Solids Flowmeters Can you go with the Flow? Solids Flowmeters for Industrial Applications

Similar documents
An Essential Requirement in CV Based Industrial Appliances.

Surveying Prof. Bharat Lohani Department of Civil Engineering Indian Institute of Technology, Kanpur. Module - 3 Lecture - 4 Linear Measurements

Stick-Style Water-Resistant Infrared Thermometer for Foodservice Applications with 4:1 Distance-to-Sight Ratio Model

User Manual. Stick-Style Water-Resistant Infrared Thermometer with 8:1 Distance-to-Sight Ratio. Model with NIST-Traceable Calibration

Control Your Product Quality by Controlling Your Product's Conveying Velocity

Designing Information Devices and Systems I Summer 2017 D. Aranki, F. Maksimovic, V. Swamy Homework 5

Rotational Equilibrium

MITOCW 18. Quiz Review From Optional Problem Set 8

Science Olympiad. Machines. Roger Demos

STATE OF COLORADO DESIGN CRITERIA FOR POTABLE WATER SYSTEMS WATER QUALITY CONTROL DIVISION. Price: $5.00. Revised March 31, 1997

Physics. Practice Questions

Applied Fluid Mechanics

FLOW MEASUREMENT. INC 102 Fundamental of Instrumentation and Process Control 2/2560

Applied Fluid Mechanics

Chapter 1 Basic Characteristics of Control Systems and their Representation Process and Instrument Diagrams

QUANTUM CHEMISTRY BY R.K. PRASAD DOWNLOAD EBOOK : QUANTUM CHEMISTRY BY R.K. PRASAD PDF

Gravimetric coal dust firing and dry lignite firing in power plants

NR ROTARY RING TABLE: FLEXIBLE IN EVERY RESPECT

Process Control and Instrumentation Prof. D. Sarkar Department of Chemical Engineering Indian Institute of Technology, Kharagpur

Episode 224: Describing circular motion

STATIC GAS MONITOR Type SGM/DEW Revision A of 20 aprile 2016

Keeping well and healthy when it is really cold

PRE-LEAVING CERTIFICATE EXAMINATION, 2014 PHYSICS ORDINARY LEVEL

SITRANS F flowmeters. SITRANS F US System information SITRANS F US Ultrasonic flowmeters 4/181

2R R R 2R. Phys Test 1

Remote Sensing/Reflectance Spectrometer

ELECTRONIC FLOWMETERS FOR THERMAL ENERGY MEASUREMENT. By Dr. Crainic Monica Sabina

Point Level Capacitance Switch for Fly Ash Hopper Measurement

Lab 5: Projectile Motion

E-BOOK / NEWTON METERS TO FOOT POUNDS EBOOK

Making Contact with Temperature

One day an ant was drinking at a small stream and fell in. She made desperate

Introduction to Fluid Machines and Compressible Flow Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Electricity in Progress

Lab 4: Projectile Motion

To: Amanda From: Daddy Date: 2004 February 19 About: How to solve math problems

Environment Air Pollution Prof. Mukesh Sharma Department of Civil Engineering Indian Institute of Technology, Kanpur

Centripetal Force Exploring Uniform Circular Motion

DEVELOPMENT OF DROP WEIGHT IMPACT TEST MACHINE

trunniontable.com

Light and Projectiles

CHEMISTRY IN DAILY LIFE BY KIRPAL SINGH DOWNLOAD EBOOK : CHEMISTRY IN DAILY LIFE BY KIRPAL SINGH PDF

(Refer Slide Time: 01:16)

Probing Atomic Crystals: Bragg Diffraction

trunniontable.com Trunnion Tables for Haas Verticals

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

12 Moderator And Moderator System

FLOW MEASUREMENT INC 331 Industrial process measurement 2018

Antennas Prof. Girish Kumar Department of Electrical Engineering Indian Institute of Technology, Bombay. Module 02 Lecture 08 Dipole Antennas-I

HL-800K Infrared Laser Thermometer. -50 C to +800 C (13:1 ratio) User Manual

Lecture - 2A Instruments-I

Fog Chamber Testing the Label: Photo of Fog. Joshua Gutwill 10/29/1999

Cat. Multi-Processors. Hydraulic Excavators. Multi-Processor/Hydraulic Excavator Compatibility. Features: Maximum Productivity.

14:1400 (0206) KRAL Volumeter - OMG

Electromagnetic Flowmeter

Quick Reference. Daily Cleaning Procedures Pages 3-8 Stopping Conditions & Recovery Steps Pages 9-20

B = 8 0 NI/[r (5) 3/2 ],

Flow Monitoring Technologies in Oil and Gas. Don Ford, Technical Specialist Spartan Controls Ltd.

CH 16 LIKE TERMS AND EQUATIONS. Ch 16 Like Terms and Equations = 10 10

Lecture Presentation Chapter 8 Equilibrium and Elasticity

Coimisiún na Scrúduithe Stáit State Examinations Commission

Kinematics Lab. 1 Introduction. 2 Equipment. 3 Procedures

Device Specifications

Essential Statistics. Gould Ryan Wong

2 One-dimensional motion with constant acceleration

COMPILATION: Unit 8 - more Uniform Circular Motion Labs. Part 2. Date: Tue, 23 Apr 2002 From: Matt Greenwolfe

ABOUT SPOTTINGSCOPES Background on Telescopes

Second measurement. Measurement of speed of rotation and torque

WEATHER MULTI-SENSOR. Vaisala Weather Transmitter WXT510. Change the Way You Measure Weather

SECTION 1 - WHAT IS A BTU METER? BTU's = Flow x ΔT Any ISTEC BTU Meter System consists of the following main components:

Instruction Manual. Made in Japan

*************************************************************** What profit hath a man of all his labour which he taketh under the sun?

Case 1:03-cv EGS Document Filed 03/20/09 Page 1 of 19

Vector and Relative motion discussion/ in class notes. Projectile Motion discussion and launch angle problem. Finish 2 d motion and review for test

InfraRed Thermometer with Laser Pointer

INSTRUCTIONS FOR ATTACHING THE NORDIC PLOW TO THE ACTION TRACKCHAIR

ING science detectors micrometers study for replacement.

Describe Coriolis Mass Flowmeters

INTRODUCTION TO PIEZO TRANSDUCERS

PHYSICS 111 SPRING EXAM 2: March 8, 2016; 8:15-9:45 pm

technical bulletin Installation Instructions: Wall-Mount Dewpoint Probe ( )

Instrumentation & Data Acquisition Systems

Coulomb s Law. 1 Equipment. 2 Introduction

TECHNICAL DESCRIPTION SPECTRAFLOW ON LINE ANALYZER for BELT CONVEYOR APPLICATION

o Two-wire transmission line (end view is shown, the radius of the conductors = a, the distance between the centers of the two conductors = d)

Figure 1 Enlargement of Powdered Activated Carbon by microscope.

Part I. Two Force-ometers : The Spring Scale and The Force Probe

The student solutions shown below highlight the most commonly used approaches and also some that feature nice use of algebraic polynomial formulas.

Lesson 39. The Vine and the Branches. John 15:1-8

Experiment 4: Charge to mass ratio (e/m) of the electron

CHAPTER 1: Preliminary Description of Errors Experiment Methodology and Errors To introduce the concept of error analysis, let s take a real world

NPTEL NPTEL ONLINE COURSE. NPTEL Online Certification Course (NOC) NPTEL. Theory and Practice of Non Destructive Testing

How to Prepare for a Tornado

2.1. Accuracy, n- how close the indication of the thermometer is to the true value.

Lecture #4.4 Magnetic Field

MITOCW ocw nov2005-pt1-220k_512kb.mp4

Chemical Engineering 3P04 Process Control Tutorial # 1 Learning goals

Physics 476LW Advanced Physics Laboratory Michelson Interferometer

1) Batching Methods (Add Weigh or Loss In Weight) based on batch dispensing time, time between batches, head room, floor space, accuracy and budget.

MITOCW ocw-18_02-f07-lec17_220k

Transcription:

Solids Flowmeters Can you go with the Flow? Solids Flowmeters for Industrial Applications 11/28/2013 Autor / Editor: Matt Morrissey * / Marcel Dröttboom Solids flowmeter systems are used in any industry from food to power generation. (Picture: Siemens AG) Solids flowmeters are an interesting solution to indicate flow rates in pipes and chutes. Matt Morrissey, Product Manager Weighing Technology at Siemens, says 'interesting' because they are only moderately accurate, costly, require a lot of tuning after installation and are usually only as good as the whole process around them. Solids flowmeters are an interesting solution to indicate flow rates in pipes and chutes. I say interesting because they are only moderately accurate, costly, require a lot of tuning after installation and are usually only as good as the whole process around them. That being said, one of the reasons the technology exists is because there isn't anything else that can do the job. Just like my dad used to say when I would show up with a rubber mallet when he asked for a hammer, You need the right tool for the right job. And flowmeters are exactly the right instrument for measuring the flow rate of many solid materials. This simple fact has led to the development of several different versions of solids flowmeter. In this article we will discuss and evaluate these, so that you too will have the right tool for your industrial flow application. There are a handful of technologies used for metering the flow of solids: GALLERY Seite 1 / 12

Select a picture to open the gallery (8 Pictures) 1. Impact Flowmeter the most popular form of solids flowmeter, impact meters, as they are often called, guide the material through an infeed pipe or chute and create a specific trajectory for the material to strike a flat sensing plate. The amount of force the impact creates is measured by means of load cells or an LVDT (linear variable differential transformer). As the plate is deflected by the force of the material, the load cell or LVDT deflects and generates a signal, which is converted into a flow rate by an integrator (Fig. 1). 2. Centripetal Flowmeter this is a variation on the impact design. A centripetal solids flowmeter guides the material through a curved sensing plate, which is connected to one or more load cells. The material must be guided in parallel to the sensing plate as it enters the curve, and the tangential force exerted on the load cell(s) is transmitted to the integrator and then converted into a flow rate (Fig. 2). 3. Coriolis Flowmeter the solids coriolis flowmeter does not use the same principle as a liquid coriolis meter. In a solids application, material enters the flowmeter and is directed onto rotating vanes driven by a motor. The motor is connected to a torque arm, which is mounted to a load cell. As the amount of material fed into the coriolis meter increases, the torque on the motor increases. The load cell detects this increase and sends a signal to an integrator, which translates it into a flow rate (Fig. 3). 4. Microwave Flowmeter one of the lesser-used technologies, microwave or radar flowmeters, emits a 24 or 125 GHz microwave into the material flow in a pipe or chute. Based on the Doppler principle, the change in microwaves reflected back to the sensor is measured and transmitted as a 4 to 20 ma signal for scaling in a PLC system to become a flow rate. Microwave-based products can be used in pneumatically-fed systems, as the extra force of the material flow does not affect the measurement as is the case with the three technologies discussed above (Fig. 4). 5. Capacitive Flowmeter solids flow sensors using capacitance are based on two Seite 2 / 12

independent measurements. One is the change in capacitance from an empty pipe to a full pipe, which is proportional to the concentration of the material. The other is a velocity measurement, which uses two sensors to indicate the time it takes for the material to move from the first sensor to the second. The signals from these measurements are then fed into an integrator, which outputs a flow rate. Capacitive measurement can also be used with pneumatic systems (Fig. 5). Of course, each technology has its own advantages and disadvantages. Fig. 6 shows some of the more critical aspects to consider when trying to identify the best product fit for your particular application. Impact Flowmeters: two distinct Advantages First, they can handle very low to very high flow rates. Second, material buildup on the sensing plate does not affect their accuracy or repeatability, as only the horizontal force of impact causes a deflection on the sensor. Any additional weight, for example if some material sticks, does not shift the output of the system. The oldest of all of these technologies, impact meters have been in use for over 60 years. Impact solids flowmeters can be very compact some are only 650 millimeters high, while others are suited for aerated gravity conveyor input and are 2500 millimeters tall. As the size of the unit increases, so does the cost. However, the enclosures are designed to be dust-tight and are very easy to clean and calibrate. Centripetal Flowmeters: higher Accuracy Centripetal solids flowmeters take the accuracy prize. However, caution must be taken when applying this type of product. With the right material characteristics and flow, centripetal solutions can be extremely accurate. However, if the material is at all sticky and begins to build up on the sensing plate a centripetal flowmeter s signal will begin to shift as the tangential force is measured. Flow rates are also limited with centripetal designs, but this technology also offers dust-tight enclosures and easy calibration. Coriolis Flowmeters: high Flow/Accuracy, higher Power Usage Coriolis solids flowmeters are a nice alternative for applications involving high flow rates and demanding high precision. Higher flow rates and precision seem to be the norm as process instrumentation evolves. The coriolis design is also tried and tested but it has some disadvantages. Abrasive materials can prematurely wear out the blades of the meter, which means that they must be replaced. Large particle sizes can be a problem as they can jam or clog the discharge. The other disadvantage of a coriolis meter is that the unit is driven by a low-voltage motor. With all the other styles, typical instrumentation power supply (generally 230 VAC or less) is required for the device, whereas AC motors will need anywhere from 120 to 600 VAC. Seite 3 / 12

Microwave Flowmeters: low Cost but lower Accuracy Microwave flowmeters are beginning to gain some ground as a low cost, low accuracy alternative to the large bulky units already discussed. A product that fits in your hand and that can be installed in less than an hour versus having to crane in a unit taller than you has its advantages. Calibration is quick and simple, and with no moving or rotating mechanical parts to worry about, it becomes very appealing. However, any process where accuracy is required will not benefit from this type of product. Microwave units can also be used in systems involving gravity-fed solids, dense phase or dilute phase pneumatic conveyors. The microwave solids flowmeters generally look similar to a microwave level sensor. Capacitive Flowmeters: simple Installation, lower Accuracy Capacitive flowmeters have also been on the market for some time. The use of two measuring principles helps increase the accuracy of the total flow measurement, but the device cannot handle higher volumes of material. Installation is simple and straightforward, as it simply involves removing a section of pipe and installing the flowmeter. Calibration is also easy, but the accuracy is not as good as the large mechanical units. Capacitive units can be used with gravity-fed or dense phase pneumatic systems and are also a very price-competitive solution compared to the large mechanical devices. The capacitive solids flowmeter is the most similar to a liquid-based meter, as it looks almost exactly like an electromagnetic meter. Choices, Choices: how to decide? Selecting the right product will come down to the age-old triple constraint: price, accuracy and fit. If you can afford to spend the money, you don't have to sacrifice what you need for what you can afford. Accuracy is based on what is demanded from your process. Fit comes down to how the product will perform with the variables of material density, flow rate, temperature, moisture content, particle size, installation space, pre-feed device, material compatibility. And it's important not to forget about approvals for hazardous zones! To be an Expert, or not to be an Expert I have been working with flowmeters for eight years and I consider myself to be well versed. I have colleagues who have been working with this technology for 35 years and they consider themselves to be experienced. However, I have yet to meet anyone who considers himself or herself a flowmeter expert! There are just so many variables to consider, many of which can change over seasons or even with the daily change in weather. Unfortunately, there are no quick and easy answers. Understanding the application in great detail is a necessity when it comes to applying the right product and options. Seite 4 / 12

My recommendation is to talk to your local supplier and provide him or her with as much information as possible. At Siemens, we provide you with an application questionnaire that asks you to enter all of the required data. We then generate a proposal for the application and also highlight anything that we may wish to investigate further. Our goal is to always ensure the best performance of our products in your application. Sometimes You just need a Hammer As I said earlier, solids flowmeters may not be the world s most amazing piece of technology. However, they are an essential part of many industrial flow applications for the simple reason that nothing else can do their job. Sure, for your day-to-day home repairs, you could purchase a top-of-the-line nail gun with laser accuracy and power enough to shoot nails hundreds of meters per second. Realistically, though, sometimes you just need a hammer. Similarly, sometimes you just need a solids flowmeter the right tool for the job. * Matt Morrissey is Product Manager Weighing Technology at the Business Unit Sensors and Communication of Siemens Industry Automation,Peterborough, Canada. Copyright 2014 - Vogel Business Media Dieses PDF wurde Ihnen bereitgestellt von http://www.bulk-solids-handling.com Seite 5 / 12

(Picture: Siemens AG) Seite 6 / 12

Fig. 1: Impact flowmeters guide material through an infeed pipe and material strikes the flat sensing plate. (Picture: Siemens AG) Seite 7 / 12

Fig. 2: Similar to the impact flowmeter, centripetal flowmeters guide material through a curved sensing plate. (Picture: Siemens AG) Seite 8 / 12

Fig. 3: Material first enters the coriolis flowmeter where it hits rotating vanes driven by a motor. (Picture: Siemens AG) Seite 9 / 12

Fig. 4: A microwave flowmeter has a radar transmitter measuring material flow in a chute or pipe. (Picture: Siemens AG) Fig. 5: Capacitive flowmeters operate based on two measurements ± the change in capacitance in the pipe and the velocity of material. (Picture: Siemens AG) Fig. 6: Critical aspects to consider when trying to identify the best flowmeter for a particular application. (Picture: Siemens AG) Seite 10 / 12

Fig. 7: One of the biggest advantages of solids flowmeters is measurement in-line with material flow, something that feeders or scales cannot do. (Picture: Siemens AG) Seite 11 / 12

Fig. 8: St. Marys Cement in Canada has been using the E-300 solids flowmeter from Siemens for over two decades. Now called the Sitrans WF330, this flowmeter is still providing accurate and reliable measurements. (Picture: Siemens AG) Seite 12 / 12