Časopis pro pěstování matematiky a fysiky

Similar documents
Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

EQUADIFF 1. Milan Práger; Emil Vitásek Stability of numerical processes. Terms of use:

Časopis pro pěstování matematiky

Commentationes Mathematicae Universitatis Carolinae

Mathematica Slovaca. Ján Jakubík On the α-completeness of pseudo MV-algebras. Terms of use: Persistent URL:

Linear Differential Transformations of the Second Order

Acta Mathematica et Informatica Universitatis Ostraviensis

Commentationes Mathematicae Universitatis Carolinae

Czechoslovak Mathematical Journal

Aplikace matematiky. Gene Howard Golub Numerical methods for solving linear least squares problems

Acta Universitatis Carolinae. Mathematica et Physica

Commentationes Mathematicae Universitatis Carolinae

Časopis pro pěstování matematiky

Archivum Mathematicum

Matematický časopis. Bedřich Pondělíček A Note on Classes of Regularity in Semigroups. Terms of use: Persistent URL:

Commentationes Mathematicae Universitatis Carolinae

Applications of Mathematics

Czechoslovak Mathematical Journal

Mathematica Bohemica

Czechoslovak Mathematical Journal

Behrend s Theorem for Sequences Containing No k-element Arithmetic Progression of a Certain Type

Časopis pro pěstování matematiky

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal

Archivum Mathematicum

Matematický časopis. Robert Šulka The Maximal Semilattice Decomposition of a Semigroup, Radicals and Nilpotency

Acta Universitatis Carolinae. Mathematica et Physica

Kybernetika. Jan Havrda; František Charvát Quantification method of classification processes. Concept of structural a-entropy

Czechoslovak Mathematical Journal

Toposym Kanpur. T. Soundararajan Weakly Hausdorff spaces and the cardinality of topological spaces

Toposym 2. Zdeněk Hedrlín; Aleš Pultr; Věra Trnková Concerning a categorial approach to topological and algebraic theories

A PROBABILISTIC THRESHOLD FOR MONOCHROMATIC ARITHMETIC PROGRESSIONS

Acta Universitatis Carolinae. Mathematica et Physica

Mathematica Bohemica

arxiv:math/ v2 [math.nt] 3 Dec 2003

Roth s Theorem on Arithmetic Progressions

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use:

Acta Mathematica Universitatis Ostraviensis

On some inequalities between prime numbers

Small Sets Which Meet All the k(n)-term Arithmetic Progressions in the Interval [1;n]

EQUADIFF 1. Rudolf Výborný On a certain extension of the maximum principle. Terms of use:

ON THE DENSITY OF SOME SEQUENCES OF INTEGERS P. ERDOS

C.7. Numerical series. Pag. 147 Proof of the converging criteria for series. Theorem 5.29 (Comparison test) Let a k and b k be positive-term series

SOME REMARKS ON NUMBER THEORY BY P. ERDŐS 1. Let ABSTRACT This note contains some disconnected minor remarks on number theory. (1) Iz j I=1, 1<j<co be

Aplikace matematiky. Jiří Neuberg Some limit properties of the best determined terms method. Terms of use:

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

Mathematica Bohemica

Math 104: Homework 7 solutions

Commentationes Mathematicae Universitatis Carolinae

arxiv:math/ v1 [math.nt] 6 May 2003

Mathematica Bohemica

Unique Difference Bases of Z

Archivum Mathematicum

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Week 2: Sequences and Series

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Applications of Mathematics

Czechoslovak Mathematical Journal

Mathematica Slovaca. Pavol Šoltés Oscillatoriness of solutions of a nonlinear second order differential equation

Homework 4, 5, 6 Solutions. > 0, and so a n 0 = n + 1 n = ( n+1 n)( n+1+ n) 1 if n is odd 1/n if n is even diverges.

In particular, if A is a square matrix and λ is one of its eigenvalues, then we can find a non-zero column vector X with

ZERO-SUM ANALOGUES OF VAN DER WAERDEN S THEOREM ON ARITHMETIC PROGRESSIONS

#A31 INTEGERS 11 (2011) COMPLETELY MULTIPLICATIVE AUTOMATIC FUNCTIONS

TRIANGULAR NORMS WITH CONTINUOUS DIAGONALS

Archivum Mathematicum

Commentationes Mathematicae Universitatis Carolinae

Mathematica Slovaca. Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit

Časopis pro pěstování matematiky

Solutions for Math 217 Assignment #3

Časopis pro pěstování matematiky

arxiv: v2 [math.gn] 28 Jul 2016

Mathematica Slovaca. Zbigniew Piotrowski Somewhat continuity on linear topological spaces implies continuity

FERMAT S TEST KEITH CONRAD

A proof of a partition conjecture of Bateman and Erdős

Kybernetika. Michał Baczyński; Balasubramaniam Jayaram Yager s classes of fuzzy implications: some properties and intersections

On the discrepancy of circular sequences of reals

252 P. ERDÖS [December sequence of integers then for some m, g(m) >_ 1. Theorem 1 would follow from u,(n) = 0(n/(logn) 1/2 ). THEOREM 2. u 2 <<(n) < c

Aktuárské vědy. D. P. Misra More Multiplicity in the Rate of Interest; Poly-party and Poly-creditor Transactions. II

WSAA 14. A. K. Kwaśniewski Algebraic properties of the 3-state vector Potts model. Terms of use:

The Maximum Upper Density of a Set of Positive. Real Numbers with no solutions to x + y = kz. John L. Goldwasser. West Virginia University

Roth s Theorem on 3-term Arithmetic Progressions

NORMAL NUMBERS AND UNIFORM DISTRIBUTION (WEEKS 1-3) OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY

DR.RUPNATHJI( DR.RUPAK NATH )

ON MONOCHROMATIC LINEAR RECURRENCE SEQUENCES

On the Subsequence of Primes Having Prime Subscripts

Mathematica Slovaca. Beloslav Riečan 70th birthday of Professor Ladislav Mišík. Terms of use: Persistent URL:

ALTERNATIVE DERIVATION OF SOME REGULAR CONTINUED FRACTIONS

An arithmetic extension of van der Waerden s theorem on arithmetic progressions

Kybernetika. Tomáš Hejda; Zuzana Masáková; Edita Pelantová Greedy and lazy representations in negative base systems. Terms of use:

Kybernetika. Margarita Mas; Miquel Monserrat; Joan Torrens QL-implications versus D-implications. Terms of use:

EQUADIFF 6. Jean-Claude Nédélec Mixed finite element in 3D in H(div) and H(curl) Terms of use:

An estimate for the probability of dependent events

Irregular Sets of Integers Generated by the Greedy Algorithm

Transcription:

Časopis pro pěstování matematiky a fysiky Felix Adalbert Behrend On sequences of integers containing no arithmetic progression Časopis pro pěstování matematiky a fysiky, Vol. 67 (1938), No. 4, 235--239 Persistent URL: http://dml.cz/dmlcz/122006 Terms of use: Union of Czech Mathematicians and Physicists, 1938 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ČASOPIS PRO PĚSTOVÁNI MATEMATIKY A FYSIKY ČÁST MATEMATICKÁ On sequences of integers containing no arithmetic progression. Felix Behrend, Praha. (Received April 28, 1937.) Erdos and Turan 1 ) recently considered the following question: let a 1 < a 2 <... <L x be a sequence of positive integers containing no h consecutive members of an arithmetic progression, and denote by r k (x) the highest possible number of elements of such a sequence (a sequence with r k (x) elements may be called a maximum sequence). Erdos and Turan proved, by numerical arguments, that but they were not able to show as little as»m<4 + 0(1), (!) ^ = o ( D. (2) In the following I shall draw some immediate consequences from the theorem of van der Waerden 2 ) which may throw some light on the problem. rieix\ 1. It is easily to be seen that converges; this follows from the evident fact that r k (mn) <Lmr%(n); put, namely, lim i n f r jm = Qki ( 3) x then for abitrary e > 0, there exists n such that n(ri) UQk + e., (4) n Hence, for x > n, -) Journal of th London Math. Soc. 11 (1936), 261 264. 2 ) B weis ein г Baudetschen V гmutung, Ni uw Aгchief voor Wiskunď 15 (1927), 212 216. 16* 235

1. e. and * +o(l)< Qk + e + o(l), (5) X X lim sup -- ( -*- < lim inf ------ + e (6) r x x 2. We have > 0* (») for every n. Suppose, namely, this were not true, then must assume its minimum for a certain value n = «0 and r k (n)/n - e ( ) * - Now choose a sufficiently great m and a maximum sequence a 1 < a 2 <... for # = n Q m. Denote by A x, A 2,..., A m the intervals <1? no>, <TI 0 + 1 ; 20,... Now hence n{n 0 ) < MWQWI) < mr t (np) ^o == ^o m = ^o m r k (n Q m) = mr k (n Q ), (11) which is only possible if every A^ contains precisely r k (n 0 ) elements of the sequence a l9 a 2,... Define A^ = A v, if the a's lying in A M are obtained by adding n 0 (ju v) to the a's lying in A v. n Q being fixed there is only a finite number of,,different".4's. But from van der Waerden's theorem follows the existence of one interval, A say, which occurs among all intervalls A 1,...,A m. in an arithmetic, progression of length k, if only m was chosen greater than a certain m (n^, k). This gives a contradiction because the first a's ocurring in the Jt's would form an arithmetic progression of length k. 3 ) 3. Consider also infinite sequences b x < b 2 <... Let S(x) denote the number of & < x, then lim inf --------- and lim sup x x x are called the lower and the upper density of the sequence. There 3 ) Mr. Erdos draws my attention to the fact that van der Waerden's theorem may be avoided here. (8) follows from r k ((k l)w 0 +l)5^ ^ (k 1) r-.(n 0 ) which can easily be proved directly. 236

will be a certain number a k such that all Sequences with upper density > a k contain an arithmetic progression of length k whereas to every e > 0 there exists a sequence with upper density a k e containing no arithmetic progression of length k. It is a k <L Q k <L a k+ i. (12) The first inequality is trivial; the second may be proved in the following way: choose positive integers x v x 2,... such that (i) x { > 2^_i + 1 (i = 1, 2,...), (ii) lim * - = oo. i co Xi i To every Xi there exists a maximum sequence an < a i2 <... < a ifk ( Xi ) <1 x t (13) not containing an arithmetic progression of length k\ let ay. be the first element of (13) > 2# t _ 1 + 1; drop the elements an, a i2,..., a*^ i 5^ 2#i_ 1 + 1 and with the remaining elements form the sequence a n, a 12,..., a lrk ( Xl ), (1st group") ^ a 2 j 2, a 2J2+li..., a 2 r km, (2nd,.group") aij {, a iji+li..., a irk ( Xi ), (ith,,group") (14) (14) evidently has an upper density'i> Q k, the number of elements <^ Xi being ^ r k (xi) 2xi i 1 r k (xi) + o(xi). An arithmetic progression contained in (14) can overleap at most one of the gaps between the single groups", because each gap is greater than the last element of the preceding,,group"; consequently such a progression has at most 1 + (k~ 1) = k elements, i. e. ( (14) contains no arithmetic progression of length k + 1. Hence Qk ^ Ofc + i. 4. It follows from (12) that Q k and a k are converging towards the same limit: lim Q k = lim a k = Q. (15) ifc >oo A?->oo Also 0<LQ 1.. (16) Theorem: Q is either 0 or 1. This means e. g. that in order to prove Q k = 0 it would suffice to prove the existence of a constant c < 1 (not depending on k) such that for all k : Q k <1 c. The argument is similar as in 2. Suppose namely 237

0 < Q < 1. (17) Then there exists a k with Q^ I QQ k > 0. Choose (i) a > 0 such that s < ^ti.zl_?*. 4 (ii) a sequence b v 6 2,... with upper density ^> Q k _i containing no arithmetic progression of length k, (Hi) n so great that every sequence of more than (Q k + e) n integers :_ n contains an arithmetic progression of length k. The intervals <1. n), (n + 1, 2n),... are denoted by B v B 2,... Evidently there are at most 2*,,different" _"s. The interval containing no 6's at all is called the zero-interval _, the others may be denoted by A v A 2,..., A L (L = 2 n 1). The lower density of the Z's among the _"s may be called. Choose now (iv) m such that a) the number of _'s among the first m _ s is > (f e) m, b) the number of 6's <I mn is I> (Qk i e) mn. The last number must be, on the othet hand, <^ (1 C+e) m (Q k +e) n (because the Z's do not contain any 6's and the A's at most (Qk+e) n from (Hi)). Hence (l C + e) (Q k + 8)^ *_! 8, (18) r < ( 1 + e) (Qk + e) Qk-i + e < Q k Q k - X + 4g < x _ (19) = Qk + Qk from (i). The upper density of the A's, consequently, is greater than Q. Choose now, by van der Waerden's theorem, K(k, L) so great that, if we divide the numbers 1, 2,..., K arbitrarily into _ = 2 n 1 classes, there can always be found in at least one of the classes an arithmetic progression of length k. As the A's have an upper density > Q 2> QK, there can be found an arithmetic progression of A's (among the B's) of length K: A Ml,..., A MK. These form _ classes of,,equal" A's; consequently there exist k equal A's forming an arithmetic progression among the A^..., A^K\ they also form an arithmetic progression among all intervals B v B 2,... But this contradicts (ii) because the first 6's contained in thesp A's would form an arithmetic progression of length k. Hence the theorem is proved. 4 ) Prague, March 1937. 4 ) Mr. Erdos communicated to me a slightly different proof which makes use of van der Waerden's theorem only for the case of 2 classes. 238

O posloupnostech celých čísel, neobsahujících aritmetické posloupnosti. (Obsah předešlého článku.) Pro celá čísla x > 0, k ^> 3 budiž r k (x) největší číslo m, mající tuto vlastnost: existuje množina m přirozených čísel nejvýše rovných x, neobsahující žádných k čísel, tvořících aritmetickou Vj.(%\ posloupnost. Potom existuje lim - == g k, lim g k = Q a platí ^->-oo X X: >c» tyto věty: 1. Pro každé přirozené n je r k (n) > g k n. 2. Je buďto Q = 0 nebo Q = 1. Druckfehlerberichtigung zum Aufsatz: K. Mack, Eine mit dem vollständigen Vierseit zusammenhängende Schließungsaufgabe (Casopis 67, S. 199 202). Die Redaktion macht den Leser darauf aufmerksam, daß die Figur 1 mit der Figur 2 verwechselt ist. 239