E.., (2) g t = e 2' g E. g t = g ij (t u k )du i du j, i j k =1 2. (u 1 0 0) u2 2 U, - v, w, g 0 (v w) = g ij (0 u k 0)v i w j = 0, (t) = g ij (t u k

Similar documents
arxiv: v2 [math.dg] 31 Oct 2007

arxiv: v1 [math.dg] 1 Jul 2014

HYPERSURFACES OF EUCLIDEAN SPACE AS GRADIENT RICCI SOLITONS *

Graphing Square Roots - Class Work Graph the following equations by hand. State the domain and range of each using interval notation.

arxiv: v1 [math.dg] 3 Jun 2007

COMPLETE GRADIENT SHRINKING RICCI SOLITONS WITH PINCHED CURVATURE

Hyperbolic Geometric Flow

1 First and second variational formulas for area

Some Remarks on Ricci Solitons

ASYMPTOTIC STABILITY OF THE CROSS CURVATURE FLOW AT A HYPERBOLIC METRIC

Einstein Finsler Metrics and Ricci flow

7 The cigar soliton, the Rosenau solution, and moving frame calculations

Rigidity and Non-rigidity Results on the Sphere

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

Hyperbolic Geometric Flow

P a g e 3 6 of R e p o r t P B 4 / 0 9

Paolo Lorenzoni Based on a joint work with Jenya Ferapontov and Andrea Savoldi

arxiv: v1 [math.dg] 25 Nov 2009

Differential Harnack Inequalities and the Ricci Flow

Ricci Flow as a Gradient Flow on Some Quasi Einstein Manifolds

Introduction. Hamilton s Ricci flow and its early success

Riemannian Curvature Functionals: Lecture I

Prolongation structure for nonlinear integrable couplings of a KdV soliton hierarchy

SOME PROPERTIES OF COMPLEX BERWALD SPACES. Cristian IDA 1

THE BACKWARD BEHAVIOR OF THE RICCI AND CROSS CURVATURE FLOWS ON SL(2, R)

Sharp decay estimates for the logarithmic fast diffusion equation and the Ricci flow on surfaces

LOG-LINEAR ODES AND APPLICATIONS TO THE RICCI FLOW FOR HOMOGENEOUS SPACES

The volume growth of complete gradient shrinking Ricci solitons

A NOTE ON FISCHER-MARSDEN S CONJECTURE

arxiv: v1 [math.dg] 19 Nov 2009

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

Introduction to Poincare Conjecture and the Hamilton-Perelman program

Some Variations on Ricci Flow. Some Variations on Ricci Flow CARLO MANTEGAZZA

P a g e 5 1 of R e p o r t P B 4 / 0 9

Lectures 18: Gauss's Remarkable Theorem II. Table of contents

MONOTONICITY FORMULAS FOR PARABOLIC FLOWS ON MANIFOLDS RICHARD S. HAMILTON

Bulletin of the Transilvania University of Braşov Vol 7(56), No Series III: Mathematics, Informatics, Physics, 1-12

Spherical Symmetric 4d the Ricci Flow Solution with Constant Scalar Curvature Space as Initial Geometry

Discrete Euclidean Curvature Flows

Autocorrelators in models with Lifshitz scaling

Stability of hyperbolic space under Ricci flow. Oliver C. Schnürer Felix Schulze Miles Simon

Riemannian Curvature Functionals: Lecture III

Archivum Mathematicum

A COMPARISON THEOREM FOR ELLIPTIC DIFFERENTIAL EQUATIONS

Curved spacetime tells matter how to move

BERGMAN KERNEL ON COMPACT KÄHLER MANIFOLDS

LIST OF PUBLICATIONS. Mu-Tao Wang. March 2017

MATH DIFFERENTIAL GEOMETRY. Contents

1 Curvature of submanifolds of Euclidean space

Lecture 4: Products of Matrices

A study of some curvature operators near the Euclidian metric

A L A BA M A L A W R E V IE W

Lecture 2: Isoperimetric methods for the curve-shortening flow and for the Ricci flow on surfaces

T h e C S E T I P r o j e c t

One of the fundamental problems in differential geometry is to find metrics of constant curvature

7 To solve numerically the equation of motion, we use the velocity Verlet or leap frog algorithm. _ V i n = F i n m i (F.5) For time step, we approxim

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i

Topics. CS Advanced Computer Graphics. Differential Geometry Basics. James F. O Brien. Vector and Tensor Fields.

On homogeneous Randers spaces with Douglas or naturally reductive metrics

Ranking accounting, banking and finance journals: A note

OF THE PEAKON DYNAMICS

NOTE ON ASYMPTOTICALLY CONICAL EXPANDING RICCI SOLITONS

Positive mass theorem for the Paneitz-Branson operator

AN ENERGY APPROACH TO THE PROBLEM OF UNIQUENESS FOR THE RICCI FLOW

Tangent and Normal Vectors

Ricci flow on locally homogeneous closed 4-manifolds

STRESS TRANSPORT MODELLING 2

UNIVERSITY OF DUBLIN

Section 2. Basic formulas and identities in Riemannian geometry

(Most of the material presented in this chapter is taken from Thornton and Marion, Chap. 7) p j . (5.1) !q j. " d dt = 0 (5.2) !p j . (5.

Dissipative Hyperbolic Geometric Flow on Modified Riemann Extensions

On some special vector fields

ON THE HARMONIC SUMMABILITY OF DOUBLE FOURIER SERIES P. L. SHARMA

5.2 The Levi-Civita Connection on Surfaces. 1 Parallel transport of vector fields on a surface M

arxiv: v1 [math.ac] 11 Dec 2013

The Kato square root problem on vector bundles with generalised bounded geometry

Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 24 (2008), ISSN

Two dimensional manifolds

EN221 - Fall HW # 1 Solutions

ON THE LOCAL VERSION OF THE CHERN CONJECTURE: CMC HYPERSURFACES WITH CONSTANT SCALAR CURVATURE IN S n+1

The Kato square root problem on vector bundles with generalised bounded geometry

Regularity for the optimal transportation problem with Euclidean distance squared cost on the embedded sphere

the canonical shrinking soliton associated to a ricci flow

arxiv: v1 [math.dg] 5 Jan 2016

A class of mixed orthogonal arrays obtained from projection matrix inequalities

Notes on Cartan s Method of Moving Frames

Biconservative surfaces in Riemannian manifolds

Bibliography. [1] U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions, J. Diff. Geom. 23 (1986), no. 2,

Recent progress on the classical and quantum Kuramoto synchronization

Rapid growth in enrolment within the French Immersion program

Warped Products. by Peter Petersen. We shall de ne as few concepts as possible. A tangent vector always has the local coordinate expansion

DIFFERENTIAL GEOMETRY HW 4. Show that a catenoid and helicoid are locally isometric.

Tachyon scalar field in DBI and RSII cosmological context

arxiv: v1 [math.dg] 28 Aug 2014

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

Parts Manual. EPIC II Critical Care Bed REF 2031

Perelman s Dilaton. Annibale Magni (TU-Dortmund) April 26, joint work with M. Caldarelli, G. Catino, Z. Djadly and C.

New Integrable Decomposition of Super AKNS Equation

Quasi-invariant measures on the path space of a diffusion

Transcription:

2007 10 (545) 517.929..,.. 1. g t M, d dt g t = ;2 Ric(g t ) (1) Ric(g) g.,, -, - (., [1], [2]).,,.,, f t - (M G), g t = ft G,, (1)., -, -, (, ), - (,, [3]). t - E 3, g t, t E 3, (1). t -., -. (M g) Ric = Kg, K, d dt g t = ;2K(g t )g t : (2),. 1. U R 2 (u 1 u 2 ) f t : U! E 3 -. G E 3 g t = ft G - U. g t - (2), g t (u v) =e 2'(t u1 u 2 ) g E, g E = du 12 + du 22. ' = '(u 1 u 2 t) ' t = e;2' E ' (3) 29

E.., (2) g t = e 2' g E. g t = g ij (t u k )du i du j, i j k =1 2. (u 1 0 0) u2 2 U, - v, w, g 0 (v w) = g ij (0 u k 0)v i w j = 0, (t) = g ij (t u k 0)v i w j. K(t u 1 u 2 ) g t (u 1 u 2 ). (2) d = ;2K(t dt uk 0)(t). (0) = 0, (t) =0., v w g 0, - g t., g t g 0., g 0 g E (., [4],. 111), g ij (t u k ) = e 2'(t uk ) (du 12 +du 22 ). g ij (t u k ) K(t u k )=;e ;2'(t uk ) E '(t u k ) (., [4],. 113)., (2) (3). (3) '(0 u 1 u 2 )=' 0 (u 1 u 2 ) (., [5],. 327).,, [6]., t. [7] [8]., g ij, -., g = g ij (u k )du i du j E 3 ( ), g - (., [9],. 191 [10],. 216217)., z = z(u 1 u 2 ) " pq " rs r p z r r q z s 2(1 ; g pq z p z q ) = K z i = i z, " ij g K g, g, z, E 3 (. [10],. 216217).,,. :,..,?,,. t u, t ~r(t u v)=a(t u)~e(v)+b(t u) ~ k: (4) u a(t u) 2 + u b(t u) 2 = a(t u) 2 : (5) g t = a(t u) 2 (du 2 + dv 2 ) 1 a(t u) a t = 1 a E log a: (6) - a(0 u)=a 0 (u) ([5],. 327), b(u t) (5): Z q b(t u)= a(t u) 2 ; u a(t u) 2 du: (7) 30

,,, (4), a(t u) (6), b(t u) (7). [11], -,,. 2. 2.1.., (.,.,.. [12], [13]). (.,. [14] ) -.,. t 0 ~r = ~r(t u i ). ~r i (u i t)= i ~r(t u i ), ~n(t u i ) t. t ~r(t ui )= e i (t u i )~r i (t u i )+e(t u i )~n(t u i ): (8) r - g ij (t u i ) t, h ij (t u i ). (t u i ). 2 (, ). t ~r i = s i ~r s + i ~n (9) ~n t = ;s ~r s (10) j i = r i e j ; eh j i (11) i = i e + h is e s : (12). i ~r j =; k ij ~r k + h ij ~n i ~n = ;h s i ~r s (13) ; k ij h ij. (8) u j (13), (9), j i i (11) (12)., t ~n ~n =1,~n ~r i = 0 (9), (10). - - j i i, (11) (12). g ij, ij = i sg js, ij = g is s. j 3. t ~r = ~r(t u i ). g ij (t u i ), h ij (t u i ) ij (t u i ), - t, " ij (t u a ) t, K(t u i ) H(t u i ) 31

t. t g ij = ij + ji t " ij = s i " sj ; j" s si t gij = ; ij ; ji (14) t "ij = " js i s ; " is s j (15) t h ij = r i j + h is s j = r i ( j e)+r i h e js s + h is r e j s + h js r e i s ; eg sp h is h jp (16) t ij = h js r i s + h is r j s (17) t K =(Hgij ; h ij )r i j ; Kg ij ij (18) t H = gij r i j ; h ij ij : (19). g ij = ~r i ~r j (9), (14). (14) g is g js = j i t g t ij. (15) " ij =(~r i ~r j ~n) t, ( ), (9) (10). (16), h ij = ; i ~n~r j t t ~n ~r j ; i ~n t ~r j = ; i t ~n ~r j + h s i~r s t ~r j: (20) t h ij = ; i (10) u i, (13) ; i t ~n = r i s ~r s + h is s ~n: (21) (20), (16), ( (11) (12)). ij = i ~n j ~n (21) (17). H = g ij h ij t (14) (16), (19)., ij ; Hh ij + Kg ij = 0 (., [10],. 194, (8)) (18). 2.2.. t, t 2 (" "), 0 ~r = ~r(t u i ). ~r _ = ~r(t t ui )j t=0-0, t. (8) _~r = e i (0 u i )~r i (0 u i )+e(0 u i )~n(0 u i ): (22) (u i ) = e (0 u i ), (u i ) = e(0 u i ). i (u i )~r i (0 u i ) _ ~r 0,. (u i )~n(0 u i ). 4. t, t 2 (;" "), ~r = ~r(u i t) _ ~r = s ~r s + ~n (. (22)) 0. 32

~ = s ~r s 0 r i j + r j i = ;2Kg ij +2h ij (23) g ij, h ij 0, r - g ij, K 0.. (14) ij + ji = ;2Kg ij. (11) (23). ~v = s ~r s +~n, 0,, s ~r s (23). -, (4),,,.,. (23) 1. 0. -,, 0.. i = 0, (23) t. 2.3. -., ~ = i ~r i - 0. S 2 (E 2 ) (2 0) (u v)=g ik g jm u ij v km = u ij v ij = u ij v ij : (24) E 2, " ij, - E 2 (., [10],. 26). j : " i = g js " is " ij = g ik g jm " km. (u v w) =" kl " mn " pq u kq v lm w np u v w 2 S 2 (E 2 ) (3 0) S 2 (E 2 ). ~e 1 ~e 2 S 2 (E 2 )., (u v w)=(e 12 ) 3 det u 11 u 12 u 22 v 11 v 12 v 22 w 11 w 12 w 22 " ij, u ij, v ij, w ij ", u, v, w ~e i. -, 3- S 2 (E 2 ). S 2 (E 2 ), S 2 (E 2 ) -. ~e i E 2, 1 p (e 2 1 e 2 + e 2 e 1 ) e 2 e 2 e 1 e 1 S 2 (E 2 )., S 2 (E 2 ) (u v w) = p 2(u v w)= p 2 " kl " mn " pq u kq v lm w np : (25) 33

, [ ] S 2 (E 2 ), ([u v] w)=(u v w). S 2 (E 2 ),, t = [u v] u v 2 S 2 (E 2 ) t ij = ; 1 p 2 (" i k " j m + " j k " i m )" pq u kp v mq : 5. 0. i, i (" mi h j m + " mj h i m)r i j =0 (26) (H 2 ; 2K)(div ) ; Hh ij r i j + K(H 2 ; 4K)=0: (27). 0, - g ij h ij 0. u ij, g ij h ij, (g h u) =0. (25) " kl " p k = ;g lp, u ij, u = ag + bh 2 S 2 (E 2 ),,, a = ( ) (24). " mn h p mu np =0: (28) (u g)(h h) ; (h g)(u h) (g g)(h h) ; (g h) 2 (29) (u g)=g ij u ij (u h)=h ij u ij (h g)=g ij h ij = H (h h) =h ij h ij = k 2 1 + k 2 2 = H 2 ; 2K K, H, k 1, k 2 0. uij = r i j + r j i. (28) (26)., (u g)=2g ij r i j = 2 div( ~ ), (u h)=2h ij r i j. (23), a = ;2K, (29) (27). 1. (5), (26) -, r i j +r j i g ij h ij,. (26) ~v = s ~r s + ~n. 3. 0 ~v = ~ + ~, ~ = s ~r s ~ = ~n, 0., 0. 3.1. -. 0, p 2 (u 1 u 2 ), -, g 11 = g 22 = 1 g 12 =0 h 11 =1 h 12 =0 h 22 = ;1 (30) 34

(. [15],. 44). - ; 1 11 = ; 1 2 ;1 12 = ; 2 2 ;1 22 = 1 2 ; 2 11 = 2 ; 2 12 = ; 1 ; 2 22 = ; 2 2, (23), -, : 1 1 + 1 2 ; 2 2 2 2 ; 1 1 + 2 2 1 2 + 2 1 + 2 2 : (31) 2 2 = + (32) 2 2 = ; (33) 1 + 1 2 =0: (34) 3.2. (32)(34). (32) (33), 2 = 1 1 + 2 2 (35) 2 = 1 1 ; 2 2 + 1 1 ; 2 2 : (36) K - log(;4k)=4k, g (., [15], 3.1.3, [10],. 238, (2)). K = ; 2,, E log = ;2 (37) E. (35) 1 1 + 2 2 + 1 ( 1 log )+ 2 ( 2 log )=0 1 ( 1 + 1 log )+ 2 ( 2 + 2 log )=0:, ', 1 + 1 log =2 2 ' 2 + 2 log = ;2 1 ': (38) (34) 1 ( 2 )+ 2 ( 1 )=0: i (38), 2 ( 2 ') ; 1 ( 1 ') ; 12 =0: (39) 6. (32)(34) 1 =2 2 ' ; 1 =2 12 ' + 1 2 = ;2 1 ' ; 2 2 ' + 2 1 ' + 22 ; 11 ' (40) 2 (41) 11 ' ; 22 ' + 1 1 ' ; 2 2 ' + 12 =0: (42) 35

., (32)(34) (40), (41), ' (42) ( (39))., i, (40),, (41), ' (42), (32)(34). i (32), ; 1 2 E log ;=0, (37). (33). - i (34), (39). 2. i, (40) (41), (32)(33) '. (34) (42) '. 3.3. '. - (. [10],. X). W E 3, ~x, ~y, W. r i x j = i y j, r -, (.. - i ~x). ~t, ~ = i i =2 -. ~t W div(~t )=g ij r i t j = K, K., ~w div( ~w) = K, ~w. 0. H =0, (27) div( ~ )=;2K, ~t = ; 1 2~ - W 0. ~x, W. ~ 1, 0,. 7. '(p) ~x(p) ~ 1 (p). 1: ' (40), ~ = ;2~t, ~t W. 2: ' (42), 1- i = h is s.., 3.2. ~ 1 = p ~r 1 ~x = p (cos '~r 1 + sin '~r 2 ) ~y = p (; sin '~r 1 + cos '~r 2 ): i r i x j = i y j. x 1 = p 1 cos ', x 2 = p 1 sin ', y 1 = ; p 1 sin ', y 2 = p 1 cos '. (31), - r 1 x 1 =( 1 ' + 2 2 )y 1 r 2 x 1 =( 2 ' ; 1 2 )y 1: 1 = 1 ' + 2 2 2 = 2 ' ; 1 : 36 2

~t t 1 = ; 2, t 2 = 1 ( - ). ~t ~ = ;2~t, 1 =2 2 2 = ;2 1, (40)... h 1 1 =, h 2 2 = ;, h 2 1 = h 1 2 = 0, 1 = h 1 1 1 =2 2 ' ; 1 2 = h 2 2 2 =2 1 ' + 2 : 1 2 ; 2 1 =0, ' (42). 3. (40) ' -. 4. ~t = ; 1 2~ 1- i = h s i s, 1- i = h s i t s. 7, - 0 ~t, 1- ( ~ X)=h(~t ~ X). 3.4.,. - t ~r = ~r(u i t), ~v = ~ + ~, ~ = s ~r s ~ = ~n, 0. 8. = 2K, K - 0.. t H(t) t, H, j t t=0 = 0. (19), 0 g ij r i j ; h ij ij = 0. (u 1 u 2 ), (30), r 1 1 + r 2 2 ; ( 11 ; 22 )=0: (43) (12) 1 = 1 + 1 2 = 2 ; 2., (31), r 1 1 + r 2 2 = 1 1 + 2 2 = 11 + 22 + 1 ( 1 ) ; 2 ( 2 ): (11), 0 ij = r i j ; h ij, 11 ; 22 = r 1 1 ;r 2 2 ; 2. (31), r 1 1 = 1 1 + 1 2 1 ; 2 2 r 2 2 = 2 2 ; 1 1 + 2 2 : 2 2 2 11 ; 22 = 1 1 ; 2 2 + 1 1 ; 2 2 ; 2 ( 11 ; 22 )= 1 ( 1 ) ; 2 ( 2 ) ; 2:, (43) 11 + 22 +2 =0 (44). 37

t, (41), ' (42).,, (44),.., -. 3.5., -. ~v = + ~n 0 0, = 0.,, ', (41) (42), 12 ' + 1 2 ' + 2 1 ' + 22 ; 11 2 2 4 11 ' ; 22 ' + 1 1 ' ; 2 2 ' + 12 =0 (45) =0: (46), u = 10 u 1 + u 2, u = 20 u 1 ; u 2 (45) (46) (, ). '. ' = p 1, (45) (46) 22 ; 11 ; 22 + 11 2 4 2 1 12 + 2 ; 12 + 11 ; 22 4 2 2 4 p ; ( 2) 2 ; ( 1 ) 2,,, + 12 p =0 (47) =0: (48) 9. -.. ~r(u 1 u 2 ) = cosh(u 1 )~e(u 2 ) ; u 1 ~ k, (u 1 u 2 1 )=. (47), (48) cosh 2 (u 1 ) 11 (u 1 u 2 ) ; 22 (u 1 u 2 )+a(u 1 ) (u 1 u 2 )=0 (49) 12 (u 1 u 2 )+b(u 1 )=0 (50) 2 a(u 1 )= cosh 2 (u 1 ) ; 1 )= 2 cosh2 (u 1 ) ; 3 b(u1 : (51) 2 cosh 3 (u 1 ) a b. (50) 122 =0, 112 = ;b 0, 1122 = 0. (49) ; 2222 + a 22 = 0, u 1, a 0 22 = 0. a 0 6= 0, 22 = 0,, (u 1 u 2 ) = f(u 1 )u 2 + g(u 2 ). (49) (50), f 00 + af =0 g 00 + ag =0 f 0 = ;b:, ;b 0 + af =0, f = b 0 =a. (b 0 =a) 0 = ;b,, a b, (51),.. (b 0 =a) 0 = 2cosh6 (u 1 ) ; 27 cosh 4 (u 1 ) + 54 cosh 2 (u 1 ) ; 36 : 2cosh 7 (u 1 ) ; 8 cosh 5 (u 1 ) + 8 cosh 3 (u 1 ),,.., 38

\ " t =(,, - ).....,..,. 1. Chow B., Knopf D. The Ricci ow: an introduction. Mathematical Surveys and Monographs, V. 110. American Mathematical Society, Providence, RI, 2004. 2. Bennett Chow, Sun-Chin Chu, Chia-Yi, David Glickenstein, Christine Guenther, James Isenberg, Tom Ivey, Dan Knopf, Peng Lu, Feng Luo, and Lei Ni, The Ricci ow: techniques and applications. Part I: Geometric aspects. Mathematical Surveys and Monographs, V. 135. American Mathematical Society, Providence, RI, 2007. 3. Zhu Xi-Ping. Lectures on mean curvature ows. AMS/IP Studies in Advanced Mathematics-32. Providence, RI: American Mathematical Society Somerville: International Press. ix, 2002. 150 p. 4...,..,... -..:, 1979. 759. 5. Taylor M.E. Partial dierential equations. III Nonlinear equations. Springer-Verlag, 1996. 608 p. 6. Carstea S.A., Visinescu M. Special solutions for Ricci ow equation in 2D using the linearization approach // Mod. Phys. Lett. A 20 (2005), 39, 2993-3002 (. http://arxiv.org/abs/hepth/0506113). 7. Hamilton R.S. Three-manifolds with positive Ricci curvature // J. Dierential Geom. 1982. V. 17. 2.P. 255306. 8. DeTurck D.M. Deforming metrics in the direction of their Ricci tensor // J. Dierential Geom. 1983. V. 18. 1. P. 157162. 9..... 1. -,.. I..., -, 1947. 512. 10.....:, 1956. 260. 11. Rubinstein J., Sinclair R. Visualizing Ricci ow of manifolds of revolution // Experimental Mathematics. 2005. V. 14. P. 285298. 12... //.. 1996..59.. 2.. 284290. 13... //.. 2003.. 74.. 34.. 438444. 14....:, 1957. 223. 15. Palais R.S., Terng Chuu-lian, Critical point theory and submanifold geometry. Lecture Notes in Math. 1988. V. 1353. Los Andes (, ) 13.04.2007 39