Introduction The MPLs Hopf algebra Application to Feynman integrals. Federico Granata. Ph.D. XXIX cicle 16/09/2014 Tutor: Carlo Oleari

Similar documents
HyperInt - exact integration with hyperlogarithms

Symbolic integration of multiple polylogarithms

Combinatorial Hopf algebras in particle physics I

Hopf algebra structures in particle physics

arxiv: v2 [hep-th] 1 Feb 2018

Transcendental Numbers and Hopf Algebras

Multiple polylogarithms and Feynman integrals

Linear reducibility of Feynman integrals

AN EXACT SEQUENCE FOR THE BROADHURST-KREIMER CONJECTURE

Federico Granata. Seminar based on ICTP summer school on particle physics June 2015, Trieste. Ph.D. XXIX cicle 17/11/2015 Tutor: Carlo Oleari

Periods, Galois theory and particle physics

Combinatorial Dyson-Schwinger equations and systems I Feynma. Feynman graphs, rooted trees and combinatorial Dyson-Schwinger equations

Multiple polylogarithms and Feynman integrals

Structural Aspects of Numerical Loop Calculus

Feynman integrals and multiple polylogarithms. Stefan Weinzierl

Hopf Algebras. Zajj Daugherty. March 6, 2012

CGP DERIVED SEMINAR GABRIEL C. DRUMMOND-COLE

Lecture III. Five Lie Algebras

AMS 209, Fall 2015 Final Project Type A Numerical Linear Algebra: Gaussian Elimination with Pivoting for Solving Linear Systems

Feynman Integrals, Polylogarithms and Symbols

Motivic Periods, Coleman Functions, and the Unit Equation

7 Veltman-Passarino Reduction

Kathryn Hess. International Conference on K-theory and Homotopy Theory Santiago de Compostela, 17 September 2008

The Hopf monoid of generalized permutahedra. SIAM Discrete Mathematics Meeting Austin, TX, June 2010

Sheet 11. PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 2014/2015. Algebra and Number Theory Mathematics department

Master integrals without subdivergences

arxiv:hep-ph/ v1 4 May 1999

1 Canonical quantization conformal gauge

Ringel-Hall Algebras II

Feynman Integrals, Regulators and Elliptic Polylogarithms

Working with equations for speed and velocity

MaPhy-AvH/ FEYNMAN INTEGRALS AND ITERATED INTEGRALS ON MODULI SPACES OF CURVES OF GENUS ZERO. 1. Introduction. ta i

Yangian Symmetry of N=4 SYM

Quantum Groups. Jesse Frohlich. September 18, 2018

The first two give solutions x = 0 (multiplicity 2), and x = 3. The third requires the quadratic formula:

Polynomial Hopf algebras in Algebra & Topology

arxiv:hep-th/ v1 2 Jul 1998

COLOR LIE RINGS AND PBW DEFORMATIONS OF SKEW GROUP ALGEBRAS

A polynomial realization of the Hopf algebra of uniform block permutations.

Schematic Project of PhD Thesis: Two-Loop QCD Corrections with the Differential Equations Method

Towards One-Loop MHV Techniques

Quantum Groups and Link Invariants

2017 AP Calculus AB Summer Assignment

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Spring Semester 2015

Math-2 Lesson 2-4. Radicals

Differential Equations for Feynman Integrals

E ring spectra and Hopf invariant one elements

Sector Decomposition

Primes, partitions and permutations. Paul-Olivier Dehaye ETH Zürich, October 31 st

Section 1.2 A Catalog of Essential Functions

Erratum to: A Proof of Tsygan s Formality Conjecture for an Arbitrary Smooth Manifold

Numerical Evaluation of Multi-loop Integrals

Vector spaces, duals and endomorphisms

Advanced Quantum Mechanics

Note that a unit is unique: 1 = 11 = 1. Examples: Nonnegative integers under addition; all integers under multiplication.

Rising 7th Grade Math. Pre-Algebra Summer Review Packet

REDUCTION OF FEYNMAN GRAPH AMPLITUDES TO A MINIMAL SET OF BASIC INTEGRALS

Polylogarithms and Double Scissors Congruence Groups

Linear polynomial reduction for Feynman integrals

Holography for 3D Einstein gravity. with a conformal scalar field

Name: Class: Date: individually OFFICIAL USE ONLY Total Grade

Addition of Angular Momenta

Fun with Dyer-Lashof operations

Combinatorics of Feynman diagrams and algebraic lattice structure in QFT

Notes on p-divisible Groups

Renormalization and Euler-Maclaurin Formula on Cones

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Common Core Coach. Mathematics. First Edition

Descents, Peaks, and Shuffles of Permutations and Noncommutative Symmetric Functions

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E

= η a ψγ 0 σ µν P ψp = η a ψγ 0 σ µν η a γ 0 ψ = i 2 ψγ 0 [γ µ, γ ν ] γ 0 ψ

arxiv: v1 [math.nt] 11 Mar 2017

Towards a modular functor from quantum higher Teichmüller theory

Local Moufang sets. Erik Rijcken. Promotor: Prof. Dr. Tom De Medts. Faculteit Wetenschappen Universiteit Gent 14 juni 2017

Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria.

2 I like to call M the overlapping shue algebra in analogy with the well known shue algebra which is obtained as follows. Let U = ZhU ; U 2 ; : : :i b

MPL - a program for computations with iterated integrals on moduli spaces of curves of genus zero

Systems of differential equations for Feynman Integrals; Schouten identities and canonical bases.

Erratum to: A Proof of Tsygan s Formality Conjecture for an Arbitrary Smooth Manifold

1 Lesson 13: Methods of Integration

Solutions of exercise sheet 11

Radicals: To simplify means that 1) no radicand has a perfect square factor and 2) there is no radical in the denominator (rationalize).

A Basic Introduction to Hopf Algebras

Scalar One-Loop Integrals using the Negative-Dimension Approach

1 Recall. Algebraic Groups Seminar Andrei Frimu Talk 4: Cartier Duality

Kontsevich integral in topological models of gravity

arxiv: v3 [hep-th] 10 Oct 2012

Basic hydrodynamics. David Gurarie. 1 Newtonian fluids: Euler and Navier-Stokes equations

There are two main properties that we use when solving linear equations. Property #1: Additive Property of Equality

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

LAMB SHIFT & VACUUM POLARIZATION CORRECTIONS TO THE ENERGY LEVELS OF HYDROGEN ATOM

Geometry A & Geometry B & Honors Geometry Summer Packet

Matrix Operations. Linear Combination Vector Algebra Angle Between Vectors Projections and Reflections Equality of matrices, Augmented Matrix

Chapter 13. Local Symmetry

On the renormalization problem of multiple zeta values

Chiral Anomaly. Kathryn Polejaeva. Seminar on Theoretical Particle Physics. Springterm 2006 Bonn University

Finite Temperature Field Theory

From Tensor Integral to IBP

Automatic calculations of Feynman integrals in the Euclidean region

Chapter 2 Practice Test

Transcription:

Federico Granata Ph.D. XXIX cicle 16/09/2014 Tutor: Carlo Oleari Seminar based on NNLO ante portas summer school 18-25 June 2014, Debrecen Hungary)

Polylogarithms The analytic computation of Feynman scalar integrals requires the introduction of special functions One-loop integrals: Polylogarithms Li nz) = k=0 z k z k = n 0 dt t Li n 1t) = Li 1z) = log1 z) Li 2z) = z 0 log1 t) dt t Li n1) = ζ n : ζ 2 = π 2 /6 Multi-loop integrals: Multiple polylogarithms MPLs) Ga 1,..., a n; z) = z with G ; z) = 1; n weight 0 dt t a 1 Ga 2,..., a n; t) = G 0 n; z) = 1 n! logn z G a n; z) = 1 n! logn 1 z ) a ) z G 0 n 1, a; z) = Li n a

Polylogarithms Expressions involving multiple) polylogarithms can be simplified by means of functional equations: Li 2 z)+ Li 2 z) = 1 2 Li 2z 2 ) Li 2 z) Li 2 1 z) + 1 2 Li 21 z 2 ) = π2 log z log1 + z) 12 ) 1 Li 2 = Li 2 z) 12 z log2 z + iπ log z + π2 3 These equations are in general unknown, but they can be circumvented = HOPF ALGEBRA

Algebras and tensor products Algebra over field K K-vector space A with map m : A A A a, b) ma, b) a b With unit element: ɛ a = a ɛ = a Associative: a b c) = a b) c Distributive: a b + c) = a b + a c = m is bilinear Associative with respect to scalars: a kb) = ka b), k K Tensor product U, V, W vector spaces, define T U V :! T, τ : U V T bilinear β : U V W bilinear! µ linear such that β = µτ, that is, βa, b) = µa b)

Algebras and tensor products m bilinear A A A: same role as β! µ: A A A a b = ma, b) = µa b) Associativity: µid µ) = µµ id) µid µ)a b c) = µa µb c)) = µa b c)) = a b c) µµ id)a b c) = µµa b) c) = µa b) c) = a b) c Graded algebra Direct sum as a vector space: A = A n, A 0 = K n=0 such that A m A n A m+n

Coalgebras and Hopf algebras Coalgebra: dual of an algebra C A µ : C C C breaks into pieces Associativity: id ) = id) a a Hopf algebra H algebra + coalgebra: vector space with multiplication µ and comultiplication in general µ ) Multiplication and comultiplication are compatible with each other: a b) = a) b) a 1 a 2) b 1 b 2) = a 1 b 1) a 2 b 2) If H = H n, the coproduct acts as H n n=0 p+q=n H p H q

The multiple polylogarithms Hopf algebra The MPLs can be rewritten in another way: introducing an+1 dt Ia 0 ; a 1,..., a n ; a n+1 ) = Ia 0 ; a 1,..., a n 1 ; t) t a n a 0 we obtain Ga n,..., a 1 ; a n+1 ) = I0; a 1,..., a n ; a n+1 ) MPLs form a Hopf algebra Scalars: rational numbers Multiplication: shuffle product Ga; z)gb; z) = Ga, b; z) + Gb, a; z) Ga, b; z)gc; z) = Ga, b, c; z) + Ga, c, b; z) + Gc, a, b; z) The weight is preserved: algebra graded by the weight Coproduct: Ia 0 ; a 1,..., a n ; a n+1 )) = Ia 0 ; a i1,..., a ik ; a n+1 ) k Ia ip ; a ip+1,..., a ip+1 1; a ip+1 ) p=0 0=i 1<...<i k+1 =n

The multiple polylogarithms Hopf algebra Example Ga, b; z)) = 1 Ga, b; z) + Ga, b; z) 1 +Gb; z) [Ga; z) Ga; b)] + Ga; z) Gb; a) The coproduct preserves the weight = H is a graded Hopf algebra Particular cases log z) = 1 log z + log z 1 weight 1, no further decomposition) log x log y) = 1 log x log y +log x log y 1+log x log y +log y log x n ) n log n z) = log k z log n k z k k=0 n 1 Li n z)) = 1 Li n z)+ Li n z) 1 + Li n k z) logk z k! k=1

The π and ζ n problem Let s define a): a) 1 a + a 1 + a) ζ n ) = Li n 1)) = 1 ζ n + ζ n 1 ζ n ) = 0 ζ 4 = 2 5 ζ2 2 ζ 4 ) = 1 ζ 4 + ζ 4 1 ζ 4 ) = 2 5 ζ2 2) = 2 [ 1 ζ 2 5 2 + ζ2 2 ] 1 + 2ζ 2 ζ 2 Solution proposal) Work modulo π : the Hopf algebra is H = H/iπ = H = Q[iπ] H In this way : H H H : iπ) = iπ 1 ζ n ) = ζ n 1 ζ 4 ) = 2 5 ζ2 2) = 2 5 ζ 2 1) 2 = 2 5 ζ2 2 1) = ζ 4 1 We lose terms proportional to π 2n in...

Practical examples Strategy Two functions with the same are equal apart from terms in π 2n : Compute up to logarithms Use functional equations among logarithms much easier) and simplify the expression Find a function with the same Fix the missing terms by comparing the results at some points Example 1: Li 2 z)+ Li 2 1 z) Li 2 z)+ Li 2 1 z)) = log1 z) log z log z log1 z) = log z log1 z)) = Li 2 z)+ Li 2 1 z) = log z log1 z) + c z = 0: Li 2 1) = c = π 2 /6

Practical examples Drop the log symbol Fix log x) = log x + iπ Example 2: Li 2 1 z)+ Li 2 1 1/z) Li 2 1 z)+ Li 2 1 1/z)) = z) 1 z) 1/z 1 1/z) 1 z = z 1 z) + z = z z z iπ = 1 z 2 log 2 z) = Li 2 1 z)+ Li 2 1 1 ) = 1 z 2 log2 z + c = z = 1: c = 0 Example 3: Li 2 1/z), 0 < z < 1 ) 1 z Li 2 1/z)) = Li 1 1/z) 1/z = 1 1/z) z = z z = 1 z) z z z iπ z = Li 2 z) 1 ) 2 log2 z iπ log z ) 1 = Li 2 = Li 2 z) 1 z 2 log2 z iπ log z + c = z = 1: c = π 2 /3

The three-mass triangle integral p 2 1 C 0 = d D k 2π) D 1 k 2 k + p 1 ) 2 k p 2 ) 2 pi 2 > 0, u = p2 1 p3 2, v = p2 2 p3 2 p 2 2 p 2 3 The integral is finite = D = 4 α-parameter representation 1 D ν1 1 Dν2 2 Dν3 3 = 0 α ν1 1 1 α ν2 1 2 α ν3 1 3 dα 1 dα 2 dα 3 Γν 1 )Γν 2 )Γν 3 ) δ 1 ) Γν1 + ν 2 + ν 3 ) α i α i D i ) ν1+ν2+ν3 After integrating over d 4 k and using the δ function: C 0 = i 1 dα 2 dα 3 4π) 2 p3 2 0 1 + α 2 + α 3 )α 2 α 3 + α 2 u + α 3 v) i 1 4π) 2 p3 2 I

The three-mass triangle integral I = I = 0 0 I = 1 z z dα 3 log1 + α 3 ) log v + logu + α 3 ) log α 3 α 2 3 + 1 + u v)α 3 + u G 1; α 3 ) + logu/v) + G u; α 3 ) G0; α 3 ) dα 3 α 3 + z)α 3 + z) [ G z, u; α 3 ) logu/v)g z; α 3 ) ] G z, 1; α 3 ) + G z, 0; α 3 ) z z) α 3 a u = z z v = 1 z)1 z) Iα 3 ): use inversion relations to bring G... ; α 3 ) in G ) 1... ; 1 α 3

Inversion relations for the MPLs Reminder Ga, b; z)) = Gb; z) [Ga; z) Ga; b)] + Ga; z) Gb; a) G 0 n ; z) = 1 n! logn z G a n ; z) = 1 n! logn 1 z ) a G 1 )) ) [ z, 0; 1 1 = G 0; G 1 ) α 3 α 3 z ; 1 G 1z )] α ; 0 3 G 1 )) z, 0; 1 = + G 1 ) α 3 z ; 1 G 0; 1 ) α 3 z G 1 )) z, 0; 1 = 1 ) ) 1 + zα3 + 1 + zα3 1 ) α 3 α 3 z G 1 )) z, 0; 1 = α 3 z + α 3 ) + α 3 α 3 z + α 3 ) z + α 3 z α 3

Inversion relations for the MPLs G z, 0; α 3 )) = G 0; α 3 ) [G z; α 3 ) G z; 0)]+G z; α 3 ) G 0; z) G z, 0; α 3 )) = α 3 1 + α ) 3 + 1 + α ) 3 z) z z G z, 0; α 3 )) = α 3 z+α 3 ) α 3 z+z+α 3 ) z z z+α 3 α 3 α 3 α 3 G z, 0; α 3 )) = G 1 )) z, 0; 1 1 α 3 2 log 2 z ) + 1 2 log 2 ) α 3 G z, 0; α 3 ) = G 1 ) z, 0; 1 1 α 3 2 log2 z + 1 2 log2 α 3 + c The terms independent of z cancel when subtracting G z, 0; α 3 ) G 1 ) z, 0; 1 vanishes when taking the limit α 3 α 3

The three-mass triangle integral I = 1 [ z z log u Gu; z) + Gu, 0; z) + log u v log z 1 2 log2 z ] I = 1 z z [+ Li 2z) + log1 z) log z z z) Applying again the procedure of calculating the result can be simplified: Analytical result I = 2 [ Li 2 z) Li 2 z) logz z) log 1 z ] z z 1 z

Conclusions Results Method for computing and simplifying analytical results of Feynman integrals based on an algebraic approach The Hopf algebra of MPLs allows to simplify results involving polylogarithms without knowing all the functional relations among them Can be used to complete the analytic computation of HVj virtual corrections in my research activity This procedure is more powerful beyond one-loop order H + 3g @ 2-loop: from more than 7 pages to 10 lines)