RÜDIGER VERFÜRTH A note on polynomial approximation in Sobolev spaces

Similar documents
COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

Séminaire Équations aux dérivées partielles École Polytechnique

Séminaire Équations aux dérivées partielles École Polytechnique

RAIRO ANALYSE NUMÉRIQUE

RAIRO MODÉLISATION MATHÉMATIQUE

ANNALES DE LA FACULTÉ DES SCIENCES DE TOULOUSE

COMPOSITIO MATHEMATICA

Séminaire de Théorie spectrale et géométrie

REVUE FRANÇAISE D INFORMATIQUE ET DE

RAIRO MODÉLISATION MATHÉMATIQUE

ANNALES DE L INSTITUT FOURIER

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

Séminaire d analyse fonctionnelle École Polytechnique

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

Séminaire Équations aux dérivées partielles École Polytechnique

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION C

COMPOSITIO MATHEMATICA

COMPOSITIO MATHEMATICA

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

ANNALES DE L I. H. P., SECTION A

ANNALES DE L I. H. P., SECTION A

ANNALES DE L I. H. P., SECTION B

ANNALES DE L I. H. P., SECTION C

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and Banach spaces

ANNALES DE L I. H. P., SECTION A

A note on the generic solvability of the Navier-Stokes equations

ANNALES DE L I. H. P., SECTION B

COMPOSITIO MATHEMATICA

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

RICHARD HAYDON Three Examples in the Theory of Spaces of Continuous Functions

COMPOSITIO MATHEMATICA

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Sheaves and Cauchy-complete categories

INFORMATIQUE THÉORIQUE ET APPLICATIONS

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

RAIRO MODÉLISATION MATHÉMATIQUE

COMPOSITIO MATHEMATICA

ANNALES DE L I. H. P., SECTION C

ANNALES MATHÉMATIQUES BLAISE PASCAL

Groupe de travail d analyse ultramétrique

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

Rendiconti del Seminario Matematico della Università di Padova, tome 92 (1994), p

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

RAIRO INFORMATIQUE THÉORIQUE

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

Local Lyapunov exponents and a local estimate of Hausdorff dimension

J. H. BRAMBLE V. THOMÉE

Rendiconti del Seminario Matematico della Università di Padova, tome 58 (1977), p

INFORMATIQUE THÉORIQUE ET APPLICATIONS

COMPOSITIO MATHEMATICA

On the existence of solutions of the Darboux problem for the hyperbolic partial differential equations in Banach spaces

Groupe de travail d analyse ultramétrique

H. DJELLOUT A. GUILLIN

ANNALES DE L I. H. P., SECTION C

ANNALES DE L I. H. P., SECTION A

ANNALES DE L I. H. P., SECTION A

Error estimates for some quasi-interpolation operators

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. A note on the generalized reflexion of Guitart and Lair

ANNALES DE L I. H. P., SECTION B

ANNALES DE L I. H. P., SECTION A

COMPOSITIO MATHEMATICA

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

REVUE FRANÇAISE D INFORMATIQUE ET DE

Rendiconti del Seminario Matematico della Università di Padova, tome 88 (1992), p

Approximation by finite element functions using local regularization

COMPOSITIO MATHEMATICA

RAIRO. INFORMATIQUE THÉORIQUE

COMPOSITIO MATHEMATICA

INFORMATIQUE THÉORIQUE ET APPLICATIONS

COMPOSITIO MATHEMATICA

JUAN ENRIQUE SANTOS ERNESTO JORGE OREÑA

REVUE FRANÇAISE D INFORMATIQUE ET DE

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

JOURNAL DE THÉORIE DES NOMBRES DE BORDEAUX

JOURNÉES ÉQUATIONS AUX DÉRIVÉES PARTIELLES

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

COMPOSITIO MATHEMATICA

TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES. Closed categories and topological vector spaces

COMPOSITIO MATHEMATICA

RAIRO. RECHERCHE OPÉRATIONNELLE

RAIRO MODÉLISATION MATHÉMATIQUE

ANNALES DE L I. H. P., SECTION C

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

ANNALES. FLORENT BALACHEFF, ERAN MAKOVER, HUGO PARLIER Systole growth for finite area hyperbolic surfaces

The center of the convolution algebra C u (G) Rendiconti del Seminario Matematico della Università di Padova, tome 52 (1974), p.

ANNALES DE L I. H. P., SECTION C

Séminaire Brelot-Choquet-Deny. Théorie du potentiel

ANNALES DE L I. H. P., SECTION C

ANNALES DE L I. H. P., SECTION A

Série Mathématiques. MIRCEA SOFONEA Quasistatic processes for elastic-viscoplastic materials with internal state variables

cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques

ANNALES DE L I. H. P., SECTION B

RAIRO MODÉLISATION MATHÉMATIQUE

A maximum principle for optimally controlled systems of conservation laws

SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze

ANNALES DE L INSTITUT FOURIER

ANNALES DE L I. H. P., SECTION C

Transcription:

ESAIM: MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE RÜDIGER VERFÜRTH A note on polynomial approximation in Sobolev spaces ESAIM: Modélisation mathématique et analyse numérique, tome 33, n o 4 (1999), p. 715-719 <http://www.numdam.org/item?id=m2an_1999 33_4_715_0> SMAI, EDP Sciences, 1999, tous droits réservés. L accès aux archives de la revue «ESAIM: Modélisation mathématique et analyse numérique» (http://www.esaim-m2an.org/) implique l accord avec les conditions générales d utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Mathematical Modelling and Numerical Analysis M2AN, Vol. 33, N 4, 1999, p. 715-719 Modélisation Mathématique et Analyse Numérique A NOTE ON POLYNOMIAL APPROXIMATION IN SOBOLEV SPACES RÜDIGER VERFÜRTH 1 Abstract. For domains which are star-shaped w.r.t. at least one point, we give new bounds on the constants in Jackson-inequalities in Sobolev spaces. For convex domains, these bounds do not depend on the eccentricity. For non-convex domains with a re-entrant corner, the bounds are uniform w.r.t. the exterior angle. The main tool is a new projection operator onto the space of polynomials..résumé. Pour des domaines étoiles on donne de nouvelles bornes sur les constantes dans les inégalités de Jackson pour les espaces de Sobolev. Pour des domaines convexes, les bornes ne dépendent pas de l'excentricité. Pour des domaines non-convexes ayant un point rentrant, les bornes sont uniformes par rapport à Pangle extérieur. L'outil central est un nouvel opérateur de projection sur l'espace des polynômes. > AMS Subject Classification. 41A17, 41A10, 65N15, 65N30. Received: October 29, 1997. Revised: August 28, 1998. 1. INTRODUCTION AND MAIN RESULTS In this note we dérive new upper bounds on the constant Cmj in the Jackson-type inequality sup inf frlw) < Cm jdr+x-i v o < j < m. \U\ Hère, Q, is a bounded open domain in M n, n > 2, with diameter d. H k (Çl), A; N, and L 2 (ft) := H (Q) dénote the usual Sobolev- and Lebesgue-spaces eqùipped with the standard norms '. #*( }) and semi-norms F m is the space of ail polynomials in n variables of degree at most m. The interest in sharp explicit bounds on the constants c m j originates from the a posteriori error analysis of finite element discretizations of partial differential équations. The correct calibration of many popular a posteriori error estimators dépends, among others, on sharp explicit error estimâtes for suitable Clément-type interpolation operators. These estimâtes in turn employ the constants Cmj (c/.? e.g^ [1, 4]). Specifically, we consider two types of domains: (1) convex domains and (2) non-convex domains which are star-shaped w.r.t. at least one interior point. If Q, is convex, we obtain the bound f ^? 3 J çrm+inws Keywords and phrases. Jackson inequalities, polynomial approximation, Sobolev spaces. (M) 1 Fakultât fur Mathematik, Ruhr-Universitàt Bochum, 44780 Bochum, Germany. e-mail: rvqsilly.numl.ruhr-uni-bochmn.de EDP Sciences, SMAI 1999

716 R. VERFÜRTH (As usual, \x] dénotes the largest integer less than or equal to x.) If ü is not convex, but star-shaped w.r.t. the point x E üj we obtain the bound Here, the number K is given by (m+l-j)/2,. _ jv 1/2,, _ - V) l/2 ( n+ J K : max t/ xu / min y yedn yedn (. 2 dénotes the Euclidean norm in W 1 ) and the functions Ki, K2, and K% are defined by -, ^ n 2 o 2 X ) (^II» (1.2) U n tv { lnz - - +-2^ 2, ifn = 2, 1 1, 2 n,/- 2 - + M ifn>3. n(n - 2) n - 2 n The main tooi in establishing these bounds is a new projection operator of H m (Q) onto P m which is defined in Section 2. In Sections 3 and 4 we will prove estimâtes (1.1) and (1.2), respectively. In Section 5 we will shortly comment on the generalization to Z/ g -norms. The best estimâtes of c m j, which are known to us, are due to Duran [2]. When comparing his results with ours we observe two major différences. First, if ft is convex, the bound of [2] is proportional to cf 1 / 2^!" 1 / 2, where \ft\ is the n-dimensional Lebesguemeasure of ft. Thus, it is not uniformly bounded w.r.t. to the eccentricity d 71^" 1, whereas our bound does not depend on this parameter. Second, if ft has a re-entrant corner, the bound of [2] tends to innnity when the exterior angle at the corner approaches zero. Our bounds, on the contrary, are uniform w.r.t. the exterior angle. To see this, we may assume that ft is the intersection of the unit bail with the complement of a cone with base at the origin and angle a G (0, TT) having the positive rci-axis as its axis of symmetry. An elementary geometrical argument than shows that ft is star-shaped w.r.t. (-1/2, 0,..., 0) and that K = (l/2){5 + 4cos(o;/2)} 1 / 2 / (1/2) <3 for all a e (O,TT). 2. A PROJECTION OPERATOR For any integer m and any measurable subset B of ft with positive Lebesgue-measure' i? we want to define a projection operator P m,b of H 171^) onto P m which has the following properties l JBB for all u E H m (Q), all 0 < j < m, and all j3 G N n with /? ':= /?i +...+0 n =, (2.1) - P m, B u) = 0 (2.2) j. To this end we dénote by : \B\J B

A NOTE ON POLYNOMIAL APPROXIMATION IN SOBOLEV SPACES 717 the mean value of any integrable function ip on B. For any u E ij m (f2) we recursively define polynomials PmM u )>...,po tb (u) in F m by J>m,B(«):= Yl }^^B{D a u) (2.3) and, for fe = m, m 1,..., 1, \a\ = m o: N n a = fc-l ^u-pfc,b(u))]. (2.4) We set Obviously, Pm,B is a linear operator of H m (ü) onto P m. In order to see that it satisfies relations (2.1, 2.2) we first consider the case j = 0. Relation (2.1) then is a trivial identity and relation (2.2) immediately follows from équation (2.4) for k = 1. Next, assume that m > 1 and fix an arbitrary j with 1 < j < m and an arbitrary f3 e N with \P\ = j. Differentiating équation (2.3) we conclude that 1 7 7! \-r\=m-j Differentiating équation (2.4) we recursively obtain for k = m, m 1,..., j + 1 This proves that = Pk-j-l,B(D l3 u). and thus establishes relation (2.1). Relation (2.2) immediately follows from relation (2.1) and équation (2.4) for k = 1 with u replaced by D@u. 3. CONVEX DOMAINS Assume that Q is convex. Payne and Weinberger [3] proved that holds for ail (p G H 1 (Cl) having zero mean value. \ \ Q ) (3.1)

718 R. VERFÜRTH Now, consider an arbitrary u G H m + l (Q). Applying inequality (3.1) to tp := u-pm t nu and using relation (2.2) with (3 = 0 yields that Applying this estimate recursively to the derivatives of u P m,n^ and using relations (2.1, 2.2) we arrive at ^ P e N n, \0\ = m + A simple symmetry argument shows that and thus complètes the proof of estimate (1.1) for the case j = 0. The case 1 < j ; < m follows from the case j = 0, relation (2.1), and the observation that 4. NON-CONVEX, STAR-SHAPED DOMAINS Assume that Cl is star-shaped w.r.t. the point x Q and not necessarily convex. Since the Lebesgue-integral is translation invariant we may from now on assume that x is the origin. Set R p := min \y\ 2, R := max t/ 2, K := - yeöfi yeön p and dénote by ^ the bail with radius p and centre at the origin. Lemma 4.1 in [4] and its proof imply that IMIi'(n) < K,(K)K 2 y\\l HB) + K 2 {K)R 2 \^\ 2 H1{B) + K 3 ( K )R 2 \<p\ 2 HHnXB) (4.1) holdsfor all (p e 1

A NOTE ON POLYNOMIAL APPROXIMATION IN SOBOLEV SPACES 719 Inserting tp := u Pm.BU in estimate (4.1) and invoking relation (2.2) for j3 = 0 and estimate (3.1) with Çl replaced by?, we conclude that KS(K)R 2 \U-P^ Applying this estimate recursively to the derivatives of u Pm,BU and recalling that R < d we arrive at i rn-\-l.. \\D il...i m+1 u\\l Hn) This proves estimate (1.2) in the case j = 0. The case 1 < j < ra again follows from the case j = 0 and relation (2.2). 5. JACKSON-INEQUALITIES IN W hq With obvious modifications of the fonctions i^i, K 2, and K%, the arguments of Sections 3 and 4 immediately carry over to gênerai L 9 -spaces with 1 < q < oo. The crucial ingrediënt is an explicit knowledge of a Poincaréconstant c q such that holds for all open convex subsets u of lr n and all functions <p E W 1^^) having zero mean value on cj. (Note that the diameter is always computed using the Euclidean norm and that the natural semi-norm is 1^1^1,4 = {^ II^^IIL^} 1^9 with the obvious modification for q = oo.) From inequality (3.1) we know that c 2 < 1/TT. (This estimate is optimal, cf. [3].) Intégration along lines, on the other hand, yields CQO < n 1 / 2. (This estimate may not be optimal. The example Q = ( 1, l) 71, <p( x ) = Y2 x i-> however, shows that it differs from the optimal estimate by a factor 2 at most.) Interpolating between L 2 and L we conclude that C q ^ 7T '^Tl ' '^ V 2 < Ç f^ OO. For the range l<g<2a similar estimate is not known to us. REFERENCES [1] C. Carstensen and St. A. Funken, Constants.in Clément-interpolation error and residual based a posteriori error estimâtes in finite element methods. Report 97-11, Universitàt Kiel, Germany (1997). [2] R,G. Durân, On polynomial approximation in Sobolev spaces. SIAM J. Numer. Anal 20 (1983) 985=988. [3] L.E. Payne and H.F. Weinberger, An optimal Poincaré-inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286-292. [4] R. Verfürth, Error estimâtes for some quasi-interpolât ion operators. Report 227, Universitàt Bochum, Germany (1997); RAIRO Model Math. Anal Numér. 33 (1999) 695-713.