The Double Chooz reactor neutrino experiment

Similar documents
Latest Results of Double Chooz. Stefan Schoppmann for the Double Chooz Collaboration

The Double Chooz experiment

Neutrino Experiments with Reactors

The Double Chooz Project

Steve Biller, Oxford

Technology in future neutrino experiments

Jelena Maricic Drexel University. For Double Chooz Collaboration. Spain. France. Germany U.S.A. Japan Russia. Brazil U.K. Courtesy of T.

The Daya Bay Reactor Neutrino Oscillation Experiment

Observation of Reactor Antineutrinos at RENO. Soo-Bong Kim for the RENO Collaboration KNRC, Seoul National University March 29, 2012

Neutrino Experiment. Wei Wang NEPPSR09, Aug 14, 2009

Measurement of q 13 in Neutrino Oscillation Experiments. Stefan Roth, RWTH Aachen Seminar, DESY, 21 st /22 nd January 2014

Correlated Background measurement in Double Chooz experiment

Daya Bay and joint reactor neutrino analysis

arxiv:hep-ex/ v1 15 Aug 2006

The Daya Bay Anti-neutrino Experiment

The Daya Bay Reactor Neutrino Experiment

Reactor Neutrino Oscillation Experiments: Status and Prospects

Particle Physics: Neutrinos part I

Wei Wang University of Wisconsin-Madison. NNN09, Estes Park, Colorado, Oct 8, 2009

Daya Bay Neutrino Experiment

Recent Discoveries in Neutrino Physics

An Underground Laboratory for a Multi-Detector Experiment. Karsten Heeger Lawrence Berkeley National Laboratory

A Trial of Neutrino Detection from Joyo Fast Research Reactor

Double Chooz and non Asian efforts towards θ 13 Journal of Physics: Conference Series

KamLAND. Introduction Data Analysis First Results Implications Future

θ13 Measurements with Reactor Antineutrinos

Neutrino Experiments with Reactors

Precise measurement of reactor antineutrino oscillations at Daya Bay

A Large Liquid Scintillator Detector for Neutrino Mass Hierarchy : RENO-50

Neutrino Masses and Mixing

章飞虹 ZHANG FeiHong INTERNATIONAL SCHOOL OF SUBNUCLEAR PHYSICS Ph.D. student from Institute of High Energy Physics, Beijing

Observation of Reactor Antineutrino Disappearance at RENO

- Future Prospects in Oscillation Physics -

Current Results from Reactor Neutrino Experiments

Antineutrino Detectors for a High-Precision Measurement of θ13 at Daya Bay

arxiv: v1 [hep-ex] 14 May 2015

Recent Results from RENO & Future Project RENO-50

Observation of Reactor Electron Antineutrino Disappearance & Future Prospect

The Daya Bay Reactor Neutrino Experiment

New results from RENO and prospects with RENO-50

Short baseline neutrino oscillation experiments at nuclear reactors

Neutrinos. Why measure them? Why are they difficult to observe?

Contents. General introduction to reactor θ 13 measurements Status review of ongoing 3 projects (in order of expected far-site data taking start)

Prospects for Measuring the Reactor Neutrino Flux and Spectrum

Reactor-based Neutrino Experiment

Results and Prospects of Neutrino Oscillation Experiments at Reactors

Sterile Neutrino Experiments at Accelerator

The Double Chooz Experiment: Exploring Neutrino Oscillations

Status of 13 measurement in reactor experiments

New Results from RENO

KamLAND. Studying Neutrinos from Reactor

Reactor antineutrino. Th. Lasserre Saclay. Neutrino geo-sciences 2010 LNGS, October 06 th 2010

RENO & RENO-50. RENO Reactor Neutrino Experiment. RENO = Reactor Experiment for Neutrino Oscillation. (On behalf of RENO Collaboration)

The Search for θ13 : First Results from Double Chooz. Jaime Dawson, APC

Daya Bay Reactor Neutrino Experiment

Status of the Daya Bay Experiment

The Nucifer Experiment: Non-Proliferation with Reactor Antineutrinos

Observation of Electron Antineutrino Disappearance at Daya Bay

Neutrino Physics. Neutron Detector in the Aberdeen Tunnel Underground Laboratory. The Daya Bay Experiment. Significance of θ 13

Reactor Short Baseline Neutrino Experiment in Korea

Status and Prospects of Reactor Neutrino Experiments

PoS(NEUTEL2017)007. Results from RENO. Soo-Bong Kim. for the RENO collaboration Seoul National University, Republic of Korea

Precise sin 2 2θ 13 measurement by the Daya Bay reactor neutrino experiment.

Daya Bay Neutrino Experiment NUFACT05. Jun Cao. Institute of High Energy Physics, Beijing

Precision measurements with reactor neutrinos

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

Double Chooz Sensitivity Analysis: Impact of the Reactor Model Uncertainty on Measurement of Sin 2 (2θ 13 )

Status of The Daya Bay Reactor Neutrino Experiment

THE JUNO EXPERIMENT. A.Meregaglia - IN2P3/CNRS - IPHC Strasbourg on behalf of the JUNO collaboration. 4 th November Paris NNN 2014

The ultimate measurement?

Oak Ridge and Neutrinos eharmony forms another perfect couple

저작권법에따른이용자의권리는위의내용에의하여영향을받지않습니다.

Observation of Mixing Angle 13

Results on geoneutrinos at Borexino experiment. Heavy Quarks and Leptons Yamagata Davide Basilico

Neutrino Experiments: Lecture 2 M. Shaevitz Columbia University

Scintillator phase of the SNO+ experiment

The NuMI Off-axis ν e Appearance Experiment (NOνA)

Reactor On/Off Monitoring with a Prototype of Plastic Anti-neutrino Detector Array (PANDA)

NEUTRINO OSCILLATION EXPERIMENTS AT NUCLEAR REACTORS

Outline. (1) Physics motivations. (2) Project status

Updated three-neutrino oscillation parameters from global fits

Neutrino Experiments: Lecture 3 M. Shaevitz Columbia University

Neutron background and possibility for shallow experiments

GADZOOKS! project at Super-Kamiokande

Measurement of q 13. Kwong Lau University of Houston Flavor Physics & CP Violation 2013 (FPCP 2013) Búzios, Rio de Janeiro, Brazil May 22, 2013

New Results for ν µ ν e oscillations in MINOS

A multipurpose detector for low energy

Anti-neutrinos from nuclear reactors Chasing θ 13

Directional Measurement of Anti-Neutrinos with KamLAND

Neutrino oscillation physics potential of Hyper-Kamiokande

Potential of Hyper-Kamiokande at some non-accelerator Physics and Nucleon Decay Searches

Chart of Elementary Particles

Results from Borexino 26th Rencontres de Blois

PHYS%575A/B/C% Autumn%2015! Radia&on!and!Radia&on!Detectors!! Course!home!page:! h6p://depts.washington.edu/physcert/radcert/575website/%

RENO Reactor Neutrino Experiment

The ESS neutrino facility for CP violation discovery

LENA Scintillator Development

Workshop Towards Neutrino Technologies July Prospects and status of LENA

Prospects of Reactor ν Oscillation Experiments

Status of Light Sterile Neutrinos Carlo Giunti

Transcription:

The Double Chooz reactor neutrino experiment Christian Buck, MPIK Heidelberg MPIK July, 30th 2009

Overview Motivation Double Chooz concept and design Status of experiment MPIK activities Summary

Neutrino oscillations ν ν P P e µ νe ν e 1.0 = = νe νe ν (x) ν ( x) 1 1 cos Θ sin Θ = 1 sin 2 + ν + ν 2Θ 2 2 sin sin 2 sin cos 2 2Θ Θ Θ x π lv ν e ν ν µ τ U = U U e1 µ 1 τ 1 U U U sin 2 Θ 13 sin 2 Θ 23 m 2 atm e2 µ 2 τ 2 U U U e3 µ 3 τ 3 ν 3 ν1 ν 2 ν 3 ν e ν µ 0.5 0.0 l v o Θ = 45 x m sol 2 sin 2 Θ 12 ν 2 ν 1 ν τ m sol2 ~ 7.7 10-5 ev 2, sin 2 (2Θ 12 ) ~ 0.85 m atm2 ~ 2.4 10-3 ev 2, sin 2 (2Θ 23 ) ~ 1

Why Double Chooz? Improved knowledge of mixing matrix Key experiment to unveil leptonic CP violation Discovery potential: Θ 13 in models often close to experimental bound Complementarity to beam experiments - Degeneracies + parameter correlations - Optimize future accelerator experiments Discrimination power of 0νββ Safeguard applications,

Reactor neutrino experiments 1956: First observation (Nobel Prize 1995) 1990s: Chooz, Palo Verde (sin 2 2Θ 13 < 0.2) Reactor neutrinos: Pure antineutrino beam Intense flux (~2% precision) Detection: inverse β-decay Energy: few MeV 2002: KamLand m 12, Θ 12

Current proposals Double-Chooz RENO Daya bay Kaska Angra December 2002: 1st European meeting, MPIK April 2003 February 2005: 4 int. workshops in U.S., Germany, Japan and Brazil 1st Double Chooz Meeting: Nov 2003

Double Chooz collaboration Spokesman: H. de Kerret (APC) France: CEA Saclay, APC Paris, Subatech Nantes, IPHC Strasbourg Germany: MPIK Heidelberg, TU München, EKU Tübingen, Universität Hamburg, RWTH Aachen USA: Univ. of Alabama, Argonne Nat. Lab., Chicago, Drexel, Kansas State, LLNL, Notre Dame, Tennessee, Columbia Univ., Davis, MIT, Sandia Spain: CIEMAT Madrid Japan: Tohoku University, Kobe University, Tokyo Inst. of Tech., Niigata University, Tokyo Metropolitan University, Hiroshima Inst. of Tech. England: University of Sussex Russia: RAS Moskau, Kurchatov Institute Brasil: CBPF Rio de Janeiro, UNICAMP

The Double Chooz principle 410 m ν ν ν ν ν ν ν ν 1050 m

Survival probability Survival probability assuming sin 2 (2Θ 13 ) = 0.2 for different m 13 D near D far 2 2 m P ee 1 sin 2Θ 13 sin 4 4 2 2 13 L 4 2 2 m Θ Θ 12 L cos 13 sin 2 12 sin G. Mention (APC) Eν E ν

Neutrino signal pure ν e source n 235 U prompt E ν ~ MeV E min ~ 1.8 MeV > 10 20 ν/(s GW) Chooz: ~ 7.4 GW th β 236 U β ν e 511 kev e + p n Gd 511 kev Σγ ~ 8 MeV Neutrino rates: - far: ~50/day - near: ~300/day delayed (30 µs) Target: Gadolinium loaded liquid scintillator (MPIK!)

Background Accidentals γ + n Gd β-n-cascades: 9 Li, 8 He Long lived! Eγ 1 MeV Σγ ~ 8 MeV fast neutrons n Gd Σγ ~ 8 MeV Chooz data: far detector: ca. 1.4/day

Detector Design TARGET (2,3m) - Acrylic vessel (8mm) - 10,3 m 3 LS (1 g/l Gd) 7m γ-catcher (0,55m) - Acrylic vessel (12mm) - 22,6 m 3 LS Buffer (1,05m) -Steel (3 mm) -~ 110 m 3 oil Shielding (17 cm) - Steel 7m Inneres Veto (0,5m) -Steel (10 mm) -~80 m 3 LS

Comparison with Chooz Best limit: CHOOZ sin 2 (2θ 13 ) < 0.15 (90% CL) R = 1.01 ± 2.8%(stat) ± 2.7%(syst) für m 2 atm = 2.5 10-3 ev 2 Fehler Chooz DC Statistical 2.8% 0.4% Flux, σ 1.9 % <0.1 % Reactor E/fission 0.6 % <0.1 % power 0.7 % <0.1 % Detector # protons Det.eff. 0.8 % 1.5 % 0.2 % 0.3 % Σ System. 2.7 % ~ 0.6%

Sensitivity Sensitivity 2010 2015 (near detector starts < 2 y after far) for m 2 atm = 2.8 10-3 ev 2 2010 Far detector filled beginning 2010!

Status far detector Lab cleaning Installation Veto and Veto-PMTs Installation Buffertank

PMT installation

Acrylic vessel installation

Status near detector Distance: 415 m Shielding: 115 m w.e. Myons (Veto): 250 Hz Data taking: 2011 reactors near detector Open ramp (85 m), 14% Laboratory Liquid storage Tunnel (155 m), 12%

Scintillator development (MPIK) Requirements: Gd-solubility > 1 g/l Stability (> 5 years!) Transparency Material compatibility Radiopurity Target Gamma catcher matching (optics + density) Large scale (multi tons) Chooz stability: Gd(NO 3 ) 3 τ ~ 240 days Chooz Coll.; Eur.Phys.C27, 331-374 (2003) PXE conc, Light yield PPO conc.

Scintillator properties absorbance (10 cm cell) 0,030 0,025 0,020 0,015 0,010 0,005 0,000 400 420 440 460 480 500 520 540 560 580 600 wavelength [nm] 30Aug2006 04Feb2009 Transparency in ROI stable in 10 m range! 2.5m 5m 10m Events Event localization by pulse shape analysis Target Gamma Catcher candidates Time [ns]

Large scale production All components (40 tons) delivered to MPIK current activities: final purification, prepare for mixing Scintillator production and transport to Chooz end of 2009

PMT activities at MPIK Testing Assembly / Installation Implementation of data in Double Chooz software Future upgrade: full detector segment

PMT calibration Calibration program: HV scans Single photon electron (P/V) Transit time Dark rate Quantum efficiency

Summary Goal of Double Chooz reactor neutrino experiment: Determination of mixing angle Θ 13 (sin 2 (2θ 13 ) ~ 0.03) 2-detector concept to reduce systematical error Detection via inverse β-decay in Gadolinium loaded liquid scintillator Schedule: Data taking far detector: beginning of 2010 Near detector: end of 2011 MPIK: scintillators, PMTs, Analysis