Apparent quantum efficiency effects in CdTe solar cells

Similar documents
Explanation of Light/Dark Superposition Failure in CIGS Solar Cells

Conduction-Band-Offset Rule Governing J-V Distortion in CdS/CI(G)S Solar Cells

Characterization of deep defects in CdSyCdTe thin film solar cells using deep level transient spectroscopy

Photogating effect observed in microcrystalline silicon solar cells and its applications in cell optimization

Thesis. Numerical Modeling of CIGS Solar Cells: Definition of the Baseline and. Explanation of Superposition Failure. Submitted by.

Lecture 5 Junction characterisation

Semiconductor Physics fall 2012 problems

DEVICE CHARACTERIZATION OF (AgCu)(InGa)Se 2 SOLAR CELLS

Novel High-Efficiency Crystalline-Si-Based Compound. Heterojunction Solar Cells: HCT (Heterojunction with Compound. Thin-layer)

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

Solar cells operation

Supplementary Figure 1. Supplementary Figure 1 Characterization of another locally gated PN junction based on boron

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

PHOTOVOLTAICS Fundamentals

EE 6313 Homework Assignments

Thermionic Current Modeling and Equivalent Circuit of a III-V MQW P-I-N Photovoltaic Heterostructure

The Role of doping in the window layer on Performance of a InP Solar Cells USING AMPS-1D

Investigation of Thin Film Solar Cells on CdS/CdTe Base with Different Back Contacts

Semiconductor Physics fall 2012 problems

Lecture 15: Optoelectronic devices: Introduction

Lab #5 Current/Voltage Curves, Efficiency Measurements and Quantum Efficiency

Fundamentals of Photovoltaics: C1 Problems. R.Treharne, K. Durose, J. Major, T. Veal, V.

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

Metal Semiconductor Contacts

FYS 3028/8028 Solar Energy and Energy Storage. Calculator with empty memory Language dictionaries

Toward a 1D Device Model Part 1: Device Fundamentals

5. Semiconductors and P-N junction

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

KATIHAL FİZİĞİ MNT-510

Boosting the Performance of Solar Cells with Intermediate Band Absorbers The Case of ZnTe:O

Semiconductor Physics and Devices

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

A. K. Das Department of Physics, P. K. College, Contai; Contai , India.

EE495/695 Introduction to Semiconductors I. Y. Baghzouz ECE Department UNLV

This is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures.

EE 5611 Introduction to Microelectronic Technologies Fall Tuesday, September 23, 2014 Lecture 07

B12: Semiconductor Devices

PN Junction

Semiconductor Junctions

n N D n p = n i p N A

ET3034TUx Utilization of band gap energy

Available online at Energy Procedia 00 (2009) Energy Procedia 2 (2010) E-MRS Spring meeting 2009, Symposium B

February 1, 2011 The University of Toledo, Department of Physics and Astronomy SSARE, PVIC

Organic Electronic Devices

Classification of Solids

Solar Cell Materials and Device Characterization

Schottky Diodes (M-S Contacts)

Appendix 1: List of symbols

Electronic Supplementary Information. Recombination kinetics in silicon solar cell under low-concentration: Electroanalytical

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

Chemistry Instrumental Analysis Lecture 8. Chem 4631

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

Semiconductor Physics Problems 2015

MODELING THE FUNDAMENTAL LIMIT ON CONVERSION EFFICIENCY OF QD SOLAR CELLS

LEC E T C U T R U E R E 17 -Photodetectors

pn JUNCTION THE SHOCKLEY MODEL

Influence of the doping of the absorber and the charged defects on the electrical performance of CIGS solar cells

Comparison of Ge, InGaAs p-n junction solar cell

Chapter 7. The pn Junction

Supplemental Discussion for Multijunction Solar Cell Efficiencies: Effect of Spectral Window, Optical Environment and Radiative Coupling

Session 6: Solid State Physics. Diode

Semiconductor device structures are traditionally divided into homojunction devices

Uncorrected Proof. Thin-film solar cells made with two different processes for the deposition of Cu(In1 xgax)se2 (CIGS) or

8.1 Drift diffusion model

Peak Electric Field. Junction breakdown occurs when the peak electric field in the PN junction reaches a critical value. For the N + P junction,

Modelling thin film solar cells with graded band gap

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

3.1 Absorption and Transparency

Energetic particles and their detection in situ (particle detectors) Part II. George Gloeckler

Self-Consistent Drift-Diffusion Analysis of Intermediate Band Solar Cell (IBSC): Effect of Energetic Position of IB on Conversion Efficiency

Optimization of the Properties of the Back Surface Field of a Cu(In,Ga)Se 2 Thin Film Solar Cell

Current mechanisms Exam January 27, 2012

MOS CAPACITOR AND MOSFET

Schottky Rectifiers Zheng Yang (ERF 3017,

Fundamentals of Semiconductor Physics

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara

ECE-305: Spring 2018 Exam 2 Review

Spring Semester 2012 Final Exam

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006

Carriers Concentration and Current in Semiconductors

Hussein Ayedh. PhD Studet Department of Physics

THESIS DISTORTIONS TO CURRENT-VOLTAGE CURVES OF CIGS CELLS WITH SPUTTERED. Zn(O,S) BUFFER LAYERS. Submitted by. Tao Song. Department of Physics

The photovoltaic effect occurs in semiconductors where there are distinct valence and

Chap. 11 Semiconductor Diodes

Ch/ChE 140a Problem Set #3 2007/2008 SHOW ALL OF YOUR WORK! (190 Points Total) Due Thursday, February 28 th, 2008

Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is

Photovoltaic Energy Conversion. Frank Zimmermann

A study of the silicon Bulk-Barrier Diodes designed in planar technology by means of simulation

Well pin Solar Cells: Dark Behavior

Quiz #1 Practice Problem Set

Semiconductor Physical Electronics

Solid State Electronics. Final Examination

Impact of the Geometry Profil of the Bandgap of the CIGS Absorber Layer on the Electrical Performance of the Thin-film Photocell

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

Limiting acceptance angle to maximize efficiency in solar cells

Modeling Recombination in Solar Cells

Theory of Electrical Characterization of Semiconductors

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation

Generation and Recombination of a CIGSe Solar Cell under the Influence of the Thickness of a Potassium Fluoride (KF) Layer

Transcription:

JOURNAL OF APPLIED PHYSICS VOLUME 95, NUMBER 8 15 APRIL 2004 Apparent quantum efficiency effects in CdTe solar cells M. Gloeckler a) and J. R. Sites Department of Physics, Colorado State University, Fort Collins, Colorado 80523-1875 Received 10 November 2003; accepted 19 January 2004 Quantum efficiency measurements of n-cds/ p-cdte solar cells performed under nonstandard illumination, voltage bias, or both can be severely distorted by photogeneration and contact-barrier effects. In this work we will discuss the effects that are typically observed, the requirements needed to reproduce these effects with modeling tools, and the potential applications of apparent quantum efficiency analysis. Recently published experimental results are interpreted and reproduced using numerical simulation tools. The suggested model explains large negative apparent quantum efficiencies 100% seen in the spectral range of 350 550 nm, modestly large negative apparent quantum efficiencies 100% in the spectral range of 800 850 nm, enhanced positive or negative response observed under red, blue, and white light bias, and photocurrent gain significantly different from unity. Some of these effects originate from the photogeneration in the highly compensated CdS window layer, some from photogeneration within the CdTe, and some are further modified by the height of the CdTe back-contact barrier. 2004 American Institute of Physics. DOI: 10.1063/1.1667605 I. INTRODUCTION Experimental measurements of solar-cell quantum efficiency, the ratio of electrical to photon current at a given wavelength, when performed under nonstandard conditions voltage bias; no light bias, or limited spectral range; high frequency chopping, can produce a variety of invalid results. Hence the term apparent quantum efficiency AQE is used to distinguish such results from the quantum efficiency QE measured under standard conditions one sun illumination, zero bias. The quantum efficiency as a measure of the primary light-generated current should be positive and limited to the range 0 1. AQE, which includes changes in secondary currents, can be negative or positive, and can exceed unity in magnitude. Apparent quantum efficiency measurements can be a useful tool to analyze device structures since 1 most of the AQE effects are very sensitive to small changes in electronic structure, 2 they can serve as a test for proposed device models, and 3 they typically represent a comprehensive data set for analysis purposes. Partial explanation of reduced AQE in forward bias was given 15 years ago by Phillips and Roy 1 and Sites et al. 2 More recent results require the consideration of secondary barriers and photogenerated changes in carrier density to explain the observed AQE effects. The focus of this article is on CdS/CdTe thin film solar cells, though parts of the discussion can be applied to other photovoltaic structures with heterojunctions or nonohmic contacts. The purposes of this article are 1 to explain the nonstandard results, 2 to give some guidance on how these effects can be avoided in measurements, and 3 to explore whether the problem can be reversed and AQE can be used to deduce the size of secondary barriers. This article is organized as follows: Sec. II, AQE measurement; Sec. III, device a Electronic address: markusg@lamar.colostate.edu model; Sec. IV, AQE effects with bias light; Sec. V, AQE effects under forward voltage; Sec. VI, experimental complications; and Sec. VII, photocurrent gain. In Secs. IV VII, recently published experimental results 3 6 are compared with modeling calculations, and the model proposed here is compared to models suggested by others. 3 6 Distinct spectral ranges for CdS/CdTe cells are referred to as CdS region 350 nm 550 nm, red region 550 nm 800 nm, and band gap (E g ) region 800 nm 850 nm. II. AQE MEASUREMENT The quantum efficiency of a solar cell should by convention be measured under standard solar illumination one sun at zero electrical bias. AQE results from measurements performed under limited-spectrum bias light, or in the dark, or with applied voltage bias. Typically, the magnitude and phase of the ac current response to a monochromatic chopped probing beam is measured by a lock-in technique. The phase is influenced by the circuit impedance and is defined to be zero at 0 V bias. A phase of 0 is interpreted as the photocurrent opposite the forward diode current and by convention a positive QE or AQE. A phase of 180 is hence the same polarity as the forward current and referred to as negative AQE. Current response can be delayed if a slow trapping process is involved in the transport mechanism, which can result experimentally in an intermediate phase angle. Phillips and Roy 1 and Sites et al. 2 showed that the AQE reduction in forward bias approaching the standard operating voltages of the cell is always present and depends strongly on the series resistance (R S ) of the solar cell and the input impedance (R L ) of the measurement circuit. An analytical model describes the AQE under voltage bias 2 AQE V AQE 0 1 J F R L R S R 1 L AkT/q r sh. 1 0021-8979/2004/95(8)/4438/8/$22.00 4438 2004 American Institute of Physics

J. Appl. Phys., Vol. 95, No. 8, 15 April 2004 M. Gloeckler and J. R. Sites 4439 TABLE I. Input parameters for the numerical model: barrier heights bn E C E F and bp E F E V ; surface recombination velocity S; layer width W; dielectric constant ; mobility ; electron/hole density n/p; band gap energy E g ; effective density of states N C and N V ; electron affinity ; conduction band offset E C ; acceptorlike donor-like defect density N DG AG) ; defect peak energy E A(D) ; defect distribution width W G ; and capture cross section. The subscript e/h refers to electron/hole properties. A. General device properties Front Back b (ev) bn 0.1 bp 0.5 a S e (cm/s) 10 7 10 7 S h (cm/s) 10 7 10 7 Reflectivity 0.1 0.8 B. Layer properties SnO 2 CdS CdTe W (nm) 500 100 4000 / 0 9 10 9.4 e (cm 2 /Vs) 100 100 320 h (cm 2 /Vs) 25 25 40 N D/A (cm 3 ) N D :10 17 N D :9.6 10 17 N A :2 10 14 E g (ev) 3.6 2.4 1.5 N C (cm 3 ) 2.2 10 18 2.2 10 18 8 10 17 N V (cm 3 ) 1.8 10 19 1.8 10 19 1.8 10 19 ev 4.5 4.5 ( E C 0) 4.4 ( E C 0.1) C. Gaussian midgap defect states SnO 2 CdS CdTe N DG, N AG (cm 3 ) D:10 15 A:10 18 D:2 10 13 E A, E D (ev) midgap midgap midgap W G (ev) 0.1 0.1 0.1 e (cm 2 ) 10 12 10 17a 10 11 h (cm 2 ) 10 15 10 12 10 14 a Parameter was varied for calculations discussed in Sec. VII, see text for details. J F is the forward diode current, r sh the shunt resistance, q elementary charge, and A the diode quality factor. According to Eq. 1, AQE(V) falls from its value at 0 V toward zero as the forward diode current becomes significant. An extended analysis showed that the AQE response can become slightly negative, if the device shows nonidealities such as light dependent A, R S, saturation current, or built in potential. 2 III. DEVICE MODEL The AQE modeling calculations discussed in the following sections primarily used the software tool AMPS-1D. 7 AMPS-1D calculates the steady-state band diagram, recombination profile, and carrier transport in one dimension based on the Poisson and hole and electron continuity equations. It uses a spatial grid that typically contains several hundred grid points. Recombination currents are calculated with the Shockley Read Hall model. 8 The baseline AMPS-1D input parameters used here, including those for a SnO 2 transparent front contact, are given in Table I. The thickness of each layer of the cell structure is typical of successful CdTe solar cells. The n-cds layer is assumed highly compensated, with comparable high densities of shallow donor and deep acceptor levels present. Inequality in electron and hole crosssections follows from the charge states of the defect states and the free carriers. The general selection of input parameters was discussed recently. 9 We use less compensated CdTe here than in Ref. 9, since a strong CdTe compensation leads to nonidealities such as light-dependent series resistance and diode quality factor which unnecessarily complicate the AQE behavior. The default illumination spectrum is set to the global AM1.5 standard for terrestrial solar-cell measurements. 10 For calculations presented in Sec. IV, parts of the illumination spectrum were removed to simulate the effect of high 600 nm, red or low 600 nm, blue pass filters. The resulting band diagrams calculated in thermodynamic equilibrium dark and under standard solar illumination light at zero bias are given in Fig. 1. The primary effect of the light is to widen the depletion region as a result of the photoconductivity in the CdS. From left to right in Fig. 1: transparent contact SnO 2 (n, 0.5 m, CdS effectively FIG. 1. Conduction and valence bands at V 0 in the dark and under solar illumination. The compensation of the shallow donors by deep acceptors in the CdS is partially lifted under illumination.

4440 J. Appl. Phys., Vol. 95, No. 8, 15 April 2004 M. Gloeckler and J. R. Sites FIG. 2. AQE calculated under blue and red light bias. n, 0.1 m, and CdTe (p,4 m. Back barrier E F E V 0.5 ev. Calculated current-voltage (J V) characteristics with the Table I parameters are open circuit voltage (V oc ) 0.83 V, short circuit current density (J sc ) 22 ma/cm 2, fill factor 73%, and conversion efficiency 13.5%. These values are typical for CdTe solar cells of reasonable quality. IV. AQE EFFECTS WITH BIAS LIGHT In the following discussion broad-spectrum bias light generates typical photocurrent densities the order of 5 20 ma/cm 2, whereas the narrow-wavelength probing-beam intensity is assumed much smaller, generating current densities of approximately 0.1 0.5 ma/cm 2. Experimental AQE variations with bias light have been reported recently by Hegedus et al. 3 The major effects observed were 1 response in the CdS spectral region greatly increases with red light bias, 2 response in the red region increases by a few percent under white or blue light bias, 3 effects 1 and 2 are stronger under forward bias, and 4 effect 1 decreases with increasing chopping frequency, whereas effect 2 is frequency independent. The AQE was positive for all cases. In Fig. 2 the calculated AQE is shown in the dark and under red and blue light bias at 0 V. The modeling calculations agree well with the experimental results and the qualitative explanations given by Hegedus et al. as discussed below. A. Red light bias FIG. 3. Conduction band at V 0 under red light bias, with and without a blue probe beam. The blue probe beam produces a small widening of the CdTe depletion region. Red light bias, 600 nm, generates electron hole pairs only in the CdTe layer, since E photon E g CdS E g SnO 2. The CdTe is modeled with a low compensation only, and hence the dark and red light bias band diagrams nearly coincide. A blue probing beam, 400 nm 520 nm, contains photons with energies above the CdS band gap energy and is primarily absorbed in the CdS. Some of these light-generated holes are trapped into deep acceptor states, leaving behind lightgenerated electrons and effectively increasing the n-type character of the CdS layer. The higher effective doping density in the CdS widens the depletion region in the CdTe see red light bias blue probe beam in Fig. 3. The collection probability of light-generated carriers increases with increasing depletion width, since the region of field-assisted collection is increased. Hence, adding a blue probe beam to the red light bias generates the standard small blue current plus a small increase of the large red bias light current. The additional red current can be of comparable magnitude, or greater, than the blue current, and thus the apparent quantum efficiency in the spectral CdS region of Fig. 2 is significantly enhanced. The qualitative explanation is in good agreement with the work by Hegedus et al. 3 and earlier work on amorphous silicon cited therein, which referred to this effect as photogating. B. Blue light bias The intensity of the blue bias light is large in comparison to the probing beam; therefore, it generates free electrons at a much higher rate and discharges a greater number of defect states in the CdS. This has two implications: 1 the CdS is effectively more heavily n-doped, which widens the CdTe layer depletion width by a small amount and increases the collection efficiency for photons absorbed in the CdTe layer and 2 since a blue probe beam is of much lower intensity than the bias light, it is not able to modulate the CdS conductivity so that the effects described in the red light bias section are negligible. The AQE in the red region increases in proportion to the collection efficiency, and hence the observed effects are small. White light bias, containing blue and red photons, shows a similar effect to the blue light bias. Although additional red photons are present in the white light, effect 2 prevents these photons from causing a measurable AQE increase in the CdS region. C. Forward voltage enhancement Under forward bias, the depletion width is reduced, which leads to a lower collection of red photons under all conditions. The depletion widening caused by the blue probe beam or bias light causes greater current changes compared to zero voltage bias, since a greater fraction of electron-hole pairs is generated in the volume that participates in the depletion width change. The more effective depletion width change enhances the red and blue light bias effects described above. Experimental 3 and modeled AQE in the CdS region

J. Appl. Phys., Vol. 95, No. 8, 15 April 2004 M. Gloeckler and J. R. Sites 4441 FIG. 4. Magnitude of AQE measured without bias light under increasing forward bias. Inset shows enlargement of the band gap peak. The large CdS response is accompanied by a large shift in phase angle. FIG. 5. Calculated AQE with no light bias as a function of forward bias. The modeling output is either positive or negative; phases other than 0 and 180 are not simulated. increases rapidly becoming greater than unity under red light bias, and it shows a greater difference between dark and blue light bias in the red spectral region. D. Frequency dependence Under the assumption that the photoconductivity of the CdS is caused by trapping of holes in deep states of the CdS, the red light bias effect will be limited to the frequency range in which the traps can follow the chopped probe beam light. At higher frequencies, the enhancements should gradually decrease and are reported to become quite small at chopping frequencies above 1000 Hz. 3 We calculated only the dc response, which should be the low-frequency limit for experimental ac measurements. V. AQE EFFECTS UNDER FORWARD VOLTAGE Typical experimental AQE results with increasing forward bias from 0 to 0.95 V, a range that slightly exceeds the typical 0.8 V open-circuit voltages of a CdTe solar cell, are shown in Fig. 4 based on Fig. 1 in Ref. 4 ; these measurements were performed in the dark without bias light. For voltages greater than 600 mv, there was a phase shift greater than 90 for the peaks that appear near 400 and 840 nm. We interpret this large phase shift as a reversal of the AQE sign. In the CdS region the magnitude of the AQE response increases rapidly above 0.6 V, has a maximum at 0.8 V, and decreases at still higher voltages. Samples in other studies 11 have shown a monotonically increasing AQE response in the CdS region, being as high as 12 at a voltage of 1 V, but a very similar AQE behavior in the red and band gap regions. In the red region, the response always decreases monotonically with voltage. In the band gap region, a small peak in AQE magnitude develops at higher forward voltages. The standard decrease, in the red region is due to resistance in the cell and the measurement equipment. The large negative peak below 500 nm is generated when trapped holes that where generated by blue photons pull down the CdS conduction band and allow considerably more forward current opposite sign from photocurrent to flow. The smaller negative peak near the CdTe band gap is due to red photons that penetrate into the back-contact region where the field is opposite to the primary diode field. The AQE under increasing forward bias was calculated with the model discussed in Sec. III Fig. 5. The large negative response in the CdS region in Fig. 5 corresponds to the large-magnitude CdS response in Fig. 4, which was measured with a large phase shift. The agreement of the model with the experimental data is quite good: compare Fig. 4 interpreting its large phaseangle regions as negative to Fig. 5. A detailed discussion of the three wavelength regions follows. A. CdS region AQE becomes negative above 0.6 V forward bias, increases in magnitude up to 0.8 V, and decreases in magnitude for still higher voltages. The large negative response results from an increase in forward current due to the blue photon illumination. The band diagram calculated at 0.75 V in the dark and under illumination by the probe beam light is shown in Fig. 6. The compensation in the CdS layer leads to a barrier at the CdS CdTe interface, which limits the forward electron current. The presence of a blue probe beam 350 nm 520 nm significantly enhances the CdS conductivity and reduces the barrier height, which in turn increases the forward current. Thus, adding blue photons generates the usual photocurrent, but also allows the flow of what can be a much larger forward current. Whenever the forward current increase is larger than the photocurrent increment, a negative AQE is measured. Koentges et al. 5 and Agostinelli et al. 6 have proposed models to explain the CdS role in the large AQE activity. In both models, the CdS layer forms a barrier that is modulated by blue light. In Agostinelli s model, the barrier is generated by a strong overcompensation of the CdS material that acts as a modulated barrier photodiode, since the CdS is between a n-type window layer and a hypothesized n-type CdTe sur-

4442 J. Appl. Phys., Vol. 95, No. 8, 15 April 2004 M. Gloeckler and J. R. Sites FIG. 6. Band diagram at 0.75 V forward bias in the dark and under illumination with a 400 nm probing beam. Beyond a certain threshold voltage 0.7 V the forward electron current flow is limited by the barrier located at the CdS CdTe interface. face layer. Koentges s model uses band offsets to generate the barrier in the conduction band, and Koentges et al. conclude that the band offset at the window-cds interface must be greater than 0.2 ev. Our results, however, show that the requirements of both these models are too restrictive and that the CdS AQE peak is a general consequence of CdS photoconductivity alone. Our device model is similar to device models used by Agostinelli et al. 12 and Nollet et al. 13 The work by Nollet et al. discusses the potential influence of interface states at the CdS/CdTe heterointerface on the AQE results, which are not further addressed here. B. CdS region back contact dependence At higher biases 0.8 ev, the forward current may become limited by the back barrier diode, which restricts hole flow into the CdTe. Under these conditions the forward current is independent of the CdS layer and therefore no longer affected by the blue probe beam illumination. Thus, at higher voltages the AQE decreases i.e., Figs. 4 and 5. Based on thermionic emission diffusion theory, 14 the backbarrier saturation current (J Sat ) in our model and most likely in all experimental CdTe solar cells is diffusion limited. It should be proportional to the electric field strength at the back E and the hole mobility ( h ) and should depend exponentially on the barrier height ( bc ) J Sat qn V h E exp q bc kt, 2 where q is the elementary charge and N V the effective density of states in the valence band. These dependences were evaluated using the numerical model. Calculated AQEs for 400 nm with varying back barrier height bc are shown in comparison with experimental data based on Fig. 4 in Ref. 4 in Fig. 7. If the back barrier is smaller, the calculated AQE response increases monotonically at higher voltages 0.8 V, as was observed by Agostinelli. 11 If the AQE(V) has a maximum in the CdS region for a specific voltage, this maximum is a measure of the back diode saturation current density. The saturation current is also related to the CdTe FIG. 7. AQE calculated at 400 nm with varying back barrier height bc in comparison with experimental data at 370 nm. carrier mobility, h in Eq. 2. Figure 8 shows the AQE calculations in the same voltage range as Fig. 5 with a decreased hole mobility of h 10 cm 2 /Vs Fig. 5: h 40 cm 2 /Vs). The response in the red and band gap region is unchanged whereas the negative maximum in the CdS AQE peak is reduced by approximately a factor of four, corresponding to the reduction in mobility. C. Red region AQE 700 nm versus voltage for a device with strong AQE activity is shown in Fig. 9 based on Fig. 4.3 in Ref. 11. For comparison, the results of the analytical model, Eq. 1, and the numerical model are shown. The qualitative agreement between experiment and analytical model is good. The numerical model had no series or external circuit resistance except for the bulk of the semiconductor material, and hence the decrease in its AQE occurs at higher voltage. As briefly mentioned in Sec. III, a more strongly compensated CdTe material, with shallow donor density comparable to deep accepter density, leads to a light dependent A-factor and FIG. 8. AQE as a function of voltage bias calculated with decreased CdTe hole mobility h 10 cm 2 /Vs. Calculations for Fig. 5 used h 40 cm 2 /Vs).

J. Appl. Phys., Vol. 95, No. 8, 15 April 2004 M. Gloeckler and J. R. Sites 4443 FIG. 9. AQE response in the red region: experimental data compared with the analytical model and numerical simulation. R S, and in qualitative agreement with the analytical model of Ref. 2, the numerical model shows slightly negative AQE at higher voltages. D. E g region The numerical model reproduces the small negative band gap peak Fig. 5, which is shown enlarged in the inset of Fig. 4. This small response is caused by deep absorption of photons that have energies near the band gap energy of CdTe and are thus absorbed in the secondary space charge region resulting from the contact barrier at the back of the device. The back diode is in reverse bias when the complete device is under forward bias, hence the back diode has an increased space charge region at higher voltage. Electronhole pairs generated towards the back contact intrinsically generate a current response opposite to the primary photocurrent, which appears experimentally as phase angles close to 180. Partial modeling of this effect was reported by Bätzner et al. 4 E. Large E g response Experimental AQE results reported by Koentges et al. 5 show large negative peaks in the CdS region and in the E g region comparable to or greater than unity in magnitude. Large negative E g peaks follow from a modulation of the back contact saturation current. Following a similar argument to the one proposed by Koentges et al., 5 we find that a compensation of the CdTe material at the back contact allows a modulation of the effective doping density and, hence, a modulation of the trapped space charge and the electric field strength. This leads, in agreement with Eq. 2, to a modulation of the saturation current. Results are shown in Fig. 10 calculated with a deep donor defect density equal to half the shallow acceptor density. With electron diffusion lengths comparable or larger than the device thickness, electrons generated at the front of the device drift to the back contact and modulate the back contact saturation current as well. Under these conditions, the large negative band gap peak can extend into the red region, giving a large negative response throughout the red wavelength range. Experimentally this was observed by FIG. 10. AQE with enhanced E g peak calculated in the dark under forward bias with increased compensation in the CdTe layer (N A 2 10 14 cm 3, N DG 10 14 cm 3 ; calculations for Fig. 5 used N DG 2 10 13 cm 3 ). Koentges et al. 5 in cells when the CdCl 2 activation process typically used for high quality cells was omitted. VI. EXPERIMENTAL COMPLICATIONS Most of the above effects result from trapping of lightgenerated holes into ionized deep acceptor states in the CdS layer. The size of the barrier reduction depicted in Fig. 6 depends on the trap density and the change in occupation probability of the deep levels. This probability varies with the hole density which strongly depends on the illumination flux density, and the cross section of the deep states. With very high illumination fluxes or large cross section ratios, the trap discharge saturates and all traps are emptied under illumination. A. Probing beam intensity With a large cross section ratio, h / e 1, the barrier reduction as shown in Fig. 6 is relatively independent of the probing beam intensity, and thus different probing intensities cause similar current changes. The AQE response, which is the ratio of current density to beam intensity, will thus be greatly enhanced at lower probe beam intensities. Figure 11 shows the calculated AQE response at 400 nm versus voltage for various probing intensities in comparison to experimental data based on Fig. 4 in Ref. 4. The default intensity for our modeling calculations of 10 15 cm 2 s 1 corresponds to a current of about 0.15 ma/cm 2 and is fairly typical of experimental measurements. With higher probe intensities, the CdS effect nearly disappears, and with smaller intensities, it is greatly enhanced. Hence, the magnitude of the CdS peak can only be interpreted properly when the probing intensity is known. Furthermore, experimental setups often vary significantly in flux density between 350 and 550 nm, and thus, experimental AQE results can be further distorted. The sloped CdS response at voltages above 0.6 V in Fig. 4, for example, are probably caused by a reduced flux density towards smaller wavelengths.

4444 J. Appl. Phys., Vol. 95, No. 8, 15 April 2004 M. Gloeckler and J. R. Sites FIG. 11. Calculated AQE at 400 nm with varying probing beam intensity filled symbols and experimental data open symbols at 370 nm. B. Chopping frequency The time constant for the recharging of the deep traps in the CdS is likely the order of 1 10 ms, based on the results of Hegedus et al. 3 which show that the AQE effects in the CdS region diminish considerably for frequencies approaching to 1000 Hz. AQE effects are the strongest at low frequencies, approaching dc conditions. In the CdS region, the typical current signal measured under forward bias is a superposition of the primary negative photocurrent and a positive forward current. Through the slow trap release, the positive forward current response is delayed and phases smaller than 180 are observed. The experimental phase should approach 180 as the chopping frequency approaches zero. VII. PHOTOCURRENT GAIN The photocurrent gain of a diode is defined as photoinduced current change at any voltage divided by the short circuit current density, J(0,G), which should be proportional to the light intensity G V,I J V,G J dark V J 0,G J J 0,G J G. For a solar cell, is expected to be close to unity and independent of G, but AQE effects can alter significantly. AQE and photocurrent gain measurements are closely related; both measure the current caused by illumination. The difference is the probing illumination: monochromatic light for AQE and broad spectral content, white light, for photocurrent gain measurements. AQE 1 measures the current change J due to a monochromatic probe beam of intensity G and 2 normalizes this current difference to the probe flux density, AQE J/G. Photocurrent gain 1 measures the current change J due to white light and 2 normalizes the current difference to the light intensity G, J/G. Photocurrent gains for CdTe cells that were not constant, but followed a power-law dependence on illumination intensity, were reported by Agostinelli et al. 6 The log log slope of the data in their Fig. 2 b, fitted in the linear region of high photocurrent gain, at low illumination intensity and voltages 3 FIG. 12. Calculated photocurrent gain. Negative is plotted with dashed lines, positive with solid lines. above 0.6 V, is found to be 0.98 0.05, very close to 1. However, this simply means that the current difference J(V,G) J dark (V) is constant, independent of G. Hence, no real modulation is occurring: the device changes between a light on and a light off state independent of the light intensity. With minor adjustment to the model discussed in Sec. III, the power-law dependent photocurrent gain Fig. 12, very similar to that experimentally observed, 6 was seen. is constant and positive at low voltages. At higher voltages, is negative over a progressively larger intensity range and becomes inversely proportional to the illumination intensity. The changes to the model parameters in Table I were 1 addition of recombination centers in the bulk CdTe to lower V oc, 2 decreased back barrier of 0.4 ev, and 3 reduced electron capture cross section of 10 20 cm 2. The very small electron cross section is unusual. However, cross sections as small as 3 10 19 cm 2 have been measured for defects in CdTe layers. 15 Also, CdS containing solar cells are often reported with long time transients on the order of hours to days. 5,16 Such long time constants are highly suggestive of capture cross sections significantly below the 10 20 cm 2 used. Although the modulated barrier photodiode model, proposed by Agostinelli et al., 6,11 does reproduce all observed AQE, J V, and photocurrent gain effects, the observed power-law dependence of 1 is more general than that model. VIII. DISCUSSION Several groups have recently studied CdTe solar cells using apparent quantum efficiency analysis. 3 6 We have discussed their experimental results, have explained all observed effects, in some cases by extension of the original explanation, and have confirmed our explanations with numerical simulations. Our proposed model, similar to models used by others for CdTe solar cells, 12,13 has the advantage of requiring only one basic assumption: a compensated photoconductive CdS layer that is depleted in the dark. We also

J. Appl. Phys., Vol. 95, No. 8, 15 April 2004 M. Gloeckler and J. R. Sites 4445 showed that the power-law behavior of the photocurrent gain, with slope 1, is not unique to the modulated barrier photodiode structure proposed recently. 6,17,18 Although AQE analysis requires some effort, there are several potential applications: 1 determination of front and back-contact barrier heights on a qualitative and quantitative level. This is possible since the voltage at which the AQE peaks in the CdS region e.g., Fig. 7 is determined by the relative sizes of the front and back barriers. The absence of a peak uniform decrease indicates a small back barrier, while the maximum size of the CdS peak with known probe intensity is a direct measure of the saturation current of the back diode. 2 Determination of CdS and CdTe defects. On a qualitative level, the compensation levels, or at least the presence of compensation, can be ascertained from the AQE behavior. A more detailed study in terms of densities and cross sections has not yet been undertaken. However, the model presented here indicates that repeated measurements of the AQE effects with varying probe beam intensity and chopping frequency allows one to evaluate these parameters. 3 Development of a realistic device model. This has been achieved on a general level. Process or material variations lead to variations in AQE features, and hence require adjustments in the device-model parameters for individual solar cells. ACKNOWLEDGMENTS The modeling calculation for this work used the AMPS software developed at Pennsylvania State University by S. Fonash et al. supported by the Electric Power Research Institute and the SCAPS 19 software developed at the University of Gent. This research was supported by the U.S. National Renewable Energy Laboratory. 1 J. E. Phillips and M. Roy, in Proceedings of the 20th IEEE Photovoltaic Specialist Conference IEEE, Las Vegas, NV, 1988 p. 1614. 2 J. R. Sites, H. Tavakolian, and R. A. Sasala, Sol. Cells 29, 39 1990. 3 S. Hegedus, D. Ryan, K. Dobson, B. McCandless, and D. Desai, Mater. Res. Soc. Symp. Proc. 763, B9.5 2003. 4 D. L. Bätzner, Guido Agostinelli, A. Romeo, H. Zogg, and A. N. Tiwari, Mater. Res. Soc. Symp. Proc. 668, H5.17 2001. 5 Marc Koentges, Rolf Reineke-Koch, Peter Nollet, Jutta Beier, Raymund Schäffler, and Jürgen Parisi, Thin Solid Films 403 404, 280 2002. 6 G. Agostinelli, D. L. Bätzner, and M. Burgelman, Thin Solid Films 431 432, 407 2003. 7 Jingya Hou and Stephen J. Fonash, Proceedings of the 25th IEEE Photovoltaic Specialist Conference IEEE, Washington, D.C, 1996, p.961. 8 W. Shockley and W. T. Read, Jr., Phys. Rev. 87, 835 1952. 9 M. Gloeckler, A. L. Fahrenbruch, and J. R. Sites, Proceedings of the 30th IEEE Photovoltaic Specialist Conference IEEE, Osaka, Japan, 2003. 10 K. Emery, in Handbook of Photovoltaic Science and Engineering, A. Luque and S. Hegedus Wiley, Chichester, 2003, p.702 Based on R. Bird, R. Hulstrom, and C. Riordan, Sol. Cells 14, 193 1985. 11 Guido Agostinelli, Ph.D. Thesis, University of Gent, 2001 2002, pp. 78 80. 12 G. Agostinelli, E. D. Dunlop, D. L. Bätzner, A. N. Tiwari, P. Nollet, M. Burgelman, and M. Köntges, Proceedings of the 30th IEEE Photovoltaic Specialist Conference IEEE, Osaka, Japan, 2003. 13 Peter Nollet, Marc Köntges, M. Burgelman, S. Degrave, and Rolf Reineke-Koch, Thin Solid Films 431 432, 414 2003. 14 S. M. Sze, Physics of Semiconductor Devices, 2nd ed. Wiley, New York, 1981, p.259. 15 V. Komin, B. Tetali, V. Viswanathan, S. Yu, D. L. Morel, and C. S. Ferekides, Thin Solid Films 431 432, 143 2003. 16 I. L. Eisgruber, J. E. Granata, J. R. Sites, J. Hou, and J. Kessler, Sol. Energy Mater. Sol. Cells 53, 367 1998. 17 G. Agostinelli, D. L. Bätzner, and M. Burgelman, Proceedings of the 29th IEEE Photovoltaic Specialist Conference IEEE, New Orleans, LA, 2002. 18 D. L. Bätzner, G. Agostinelli, M. Campo, A. Romeo, J. Beier, H. Zogg, and A. N. Tiwari, Thin Solid Films 431 432, 421 2003. 19 M. Burgelman, P. Nollet, and S. Degrave, Thin Solid Films 361 362, 527 2000.