The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus.

Similar documents
Physics and the Quantum Mechanical Model

5.3. Physics and the Quantum Mechanical Model

Chapter 5 Electrons In Atoms

Chapter 5 Models of the Atom

Write the electron configuration for Chromium (Cr):

Chapter 5 Electrons In Atoms

Name Date Class ELECTRONS IN ATOMS

Name Class Date ELECTRONS AND THE STRUCTURE OF ATOMS

CHEMISTRY Matter and Change

Name Date Class MODELS OF THE ATOM

Unit 4. Electrons in Atoms

Name Date Class MODELS OF THE ATOM

Electrons in Atoms. Section 5.1 Light and Quantized Energy

Electrons in Atoms. Section 5.1 Light and Quantized Energy Section 5.2 Quantum Theory and the Atom Section 5.3 Electron Configuration

Democritus and Leucippus Matter is made up of indivisible particles Dalton - one type of atom for each element. Greek Idea

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

Light. October 16, Chapter 5: Electrons in Atoms Honors Chemistry. Bohr Model

Introduction. Electromagnetic Waves. Electromagnetic Waves

c = λν 10/23/13 What gives gas-filled lights their colors? Chapter 5 Electrons In Atoms

Energy and the Quantum Theory

Bellwork: Calculate the atomic mass of potassium and magnesium

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

Unit 3: Electron configuration and periodicity

Calendar. October 23, Chapter 5 Notes Waves.notebook Waves vocab waves ws. quiz PSAT. Blank. elements test. demo day

NOTES: 5.3 Light and Atomic Spectra (more Quantum Mechanics!)

The Bohr Model of the Atom

CHAPTER 4 10/11/2016. Properties of Light. Anatomy of a Wave. Components of a Wave. Components of a Wave

The Atom & Unanswered Questions:

5.1 Light & Quantized Energy

CHAPTER 4. Arrangement of Electrons in Atoms

Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Arrangement of Electrons in Atoms

CHAPTER 4 Arrangement of Electrons in Atoms

Electromagnetic Radiation. is a form of energy that exhibits wavelike behavior as it travels through space.

Electron Configuration

CHAPTER 5 Electrons in Atoms

Chapter 5: Electrons in Atoms

Chapter 4 Arrangement of Electrons in Atoms. 4.1 The Development of a New Atomic Model

The Rutherford s model of the atom did not explain how an atom can emit light or the chemical properties of an atom.

Provide a short and specific definition in YOUR OWN WORDS. Do not use the definition from the book. Electromagnetic Radiation

Chapter 4 Electron Configurations

Arrangement of Electrons. Chapter 4

Modern Atomic Theory

The Electron Cloud. Here is what we know about the electron cloud:

Name Class Date. Chapter: Arrangement of Electrons in Atoms

Atomic Theory. H. Cannon, C. Clapper and T. Guillot Klein High School

Chapter 6 Electronic Structure of Atoms

Chapter 6: The Electronic Structure of the Atom Electromagnetic Spectrum. All EM radiation travels at the speed of light, c = 3 x 10 8 m/s

Chapter 7 QUANTUM THEORY & ATOMIC STRUCTURE Brooks/Cole - Thomson

Electrons! Chapter 5

Quantum Mechanical Model of the Atom. Honors Chemistry Chapter 13

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons?

Chapter 6 - Electronic Structure of Atoms

Atomic Structure and Periodicity

Wavelength (λ)- Frequency (ν)- Which of the following has a higher frequency?

Properties of Light. Arrangement of Electrons in Atoms. The Development of a New Atomic Model. Electromagnetic Radiation CHAPTER 4

CHM 111 Unit 7 Sample Questions

Ch. 5 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

10/4/2011. Tells you the number of protons

Modern Atomic Theory CHAPTER OUTLINE

Chapter 9. Blimps, Balloons, and Models for the Atom. Electrons in Atoms and the Periodic Table. Hindenburg. Properties of Elements Hydrogen Atoms

CRHS Academic Chemistry Unit 4 Electrons. Notes. Key Dates

The Development of Atomic Models

LIMITATIONS OF RUTHERFORD S ATOMIC MODEL

Electronic structure of atoms

Ch. 4 Notes - ELECTRONS IN ATOMS NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics.

Bohr. Electronic Structure. Spectroscope. Spectroscope

Electronic Structure of Atoms. Chapter 6

Chapter Test B. Chapter: Arrangement of Electrons in Atoms. possible angular momentum quantum numbers? energy level? a. 4 b. 8 c. 16 d.

Atomic Structure Part II Electrons in Atoms

Development of the Periodic Table. Chapter 5. Light and the EM Spectrum. Light

Yellow. Strontium red white. green. yellow violet. green. red. Chapter 4. Arrangement of Electrons in Atoms. Table of Contents

Ch. 4 Sec. 1-2, Ch. 3 sec.6-8 ENERGY CHANGES AND THE QUANTUM THEORY THE PERIODIC TABLE

Chapter 4. Table of Contents. Section 1 The Development of a New Atomic Model. Section 2 The Quantum Model of the Atom

Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 2. Figure 3 UNIT 4 - ELECTRONS & ELECTRON ARRANGEMENT

Atomic Structure Part II. Electrons in Atoms

Electrons, Energy, & the Electromagnetic Spectrum Notes

Chapter 7: The Quantum-Mechanical Model of the Atom

Chapter 4 The Structure of the Atom

Electrons hold the key to understanding why substances behave as they do. When atoms react it is their outer pars, their electrons, that interact.

Chapter 5. The Electromagnetic Spectrum. What is visible light? What is visible light? Which of the following would you consider dangerous?

Table of Contents Electrons in Atoms > Light and Quantized Energy > Quantum Theory and the Atom > Electron Configuration

Unit 3. Chapter 4 Electrons in the Atom. Niels Bohr s Model. Recall the Evolution of the Atom. Bohr s planetary model

To review Rutherford s model of the atom To explore the nature of electromagnetic radiation To see how atoms emit light

Explain the mathematical relationship among the speed, wavelength, and frequency of electromagnetic radiation.

Q1 and Q2 Review large CHEMISTRY

Chemistry - Chapter 5 Study Guide

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Warm-up For sulfur: 1. How many valence electrons does it have? 2. What ion does this typically form? 3. Write the electron configuration for the ion.

Name: Electrons in Atoms Chemical Periodicity Chapters 13 and 14

Honors Ch3 and Ch4. Atomic History and the Atom

Starter # (1) Why was Rutherford s model not good enough and need to be modified by scientists?

CVB102 Lecture 1 - Chemical Structure and Reactivity. Contact Information: Dr. Bill Lot Electronic Structure of Atoms

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell?

Modern Atomic Theory and the Periodic Table

Ch 9 Electrons in Atoms & the Periodic Table Study Sheet Acc. Chemistry SCANTRON. Name /99. 3) Light is a type of matter. 3)

Duncan. Electrons, Energy, & the Electromagnetic Spectrum Notes Simplified, 2-D Bohr Model: Figure 1. Figure 2. Figure 3

LIGHT AND THE QUANTUM MODEL

Chapter 6 Electronic Structure of Atoms. 許富銀 ( Hsu Fu-Yin)

Transcription:

5.1 The Development of Atomic Models Rutherford s atomic model could not explain the chemical properties of elements. Rutherford s atomic model could not explain why objects change color when heated. The Bohr Model Bohr proposed that an electron is found only in specific circular paths, or orbits, around the nucleus. The Bohr Model Each possible electron orbit in Bohr s model has a fixed energy. The fixed energies an electron can have are called energy levels. A quantum of energy is the amount of energy required to move an electron from one energy level to another energy level. The Bohr Model Like the rungs of the strange ladder, the energy levels in an atom are not equally spaced. The higher the energy level occupied by an electron, the less energy it takes to move from that energy level to the next higher energy level. The Quantum Mechanical Model The quantum mechanical model determines the allowed energies an electron can have and how likely it is to find the electron in various locations around the nucleus. The Quantum Mechanical Model The propeller blade has the same probability of being anywhere in the blurry region, but you cannot tell its location at any instant. The electron cloud of an atom can be compared to a spinning airplane propeller. The Quantum Mechanical Model In the quantum mechanical model, the probability of finding an electron within a certain volume of space surrounding the nucleus can be represented as a fuzzy cloud. The cloud is more dense where the probability of finding the electron is high. An atomic orbital is often thought of as a region of space in which there is a high probability of finding an electron. Each energy sublevel corresponds to an orbital of a different shape, which describes where the electron is likely to be found. Different atomic orbitals are denoted by letters. The s orbitals are spherical, and p orbitals are dumbbell-shaped.

Four of the five d orbitals have the same shape but different orientations in space. The numbers and kinds atomic orbitals depend on energy sublevel. of the The number of electrons allowed in each of the first four energy levels are shown here. 5.2 The ways in which electrons are arranged in various orbitals around the nuclei of atoms are called electron configurations. Three rules the aufbau principle, the Pauli exclusion principle, and Hund s rule tell you how to find the electron configurations of atoms.

Aufbau Principle According to the aufbau principle, electrons occupy the orbitals of lowest energy first. In the aufbau diagram below, each box represents an atomic orbital. Pauli Exclusion Principle According to the Pauli exclusion principle, an atomic orbital may describe at most two electrons. To occupy the same orbital, two electrons must have opposite spins; that is, the electron spins must be paired. Hund s Rule Hund s rule states that electrons occupy orbitals of the same energy in a way that makes the number of electrons with the same spin direction as large as possible. Orbital Filling Diagram

Exceptional Exceptions to the aufbau principle are due to subtle electron-electron interactions in orbitals with very similar energies. Copper has an electron configuration that is an exception to the aufbau principle. 5.3 Physics and the Quantum Mechanical Model Neon advertising signs are formed from glass tubes bent in various shapes. An electric current passing through the gas in each glass tube makes the gas glow with its own characteristic color. You will learn why each gas glows with a specific color of light. The amplitude of a wave is the wave s height from zero (the origin) to the crest. The wavelength, represented by λ (the Greek letter lambda), is the distance between the crests. The frequency, represented by ν (the Greek letter nu), is the number of wave cycles to pass a given point per unit of time. The SI unit of cycles per second is called a hertz (Hz). The wavelength and frequency of light are inversely proportional to each other. The product of the frequency and wavelength always equals constant (c), the speed of light. According to the wave model, light consists of electromagnetic waves. a Electromagnetic radiation includes radio waves, microwaves, infrared waves, visible light, ultraviolet waves, X-rays, and gamma rays. All electromagnetic waves travel in a vacuum at a speed of 2.998 10 8 m/s.

Sunlight consists of light with a continuous range of wavelengths and frequencies. When sunlight passes through a prism, the different frequencies separate into a spectrum of colors. In the visible spectrum, red light has the longest wavelength and the lowest frequency. The electromagnetic spectrum consists of radiation over a broad band of wavelengths. 5.1 When atoms absorb energy, electrons move into higher energy levels. These electrons then lose energy by emitting light when they return to lower energy levels. A prism separates light into the colors it contains. When white light passes through a prism, it produces a rainbow of colors. When light from a helium lamp passes through a prism, discrete lines are produced. The frequencies of light emitted by an element separate into discrete lines to give the atomic emission spectrum of the element.

An Explanation of How are the frequencies of light an atom emits related to changes of electron energies? An Explanation of In the Bohr model, the lone electron in the hydrogen atom can have only certain specific energies. When the electron has its lowest possible energy, the atom is in its ground state. Excitation of the electron by absorbing energy raises the atom from the ground state to an excited state. A quantum of energy in the form of light is emitted when the electron drops back to a lower energy level. An Explanation of The light emitted by an electron moving from a higher to a lower energy level has a frequency directly proportional to the energy change of the electron. An Explanation of The three groups of lines in the hydrogen spectrum correspond to the transition of electrons from higher energy levels to lower energy levels. Quantum Mechanics How does quantum mechanics differ from classical mechanics? Classical mechanics adequately describes the motions of bodies much larger than atoms Quantum mechanics describes the motions of subatomic particles and atoms as waves.

Quantum Mechanics In 1905, Albert Einstein successfully explained experimental data by proposing that light could be described as quanta of energy. The quanta behave as if they were particles. quanta are called photons. In 1924, De Broglie developed an equation that predicts that all moving objects have wavelike behavior. Quantum Mechanics Today, the wavelike properties of beams of electrons are useful in magnifying objects. The electrons in an electron microscope have much smaller wavelengths than visible light. This allows a much clearer enlarged image of a very small object, such as this mite. Quantum Mechanics The Heisenberg uncertainty principle states that it is impossible to know exactly both the velocity and the position of a particle at the same time. This limitation is observed when dealing with small particles such as electrons. This limitation is not observed for ordinary-sized object such as cars or airplanes.