (u, v) = (1, 0). (3.1) Show that the system can be solved for u and v as functions of x and y near the point P 0 where (x, y) = (2, 0) and (u, v) = (1, 0). (3.2) Bepaal nou ( ) u x by (x, y) = (2, 0), y waar u = u(x, y) en v = v(x, y) die oplossing van die stelsel vergelykings is. (3.2) Determine ( ) u x at (x, y) = (2, 0), y where u = u(x, y) and v = v(x, y) is the solution of the system of equations. 5

VRAAG 4 QUESTION 4 Gebruik die definisie van n limiet om aan te toon dat Use the definition of a limit to show that [ lim x 2 5y 6] = 0 (x,y) (0,0) 6

VRAAG 5 QUESTION 5 (5.1) Skryf die definisie van differensieerbaarheid van n funksie f (x, y) by n punt (a, b) neer. (5.1) Write down the definition of differentiability of a function f (x, y) at a point (a, b). [1] (5.2) Gebruik die definisie in (5.1) om aan te toon dat f(x, y) = 2x 2 + 2y 2 differensieerbaar is by (1, 1). (5.2) Use the definition in (5.1) to show that f(x, y) = 2x 2 + 2y 2 is differentiable at (1, 1). 7

(5.3) Bewys dat n funksie f (x, y) wat differensieerbaar is by (a, b) ook kontinu is by (a, b). Motiveer jou argument volledig. (5.3) Prove that a function f (x, y) which is differentiable at (a, b) is also continuous at (a, b). Justify your argument in full. VRAAG 6 QUESTION 6 Veronderstel dat die funksies f : R 2 R en g : R 2 R kontinu is by (a, b). Bewys dat die funksie Assume that the functions f : R 2 R and g : R 2 R are continuous at (a, b). Prove that the function kontinu is by (a, b). Motiveer jou argument volledig. h (x, y) = f(x, y) g(x, y) is continuous at (a, b). Justify your argument in full. 8

VRAAG 7 QUESTION 7 Aanvaar dat f kontinue eerste orde parsiële afgeleides het op R 2. Laat h, k > 0 en (a, b) R 2 gegee wees. In die vrae wat volg moet jou argumente volledig gemotiveer word. Assume that f has continuous first order partial derivatives on R 2. Let h, k > 0 and (a, b) R 2 be given. In the questions that follow, your arguments must be justified in full. (7.1) Beskou die funksie van een veranderlikke v(t) = f(a + th, b + k). Bewys dat (7.1) Consider the function of one variable v(t) = f(a + th, b + k). Prove that v (t) = hf 1 (a + th, b + k), t [0, 1] [2] (7.2) Bewys dat daar n θ 1 (0, 1) is sodat (7.2) Prove that there is some θ 1 (0, 1) such that v(1) v(0) = hf 1 (a + θ 1 h, b + k) [2] 9

(7.3) Laat u(t) = f(a, b+kt), en aanvaar die volgende: (7.3) Let u(t) = f(a, b + kt), and assume the following: (A) : Daar is / There is θ 2 (0, 1) sodat / such that u(1) u(0) = kf 2 (a, b + θ 2 k) Bewys dat daar θ 1, θ 2 (0, 1) bestaan sodat Prove that there exist θ 1, θ 2 (0, 1) such that f(a + h, b + k) f(a, b) = hf 1 (a + θ 1 h, b + k) + kf 2 (a, b + θ 2 k) 10

VRAAG 8 QUESTION 8 Beskou die beginwaarde probleem Consider the initial value problem u x + u t = 0 (E1) u(x, 0) = u 0 (x), x R (E2) met u 0 n differensieerbare funksie op R. with u 0 a differentiable function on R. (8.1) Aanvaar dat u(x, t) n differensieerbare funksie is wat die vergelykings (E1) en (E2) bevredig. Skryf n vergelyking x = f(t) neer vir die kontoer kromme van u deur die punt (a, 0). (8.1) Assume that u(x, t) is a differentiable function that satisfies the equations (E1) and (E2). Write down an equation x = f(t) for the level curve of u through the point (a, 0). (8.2) Toon aan dat u(x, t) = u 0 (x t) die vergelykings (E1) en (E2) bevredig. (8.2) Show that u(x, t) = u 0 (x t) satisfies the equations (E1) and (E2). 11

Stellings / Theorems Theorem 1 Let f and g be functions of two variables defined on an open subset D of R 2 containing the point (a, b). Suppose that (a) (b) lim (x,y) (a,b) f(x, y) = L lim (x,y) (a,b) g(x, y) = M Then the following hold: (1) lim (x,y) (a,b) [f(x, y) + g(x, y)] = L + M (2) lim (x,y) (a,b) [cf(x, y)] = cl for any c R (3) If f(x, y) g(x, y) for every (x, y) D, then L M (4) If M 0, then lim (x,y) (a,b) [ f(x,y) g(x,y) ] = L M Theorem 2 Suppose that f is a function of two variables with continuous first order partial derivatives on an open set D containing (a, b). Then f is differentiable at (a, b). Theorem 3 Suppose that f(x) is continuous on the closed interval [a, b], and differentiable on the open interval (a, b). Then there exists x 0 (a, b) such that f (x 0 ) = f(b) f(a) b a Theorem 4 Let F : R 2 R have continuous first order partial derivatives, and suppose that and that F 2 (a, b) 0. Then the equation F (a, b) = 0 F (x, y) = 0 defines y as a function of x in a neighborhood of the point (a, b). That is, we can express y as for some δ > 0, in such a way that (i) F (x, g(x)) = 0, x (a δ, a + δ) (ii) (iii) g(a) = b y = g(x), x (a δ, a + δ) g is a differentiable function on (a δ, a + δ) and dy dx = g (x) = F 1(x,y), x (a δ, a + δ) F 2 (x,y) 12