Material parameter identification for the numerical simulation of deep-drawing drawing of aluminium alloys

Similar documents
Formability assessment of a cup drawing under complex nonlinear strain paths

Characterizations of Aluminum Alloy Sheet Materials Numisheet 2005

THE HYDRAULIC BULGE TEST AND ITS IMPORTANCE FOR THE VEGTER YIELD CRITERION

Benchmark Simulation Results: Channel Draw/Cylindrical Cup 2-Stage Test (Benchmark 3)

Bone Tissue Mechanics

INCREASING RUPTURE PREDICTABILITY FOR ALUMINUM

Anisotropic plasticity, anisotropic failure and their application to the simulation of aluminium extrusions under crash loads

IDENTIFICATION OF SHEET METAL PLASTIC ANISOTROPY, AND OPTIMIZATION OF INITIAL BLANK SHAPE IN DEEP DRAWING

Lecture 8. Stress Strain in Multi-dimension

MATERIAL MODELS FOR THE

A modified Burzynski criterion for anisotropic pressure-dependent materials

Inverse identification of plastic material behavior using. multi-scale virtual experiments

ScienceDirect. Bauschinger effect during unloading of cold-rolled copper alloy sheet and its influence on springback deformation after U-bending

Chapter 6: Plastic Theory

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur

Plane Strain Test for Metal Sheet Characterization

STRESS UPDATE ALGORITHM FOR NON-ASSOCIATED FLOW METAL PLASTICITY

Mechanical Properties of Materials

EFFECT OF ANISOTROPIC YIELD CRITERION ON THE SPRINGBACK IN PLANE STRAIN PURE BENDING

Tensor Transformations and the Maximum Shear Stress. (Draft 1, 1/28/07)

w w w. a u t o s t e e l. o r g

Numerical simulation of sheet metal forming processes using a new yield criterion

Experience from using recently implemented enhancements for Material 36 in LS-DYNA 971 performing a virtual tensile test. Authors: Correspondence:

INVERSE METHOD FOR FLOW STRESS PARAMETERS IDENTIFICATION OF TUBE BULGE HYDROFORMING CONSIDERING ANISOTROPY

Modelling the behaviour of plastics for design under impact

Sheet metal forming with six components of strain

Numerical simulation of tensile tests of prestrained sheets

Simulation of the effect of DIE Radius on Deep Drawing Process

On Springback Prediction In Stamping Of AHSS BIW Components Utilizing Advanced Material Models

Research Article Process of Identifying Stress Fields from Strain Fields in the Specimen with a Hole

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

SPRING-BACK PREDICTION FOR STAMPINGS FROM THE THIN STAINLESS SHEETS

Anisotropy for Metals in Non-Associated Flow Plasticity

Anisotropy and Failure Modeling for Nonlinear Strain. Paths and Its Application to Rigid Packaging. Robert Earl Dick (B.S.C.E, M.S.C.

COMPARISON OF THE TESTS CHOSEN FOR MATERIAL PARAMETER IDENTIFICATION TO PREDICT SINGLE POINT INCREMENTAL FORMING FORCES

Stress, Strain, Mohr s Circle

ON THE USE OF HOMOGENEOUS POLYNOMIALS TO DEVELOP ANISOTROPIC YIELD FUNCTIONS WITH APPLICATIONS TO SHEET FORMING

Back Analysis and optimization methods with LAGAMINE

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 13, 2008 Professor A. Dolovich

PLASTICITY AND VISCOPLASTICITY UNDER CYCLIC LOADINGS

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states?

NUMERICAL SIMULATIONS OF NAKAZIMA FORMABILITY TESTS WITH PREDICTION OF FAILURE

Cracks Jacques Besson

Bulk Metal Forming II

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS

ENGN 2290: Plasticity Computational plasticity in Abaqus

THERMO-MECHANICAL MODELING OF DRAW-BEND FORMABILITY TESTS

DD3MAT - a code for yield criteria anisotropy parameters identification.

Module-4. Mechanical Properties of Metals

INFLUENCE OF CONSTITUTIVE EQUATIONS ON THE ACCURACY OF PREDICTION IN SHEET METAL FORMING SIMULATION

Crack Tip Plastic Zone under Mode I Loading and the Non-singular T zz -stress

Geometric and Material Property Effects on the Strength of Rubber-Toughened Adhesive Joints

Pedro André Dias Prates

SEMM Mechanics PhD Preliminary Exam Spring Consider a two-dimensional rigid motion, whose displacement field is given by

Modelling of ductile failure in metal forming

Lecture #8: Ductile Fracture (Theory & Experiments)

Constitutive models: Incremental plasticity Drücker s postulate

Loading σ Stress. Strain

6.37 Determine the modulus of resilience for each of the following alloys:

CHAPTER 3 THE EFFECTS OF FORCES ON MATERIALS

DEVELOPMENT OF A CONTINUUM PLASTICITY MODEL FOR THE COMMERCIAL FINITE ELEMENT CODE ABAQUS

APPLICATION OF DAMAGE MODEL FOR NUMERICAL DETERMINATION OF CARRYING CAPACITY OF LARGE ROLLING BEARINGS

A Comparative Analysis of Linear and Nonlinear Kinematic Hardening Rules in Computational Elastoplasticity

A Simple and Accurate Elastoplastic Model Dependent on the Third Invariant and Applied to a Wide Range of Stress Triaxiality

Engineering Science OUTCOME 1 - TUTORIAL 4 COLUMNS

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

Significance of the local sheet curvature in the prediction of sheet metal forming limits by necking instabilities and cracks

Finite Element Method in Geotechnical Engineering

Recent Developments in Damage and Failure Modeling with LS-DYNA

Deterministic and stochastic analysis of failure in sheet metal forming operations

Two Posts to Fill On School Board

Optimization of blank dimensions to reduce springback in the flexforming process

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Investigation of advanced strain-path dependent material models for sheet metal forming simulations

Mechanics of Earthquakes and Faulting

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

Prof. B V S Viswanadham, Department of Civil Engineering, IIT Bombay

PRINCIPLES OF THE DRAW-BEND SPRINGBACK TEST

Unit IV State of stress in Three Dimensions

Characterization of Anisotropic Plasticity in Material Systems Using Modified Indentation-Based Techniques

Exercise: concepts from chapter 8

Inverse method for flow stress parameters identification of tube bulge hydroforming considering anisotropy

Experiments and Numerical Simulations on Stress-State-Dependence of Ductile Damage Criteria

End forming of thin-walled tubes

ELASTICITY (MDM 10203)

MODELING OF ELASTO-PLASTIC MATERIALS IN FINITE ELEMENT METHOD

A critical analysis of the Mises stress criterion used in frequency domain fatigue life prediction

MODELLING OF THE CYCLIC AND VISCOPLASTIC BEHAVIOR OF A COPPER-BASE ALLOY USING CHABOCHE MODEL

Finite Element Simulation of Bar-Plate Friction Welded Joints Steel Product Subjected to Impact Loading

If you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6.

' Liberty and Umou Ono and Inseparablo "

Available online at ScienceDirect. 20th European Conference on Fracture (ECF20) Yu.G. Matvienko*

An improved analytical description of orthotropy in metallic sheets

Plastic Anisotropy: Relaxed Constraints, Theoretical Textures

Mechanical analysis of timber connection using 3D finite element model

Fatigue and Fracture

12. Stresses and Strains

Hydro-mechanical forming of aluminium tubes - on constitutive modelling and process design. Mikael Jansson

CONSTITUTIVE RELATIONS FOR LINEAR ELASTIC SOLIDS

ANSYS Mechanical Basic Structural Nonlinearities

Transcription:

Material parameter identification for the numerical simulation of deep-drawing drawing of aluminium alloys B.M. Chaparro, J.M. Antunes, A.J. Baptista, D.M. Rodrigues,, J.V. Fernandes, L.F. Menezes M2D'26 - PORTO, 24-26 JULY University of Coimbra CENTRO DE ENGENHARIA MECÂNICA DA UNIVERSIDADE DE COIMBRA I. Introduction II. III. IV. Constitutive models Inverse Analysis Demeri Test V. Conclusions OUTLOOK 2

Multiplicity of constitutive models F ( σ X L ) σ ( σ X M ) Y ( ) ',, = ',, = k k1 k 2 Equivalent stress associated with the yield criteria Equivalent stress associated with the work hardening law In this study, an automatic procedure for the identification of material parameters according to several phenomenological elastoplastic constitutive models was developed. Introduction 3 Hill, 1948 (Hill48) ( ) ( ) ( ) 2 2 2 2 2 2 2 yy zz + zz xx + xx yy + 2 yz + 2 zx + 2 xy = F σ σ G σ σ H σ σ Lτ Mτ Nτ K Barlat, 1991 (YLD91) m m m 1 2 + 1 3 + 2 3 = 2 S S S S S S K m Plastic surface s = L :σ (Isotropic Equivalent Stress) ( ) c2 + c3 / 3 c3 / 3 c2 / 3 c3 / 3 ( c3 + c1 ) / 3 c1 / 3 c2 / 3 c1 / 3 ( c1 + c2 ) / 3 L = c4 c5 c6 m=6 for BCC materials m=8 for FCC materials Constitutive Models - Yield Criteria 4

Isotropic hardening - Voce Law σ = Y + R sat (1 e p n v ε ) Y - Initial yield stress R sat - saturation stress n - constant isotropic hardening Kinematic hardening - Lemaitre & Chaboche model X& = Cx X sat ( σ X ) p σ X & ε C x and X sat are material parameters kinematic hardening Constitutive Models Work hardening law 5 The calculation methodology is based on the best fit between each model and the full set of available experimental results. 2 2 σ r erroryield _ criteria = w1 1 w exp + 2 1 exp σ r σ r exp error exp σ is the yield stress in tension for a specific orientation () with the rolling direction (RD) σ and r denotes the corresponding values obtained from the yield criteria wi exp is the r-ratio obtained in tension performed at a specific angle with the RD are weighting factors work hardening σ = 1 exp σ is the experimental equivalent stress 2 σ denotes the corresponding values obtained from the hardening law. Inverse Analysis 6

Materials: EN AW-5182-H111 EN AW-612-T4 Inverse analysis - Results 7 Experimental curves obtained in the tensile, shear and Baushingers shear tests for the EN AW-5182-H111 aluminium alloy Stress [MPa] σ11 / τ11 4 3 2 1 -.4 -.2.2.4.6.8-1 -2-3 Strain ε 11 / γ 12 5182_T_ 5182_T_15 5182_T_3 5182_T_45 5182_T_6 5182_T_75 5182_T_9 5182_S_ 5182_S_15 5182_S_3 5182_S_45 5182_S_6 5182_S_75 5182_S_9 5182_B_1 5182_B_2 5182_B_3 8

Experimental yield stresses and r values for the EN AW-5182-H111 aluminium alloy Angle with RD [º] r values Yield stress [Mpa].77 18. 15.688 17.8 3.741 18.3 45.859 14. 6.77 18.4 75.799 19.6 9.87 111.9 2 2 σ r erroryield _ criteria = w1 1 w exp + 2 1 exp σ r Hill48 F G N.531.5888 1.4252 YLD91 c 1 c 2 c 3 c 6 m 1.184 1.556.9484.986 8 Material parameters identified for the Hill48 and YLD91 yield criteria 9 Comparison between experimental and numerical results Yield stresses 1.4 1.2 Txy=. Txy=.25 Txy=.433 Txy=.5 EXP 1.4 1.2 Txy=. Txy=.25 Txy=.433 Txy=.5 EXP 1 1.8.8 Sy.6 Sy.6.4.4.2.2 -.2 -.2.2.4.6.8 1 1.2 Sx -.2 -.2.2.4.6.8 1 1.2 Sx Hill48 YLD91 1

Comparison between experimental and numerical results r-values 1..9 r.8.7.6 EXP HILL48 YLD91.5.4 15 3 45 6 75 9 Angle with RD 11 Isotropic work hardening parameters identified using the von Mises, Hill48 and YLD91 yield models error work hardening σ = 1 exp σ 2 Yield model R sat [MPa] nv Von Mises 221.1 11.4 Hill48 212. 11.52 YLD91 232.9 1.91 12

Experimental and numerical equivalent stress-strain curves considering the von Mises yield criterion and pure isotropic work hardening 4 35 3 25 2 15 1 5.1.2.3.4.5 5182_T_ 5182_T_15 5182_T_3 5182_T_45 5182_T_6 5182_T_75 5182_T_9 5182_S_ 5182_S_15 5182_S_3 5182_S_45 5182_S_6 5182_S_75 5182_S_9 DD3MAT Voce Iso 13 Experimental and numerical equivalent stress-strain curves considering the Hill 48 yield criterion and pure isotropic work hardening 4 35 3 25 2 15 1 5.1.2.3.4.5 5182_T_ 5182_T_15 5182_T_3 5182_T_45 5182_T_6 5182_T_75 5182_T_9 5182_S_ 5182_S_15 5182_S_3 5182_S_45 5182_S_6 5182_S_75 5182_S_9 DD3MAT Voce Iso 14

Experimental and numerical equivalent stress-strain curves considering the YLD91 yield criterion and pure isotropic work hardening 4 35 3 25 2 15 1 5.1.2.3.4.5 5182_T_ 5182_T_15 5182_T_3 5182_T_45 5182_T_6 5182_T_75 5182_T_9 5182_S_ 5182_S_15 5182_S_3 5182_S_45 5182_S_6 5182_S_75 5182_S_9 DD3MAT Voce Iso 15 Isotropic and Kinematic work hardening parameters identified using the von Mises, Hill48 and YLD91 yield models error work hardening σ = 1 exp σ 2 Yield model R sat [MPa] nv C x X sat [MPa] Mises 174.9 1.3 32.3 43.8 Hill48 162.9 11. 25. 44.7 YLD91 196.8 9.1 53. 4. 16

Experimental and numerical equivalent stress-strain curves considering the von Mises yield criterion and isotropic and kinematic work hardening 4 3 2 1 -.2 -.1-1.1.2.3.4-2 -3-4 5182_T_ 5182_T_15 5182_T_3 5182_T_45 5182_T_6 5182_T_75 5182_T_9 5182_S_ 5182_S_15 5182_S_3 5182_S_45 5182_S_6 5182_S_75 5182_S_9 5182_B_1 5182_B_2 5182_B_3 DD3MAT_B_1 DD3MAT_B_2 DD3MAT_B_3 17 Experimental and numerical equivalent stress-strain curves considering the Hill 48 yield criterion and isotropic and kinematic work hardening 4 3 2 1 -.2 -.1-1.1.2.3.4-2 -3-4 5182_T_ 5182_T_15 5182_T_3 5182_T_45 5182_T_6 5182_T_75 5182_T_9 5182_S_ 5182_S_15 5182_S_3 5182_S_45 5182_S_6 5182_S_75 5182_S_9 5182_B_1 5182_B_2 5182_B_3 DD3MAT_B_1 DD3MAT_B_2 DD3MAT_B_3 18

Experimental and numerical equivalent stress-strain curves considering the YLD91 yield criterion and isotropic and kinematic work hardening 4 3 2 1 -.2 -.1-1.1.2.3.4-2 -3-4 5182_T_ 5182_T_15 5182_T_3 5182_T_45 5182_T_6 5182_T_75 5182_T_9 5182_S_ 5182_S_15 5182_S_3 5182_S_45 5182_S_6 5182_S_75 5182_S_9 5182_B_1 5182_B_2 5182_B_3 DD3MAT_B_1 DD3MAT_B_2 DD3MAT_B_3 19 Experimental curves obtained in the tensile, shear and Baushingers shear tests for the EN AW-612-T4 aluminium alloy Results - EN AW- 612 T4 2

Experimental yield stresses and r values for the EN AW-612 T4 aluminium alloy Angle with RD [º] r value Yield stress [MPa].691 14.5 15.69 16.4 3.557 16.1 45.476 14.1 6.53 15.6 75.654 13.1 9.692 98.3 2 2 σ r erroryield _ criteria = w1 1 w exp + 2 1 exp σ r Hill48 F G N.618.58 1.186 YLD91 c1 c2 c3 c6 m 1.79 1.66.97.941 8 Material parameters identified for the Hill48 and YLD91 yield criteria Results - EN AW-612 T4 21 Comparison between experimental and numerical results Yield stresses 1.4 1.2 Txy=. Txy=.25 Txy=.433 Txy=.5 EXP 1.4 1.2 Txy=. Txy=.25 Txy=.433 Txy=.5 EXP 1 1.8.8 Sy.6 Sy.6.4.4.2.2 -.2 -.2.2.4.6.8 1 1.2 Sx -.2 -.2.2.4.6.8 1 1.2 Sx Hill48 YLD91 Results - EN AW-612 T4 22

Comparison between experimental and numerical results r-values 1..9 r.8.7.6 EXP HILL48 YLD91.5.4 15 3 45 6 75 9 Angle with RD Results - EN AW-612 T4 23 Isotropic work hardening parameters identified using the von Mises, Hill48 and YLD91 yield models error work hardening σ = 1 exp σ 2 Yield model R sat [MPa] nv Mises 164. 13.3 Hill48 156.4 11.9 YLD91 17.4 12.9 Results - EN AW-612 T4 24

Experimental and numerical equivalent stress-strain curves considering the von Mises yield criterion and pure isotropic work hardening 3 25 2 15 1 5.1.2.3.4.5 612_T_ 612_T_15 612_T_3 612_T_45 612_T_6 612_T_75 612_T_9 612_S_ 612_S_15 612_S_3 612_S_45 612_S_6 612_S_75 612_S_9 DD3MAT Voce Iso Results - EN AW-612 T4 25 Experimental and numerical equivalent stress-strain curves considering the Hill 48 yield criterion and pure isotropic work hardening 3 25 2 15 1 5.1.2.3.4.5 612_T_ 612_T_15 612_T_3 612_T_45 612_T_6 612_T_75 612_T_9 612_S_ 612_S_15 612_S_3 612_S_45 612_S_6 612_S_75 612_S_9 DD3MAT Voce Iso Results - EN AW-612 T4 26

Experimental and numerical equivalent stress-strain curves considering the YLD91 yield criterion and pure isotropic work hardening 3 25 2 15 1 5.1.2.3.4.5 612_T_ 612_T_15 612_T_3 612_T_45 612_T_6 612_T_75 612_T_9 612_S_ 612_S_15 612_S_3 612_S_45 612_S_6 612_S_75 612_S_9 DD3MAT Voce Iso Results - EN AW-612 T4 27 Isotropic and Kinematic work hardening parameters identified using the von Mises, Hill48 and YLD91 yield models error work hardening σ = 1 exp σ 2 Yield model R sat [MPa] nv von Mises 138.2 9.8 68.2 35.5 Hill48 114.8 9.2 31.7 43.7 YLD91 142.9 9.4 69.4 37.2 C x X sat [MPa] Results - EN AW-612 T4 28

Experimental and numerical equivalent stress-strain curves considering the von Mises yield criterion and isotropic and kinematic work hardening 4 3 2 1 -.2 -.1.1.2.3.4-1 -2-3 612_T_ 612_T_15 612_T_3 612_T_45 612_T_6 612_T_75 612_T_9 612_S_ 612_S_15 612_S_3 612_S_45 612_S_6 612_S_75 612_S_9 612_B_1 612_B_2 612_B_3 DD3MAT_B_1 DD3MAT_B_2 DD3MAT_B_3 Results - EN AW-612 T4 29 Experimental and numerical equivalent stress-strain curves considering the Hill 48 yield criterion and isotropic and kinematic work hardening 4 3 2 1 -.2 -.1-1.1.2.3.4-2 -3 612_T_ 612_T_15 612_T_3 612_T_45 612_T_6 612_T_75 612_T_9 612_S_ 612_S_15 612_S_3 612_S_45 612_S_6 612_S_75 612_S_9 612_B 1 612_B 2 612_B 3 DD3MAT_B_1 DD3MAT_B_2 DD3MAT_B_3 Results - EN AW-612 T4 3

Experimental and numerical equivalent stress-strain curves considering the YLD 91 yield criterion and isotropic and kinematic work hardening 4 3 2 1 -.2 -.1-1.1.2.3.4-2 -3-4 612_T_ 612_T_15 612_T_3 612_T_45 612_T_6 612_T_75 612_T_9 612_S_ 612_S_15 612_S_3 612_S_45 612_S_6 612_S_75 612_S_9 612_B 1 612_B 2 612_B 3 DD3MAT_B_1 DD3MAT_B_2 DD3MAT_B_3 Results - EN AW-612 T4 31 Springback evaluation Demeri Test 1 25 a) Drawn cup b) Ring cutting c) Ring specimen d) Ring springback Difference between the ring diameters, before and after splitting, gives a direct measure of the springback effect Formability Analysis 32

Benchmark experimental apparatus Final stage of the stamping operation After the stamping operation Formability Analysis 33 NUMERICAL SIMULATIONS PROCEDURE DD3IMP DD3TRIM Blank discretization Full model used in the simulations Formability Analysis 34

Punch force during the stamping operations Force [kn] 9 8 7 6 5 4 3 EXP EN AW-5182-H111 NUM EN AW-5182-H111 2 EXP EN AW-612-T4 1 NUM EN AW-612-T4 1 2 3 4 5 6 Displacement [mm] Formability Analysis 35 Springback results Difference between the ring diameters, before and after splitting Material Experimental ring opening Numerical ring opening EN AW-5182-H111 79.8 mm 87.4 mm EN AW-612-T4 46.8 mm 47.4 mm Formability Analysis 36

Independently of the constitutive model considered, the material parameter identification error reported was always less than 5%. For the EN AW-5182 alloy, the YLD91 criteria enable an accurate description of the plastic behaviour of this alloy for all the testing directions. For the EN AW-612 alloy, none of the plasticity criteria enables the correct description of the entire range of stress-strain curves. This can be related with the strong variation of the plastic anisotropy coefficients in the sheet plane. A more flexible criterion is needed to improve the description of the plastic behaviour of this material. The numerical program developed for the material parameter identification tasks proved to be an efficient tool that can be used to select the best phenomenological model. Conclusions 37