μsr Studies on Magnetism and Superconductivity

Similar documents
Investigating the mechanism of High Temperature Superconductivity by Oxygen Isotope Substitution. Eran Amit. Amit Keren

Electronic inhomogeneity, magnetic order & superconductivity probed by NMR in cuprates and pnictides

4 Local-to-Bulk Electronic Correlation Project

Quantum dynamics in many body systems

What's so unusual about high temperature superconductors? UBC 2005

arxiv:cond-mat/ v3 [cond-mat.supr-con] 23 May 2000

Neutron scattering from quantum materials

Can superconductivity emerge out of a non Fermi liquid.

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

Vortex Checkerboard. Chapter Low-T c and Cuprate Vortex Phenomenology

Muon Spin Relaxation Functions

arxiv: v3 [cond-mat.supr-con] 3 Jan 2017

Striping in Cuprates. Michael Bertolli. Solid State II Elbio Dagotto Spring 2008 Department of Physics, Univ. of Tennessee

A New look at the Pseudogap Phase in the Cuprates.

F. Rullier-Albenque 1, H. Alloul 2 1

LAPORAN AKHIR INTERNATIONAL RESEARCH COLLABORATION AND SCIENTIFIC PUBLICATION

Strongly Correlated Systems:

Inhomogeneous spin and charge densities in d-wave superconductors

arxiv:cond-mat/ v1 [cond-mat.supr-con] 28 May 2003

High-T c superconductors. Parent insulators Carrier doping Band structure and Fermi surface Pseudogap and superconducting gap Transport properties

13 NMR in Correlated Electron Systems: Illustration on the Cuprates

V.3. SUPERCONDUCTIVITY VERSUS ANTIFERERROMAGNETIC SDW ORDER IN THE CUPRATES AND RELATED SYSTEMS Inhomogeneities and Electron Correlation

Citation PHYSICAL REVIEW LETTERS (2000), 85( RightCopyright 2000 American Physical So

cond-mat/ Mar 1999

Superconductivity in Fe-based ladder compound BaFe 2 S 3

High-T c superconductors

The Role of Charge Order in the Mechanism of High Temperature Superconductivity

arxiv:cond-mat/ v1 [cond-mat.supr-con] 23 Feb 1999

Electron State and Lattice Effects in Cuprate High Temperature Superconductors

A Twisted Ladder: Relating the Iron Superconductors and the High-Tc Cuprates

The Nernst effect in high-temperature superconductors

Heat Capacity and transport studies of the ferromagnetic superconductor RuSr 2 GdCu 2 O 8

Impurity effects in high T C superconductors

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Recent Advances in High-Temperature Superconductivity

NMR studies of cuprates pseudogap, correlations, phase diagram: past and future?

Correlatd electrons: the case of high T c cuprates

Isotope Effect in High-T C Superconductors

Spin correlations in YBa 2 Cu 3 O 6+x bulk vs. interface

A comparison of µsr and thermopower in Hg 1:2:0:1 high-t c cuprates

Search for conducting stripes in lightly hole doped YBCO

Heterogeneous vortex dynamics in high temperature superconductors

Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor

Quantum phase transitions in Mott insulators and d-wave superconductors

Order and quantum phase transitions in the cuprate superconductors

Origin of the anomalous low temperature upturn in resistivity in the electron-doped cuprates.

Nernst effect in high T c superconductors

arxiv:cond-mat/ v1 8 Mar 1995

The NMR Probe of High-T c Materials

Schematic for resistivity measurement

Superconducting Stripes

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Talk online at

The Remarkable Superconducting Stripe Phase of the High Tc Superconductor La2-xBaxCuO4 near x=1/8

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture.

Theoretical Study of High Temperature Superconductivity

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

arxiv:cond-mat/ v1 [cond-mat.supr-con] 14 May 1999

One-dimensional systems. Spin-charge separation in insulators Tomonaga-Luttinger liquid behavior Stripes: one-dimensional metal?

High temperature superconductivity

Crystal growth and annealing study of the hightemperature superconductor HgBa 2 CuO 4+δ

SESSION 3. Lattice fluctuations and stripes - I. (September 26, 2000) S3-I S3-II S3-III S3-IV S3-V. E. Kaldis New aspects of Ca doping in 123

Magnetic relaxation of superconducting YBCO samples in weak magnetic fields

Spin or Orbital-based Physics in the Fe-based Superconductors? W. Lv, W. Lee, F. Kruger, Z. Leong, J. Tranquada. Thanks to: DOE (EFRC)+BNL

SUPPLEMENTARY INFORMATION

Supplemental materials for: Pressure-induced electronic phase separation of magnetism and superconductivity in CrAs

Material Science II. d Electron systems

Measuring the pinning strength of SRF materials with muon spin rotation. Tobias Junginger

Quantum Oscillations, Magnetotransport and the Fermi Surface of cuprates Cyril PROUST

Magnetic Order versus superconductivity in the Iron-based

arxiv:cond-mat/ v2 [cond-mat.supr-con] 28 Feb 2001

Dual vortex theory of doped antiferromagnets

Nuclear Magnetic Resonance to measure spin susceptibilities. NMR page 1 - M2 CFP Electronic properties of solids (F. Bert)

Intertwined Orders in High Temperature Superconductors

Tunneling Spectra of Hole-Doped YBa 2 Cu 3 O 6+δ

Vortex Imaging in Unconventional Superconductors

Magnetism in correlated-electron materials

Electronic Noise Due to Thermal Stripe Switching

Fermi Surface Reconstruction and the Origin of High Temperature Superconductivity

Tuning order in cuprate superconductors

Using Disorder to Detect Order: Hysteresis and Noise of Nematic Stripe Domains in High Temperature Superconductors

SESSION 2. (September 26, 2000) B. Lake Spin-gap and magnetic coherence in a high-temperature superconductor

Title. Author(s)Kumagai, Ken-ichi; Tsuji, Sigenori; Kato, Masatsune; CitationPHYSICAL REVIEW LETTERS, 78(10): Issue Date

UPt 3 : More data after all these years

The pseudogap in high-temperature superconductors: an experimental survey

Time-Resolved and Momentum-Resolved Resonant Soft X-ray Scattering on Strongly Correlated Systems

YBCO. CuO 2. the CuO 2. planes is controlled. from deviation from. neutron. , blue star for. Hg12011 (this work) for T c = 72

The two-component physics in cuprates in the real space and in the momentum representation

Order and quantum phase transitions in the cuprate superconductors

Spin correlations in conducting and superconducting materials Collin Broholm Johns Hopkins University

Photoemission Study of the High-Temperature Superconductor La 2 x Sr x CuO 4

Universal Features of the Mott-Metal Crossover in the Hole Doped J = 1/2 Insulator Sr 2 IrO 4

The Chemical Control of Superconductivity in Bi 2 Sr 2 (Ca 1 x Y x )Cu 2 O 8+±

D.H. Ryan. Centre for the Physics of Materials and Physics Department, McGill University, Montreal, Quebec CANADA

Progress in High Temperature Superconducting Materials and Superconductivity Mechanism

Supplementary Figures

Title. Author(s)Kumagai, Ken-ichi; Nozaki, Koji; Matsuda, Yuji. CitationPHYSICAL REVIEW B, 63: Issue Date Doc URL. Rights.

MuSR/µ + SR studies in KDP and DKDP

Talk online: sachdev.physics.harvard.edu

Hole-concentration dependence of band structure in (Bi,Pb) 2 (Sr,La) 2 CuO 6+δ determined by the angle-resolved photoemission spectroscopy

Transcription:

The 14 th International Conference on Muon Spin Rotation, Relaxation and Resonance (μsr217) School (June 25-3, 217, Sapporo) μsr Studies on Magnetism and Superconductivity Y. Koike Dept. of Applied Physics, Tohoku University Spring Summer Sapporo Sendai Winter Tokyo Autumn

1. Introduction to μsr 2. μsr in magnetic materials 3. μsr studies in high-t c superconductors (1) Magnetic anomalies * Antiferromagnetic ordered phase * 1/8 anomaly and stripe order * Impurity-induced magnetism * Undoped superconductivity in T -cuprates (2) Inhomogeneity of internal field * Penetration depth in type-ii superconductors (3) Muon Knight shift * Pseudo gap 4. μsr vs neutron scattering and NMR

Muon μ elementary particle * mass: m μ ~ 2 m e ~1/9m p * charge: μ + or μ - * spin: S = 1/2 * magnetic moment: m = γ μ ћs γ μ = gyromagnetic ratio =ge/(2m μ c) =2π 13.55 khz/g for μ + * life time = 2.2 μsec

A spin-polarized positive muon μ + is injected, stops near a negative ion, feels the internal magnetic field H, makes a Larmor precession. H Freq. ω = γ μ H Period T = 2π/ω Cu 2+ μ + O 2- =2π/(γ μ H)

Decay of μ + life time = 2.2 μsec μ + e + + ν e + ν μ muon positron two neutrinos μ + e + e + is emitted at the moment of the decay in the direction of μ + spin in the highest probability.

In the case of no internal magnetic field e + sample μ + (S=1/2) spin-polarized!! Backward counters B(t) Asymmetry A(t) = F(t) B(t) F(t) + B(t) Forward counters F(t) G Z (t): polarization rate of muon spins = A G Z (t) 1 t

In the case of uniform internal magnetic field e + Backward counters B(t) Asymmetry A(t) = sample F(t) B(t) F(t) + B(t) H Forward counters F(t) G Z (t) = A G Z (t) 1 μ + (S=1/2) spin-polarized T = 2π/(γ μ H) t

In the case of inhomogeneous internal field e + Backward counters B(t) H sample Forward counters F(t) G Z (t) μ + (S=1/2) spin-polarized Asymmetry A(t) = F(t) B(t) F(t) + B(t) = A G Z (t) 1 damping t

e + sample μ + B(t) F(t)

1. Introduction to μsr 2. μsr in magnetic materials 3. μsr studies in high-t c superconductors (1) Magnetic anomalies * Antiferromagnetic ordered phase * 1/8 anomaly and stripe order * Impurity-induced magnetism * Undoped superconductivity in T -cuprates (2) Inhomogeneity of internal field * Penetration depth in type-ii superconductors (3) Muon Knight shift * Pseudo gap 4. μsr vs neutron scattering and NMR

Magnetism Various internal field Magnetic order Ferromagnetic Antiferromagnetic Spiral Magnetic disorder Spin glass static Paramagnetic dynamical (time-dependent) at high T

Paramagnetic state Electron spins are fast fluctuating Time-averaged internal H due to electron spins = Internal H due to nuclear spins: slowly fluctuating static random internal H: a few gauss 3 orders of magnitude smaller than H due to electron spins nuclear spin electron spin + - + ++

Muon spin relaxation due to nuclear spins Random small internal H: assumed as gaussian distribution G Z (t) = 1/3 + (2/3)(1 - Δ 2 t 2 )exp(-δ 2 t 2 /2) Δ:FWHM of internal H γ μ G Kubo-Toyabe function Z (t) 1 1/3 1/3 Slow depolarization 3/ 3/Δ t

G Z (t) = 1/3 + (2/3)(1 - Δ 2 t 2 )exp(-δ 2 t 2 /2) G Z (t) Δ:FWHM of internal H γ μ Kubo-Toyabe function 1 1/3 1/3 3/ 3/Δ t 1/3 tail 1/3 tail A muon makes no precession due to the z-component of internal field parallel to the initially polarized direction. G Z (t) G Z (t) Precessions due to the x- and y-components of internal field are damped. 1 1-1 z-comp. t t x-comp. y-comp.

Development of magnetic correlation Electron spin fluctuation slows down A muon feels random slowly fluctuating large internal H Small internal H due to nuclear spins is ignored. nuclear spin + + ++ electron spin G Z (t) - 1 Fast depolarization Disappearance of 1/3 tail Z-component of internal field is also fluctuating. t

Ferromagnetic state A(t) = e + F(t) B(t) F(t) + B(t) = A G Z (t) sample μ + B(t) F(t) G Z (t) G Z (t) G Z (t) 1 1 1 t t t -1

Ferromagnetic state polycrystal G Z (t) multi-site for muons bad quality of a sample G Z (t) 1 1 damping 1/3 1/3 t t

Antiferromagnetic state polycrystal one site for muons G Z (t) multi-site for muons G Z (t) 1 1 damping 1/3 1/3 t t

Spin glass state G Z (t) G Z (t) 1 Strong damping 1 1/3 1/3 t t

Muon Spin Relaxation (μsr) Sample 2.2μsec e + in zero external magnetic field μ + beam B (t) Counter A() = 1 F (t) Counter A(t) = 1 e + F A ( t ) F High T: paramagnetic ( t ) ( t ) B ( t ) = Polarization rate of muon spins B ( t ) development of Low T: magneric order magnetic correlation Asym. nuclear spin electron spin Time random small internal field Gaussian Exponential Oscillation Asym. Time random large internal field Asym. Time homogeneous internal field

1. Introduction to μsr 2. μsr in magnetic materials 3. μsr studies in high-t c superconductors (1) Magnetic anomalies * Antiferromagnetic ordered phase * 1/8 anomaly and stripe order * Impurity-induced magnetism * Undoped superconductivity in T -cuprates (2) Inhomogeneity of internal field * Penetration depth in type-ii superconductors (3) Muon Knight shift * Pseudo gap 4. μsr vs neutron scattering and NMR

T-(La,Sr) 2 CuO 4 High-T c Cuprates Hole-Doped Several 1 kinds Electrond-Doped 3 kinds T- (Ca,Na) 2 CuO 2 Cl 2 T*-(Nd,Ce,Sr) T -(Nd,Ce) 2 CuO 4 (Sr,Ln)CuO 2 CuO 4 2 Cu O YBa 2 Cu 3 O 7 Bi 2 Sr 2 CaCu 2 O x Bi 2 Sr 2 Ca 2 Cu 3 O x Blocking layer T - Li x Sr 2 CuO 2 Br 2 Blocking layer CuO 2 plane

Electron-doped system T (K) 3 Hole-doped system x AF SC T N 2 1 underdoped overdoped regime regime optimally doped 1/8 anomaly SC.2.1.1.2 Electron doping Hole doping T c x For the determination of T N, magnetic susceptibility is not available. There is little change in the susceptibility at T N, because a 2-dim. spin-correlation is developed at high temperatures. μsr is very useful for the determination of T N. doped electron Antiferromagnetic Mott Insulator doped hole Cu 2+ spin (s=1/2)

N. Nishida et al., Jpn. J. Appl. Phys. 26 (1987) L1856 YBa 2 Cu 3 O 7

Electron-doped system T (K) 3 Hole-doped system x SC AF T N 2 1 underdoped overdoped regime regime optimally doped 1/8 anomaly SC.2.1.1.2 Electron doping Hole doping μsr is very useful for the determination of T N!! Sintered samples are available for μsr measurements!! -- A single crystal is not necessary. T c x doped electron Antiferromagnetic Mott Insulator doped hole Cu 2+ spin (s=1/2)

1. Introduction to μsr 2. μsr in magnetic materials 3. μsr studies in high-t c superconductors (1) Magnetic anomalies * Antiferromagnetic ordered phase * 1/8 anomaly and stripe order * Impurity-induced magnetism * Undoped superconductivity in T -cuprates (2) Inhomogeneity of internal field * Penetration depth in type-ii superconductors (3) Muon Knight shift * Pseudo gap 4. μsr vs neutron scattering and NMR

1/8 Anomaly in the La214 System La 2-x Ba x CuO 4 La 2-x Sr x CuO 4 Zn % Tc Tc Zn 1% Moodenbaugh et al., PRB 38, 4596 (1988). Kumagai et al., JMMM 76&77, 61 (1988). Koike et al., Solid State Commun. 82, 889 (1992). The TLT structure or Zn doping the 1/8 anomaly. The origin of the 1/8 anomaly was not clarified for a while.

I. Watanabe, K. Kawano, K. Kumagai, K. Nishiyama, K. Nagamine J. Phys. Soc. Jpn. 61 (1992) 358 Zero-field μsr in La 2-x Ba x CuO 4 (x=1/8) I. Watanabe La 2-x Ba x CuO 4 Tc x = p = 1/8 Confirmation of a long-range magnetic order 1/8 anomaly Sintered samples are available for μsr measurements!!

Neutron Elastic Scattering Stripe order of holes and spins!! La 1.6-x Nd.4 Sr x CuO 4 (x=.12) single crystal SDW CDW hole domain Spin domain Cu 2+ spin CuO 2 plane La 1.6-x Nd.4 Sr x CuO 4 Tranquada et al., Nature 375, 561 (1995) PRB 54, 7489 (1996). Tc

1. Introduction to μsr 2. μsr in magnetic materials 3. μsr studies in high-t c superconductors (1) Magnetic anomalies * Antiferromagnetic ordered phase * 1/8 anomaly and stripe order * Impurity-induced magnetism * Undoped superconductivity in T -cuprates (2) Inhomogeneity of internal field * Penetration depth in type-ii superconductors (3) Muon Knight shift * Pseudo gap 4. μsr vs neutron scattering and NMR

x=.1 x=.115 x=.13 x =.1 x =.115 x =.13 1.5 y = y = y = ZF-μSR in La 2-x Sr x Cu 1-y Zn y O 4 1. T c.115.1.13 I. Watanabe T. Adachi y =.1 p y = Nomalized Asymmetry.5. 1..5. 1..5. 1..5. 1..5. 1..5. 1..5. 1..5. Zn operates to pin dynamical y =.7 stripes y =.7 y =.7 1. Zn 7%.5 18516(R) (22). the formation of static stripes!!. y =.1 y =.1 y =.1 1. Watanabe et al., Phys. Rev. B, 65, Adachi et al., Phys. Rev. B, 69, 18457 (24). 2 K 15 K 6 K 2 K.5 y =.25 y =.5 y =.75 y =.1 y =.2 y =.3 y =.5. 1 2 Time ( sec ) y =.25 y =.5 y =.75 y =.1 y =.2 y =.3 y =.5 Static stripes are non-superconducting. 1 2 Time ( sec ) 2 K 15 K y =.25 y =.5 y =.75 y =.1 y =.2 y =.3 y =.5 6 K 2 K 1 2 3 Time ( sec ) Zn-free Zn.25% Zn.5% Zn.75% Zn 1% Zn 2% Zn 3% Zn 5% Zn 1%

Static Stripe Dynamical Stripe Non-superconducting Superconducting Dynamical stripes may play an important role in the appearance of high-t c superconductivity!! (Theory by Emery and Kiverson)

T-(La,Sr) 2 CuO 4 High-T c Cuprates Hole-Doped Electrond-Doped T- (Ca,Na) 2 CuO 2 Cl 2 T*-(Nd,Ce,Sr) 2 CuO 4 Bi2212 system 3 kinds T -(Nd,Ce) 2 CuO 4 (Sr,Ln)CuO 2 Bi 2 Sr 2 Ca 1-x Y x Cu 2 O 8+δ 1 Bi 2 Sr 2 Ca 1-x Y x Cu 2 O 8+ YBa 2 Cu 3 O 7 Bi 2 Sr 2 CaCu 2 O x Bi 2 Sr 2 Ca 2 Cu 3 O x Tc (K) 5 T - Li x Sr 2 CuO 2 Br 2 p=1/8.6.5.4.3.2.1 x (Y)

M. Akoshima, T. Noji, Y. Ono, Y. Koike Phys. Rev. B 57 (1998) 7491 1 Bi 2 Sr 2 Ca 1-x Y x (Cu 1-y Zn y ) 2 O 8+ M. Akoshima I. Watanabe, M. Akoshima, Y. Koike, K. Nagamine, Phys. Rev. B 6 (1999) R9955 Tc (K) 5.6.5.4.3 p ~ 1/8 x (Y).2 y= y=.1 y=.2 y=.25 y=.3.1 1/8 anomaly is universal!! The dynamical stripes may be universal in the high-t c s. The dynamical stripes may be important for the high-t c.

La 2-x Sr x CuO 4 Noramlized Asymmetry 1.5 1..5 LSCO 2 K 8 K 5 K 4 K 3 K 2 K.2.4.6.8 1. Time (μsec) x =.8 x =.115 x =.2 5 2 K 6 K 4 K 2 K.2.4.6.8 1 Time (μsec) 2, 1, 6, 2 K T. Adachi et al., PRB (24, 28). Y. Tanabe et al., PRB (211)..2.4.6.8 1 Time (μsec) T c (K) 4 3 2 1 La 2-x Sr x CuO 4 SC K. M. Suzuki.1.2.3 p (per Cu) 36

Fe-substituted La 2-x Sr La x2-x CuO Sr x4 Cu 1-y Fe y O 4 Noramlized Asymmetry Noramlized Asymmetry 1.5 1..5 1.5 1..5 2 K 8 K 5 K 4 K 3 K 2 K.2.4.6.8 1. Time (μsec) 2 K 1K 8 K 7 K 6 K 2 K LSCO x =.8 x =.115 x =.2 T c (K) 5 Fe 1% p =.7 4 3 2 1.2.4.6.8 1. Time (μsec) 2 K 6 K 4 K 2 K.2.4.6.8 1 Time (μsec) La 2-x Sr x CuO 4 2 K 15 K 12 K 1 K SC 2 K.1.2.3.2.4.6.8 1. Time (μsec) p (per Cu) 2, 1, 6, 2 K T. Adachi et al., PRB (24, 28). Y. Tanabe et al., PRB (211)..2.4.6.8 1 Time (μsec) p =.115 p =.2 2 K 12 K 1 K 6 K 2 K.2.4.6.8 1. 37 Time (μsec)

Normalized Asymmetry 2.4 2.2 2 1.8 1.6 1.4 1.2 1.8.6.4.2 La 2-x Sr x Cu 1-y Fe y O 4 y =.1, T = 2K p = x-y =.5.7.9.115.13.15.17.2.22.225 Muon spin precession K. M. Suzuki et al., Phys. Rev. B 86 (212) 14522 No precession (static shortrange order).5 1 time (μsec) Distinct magnetic states between underdoped and overdoped regimes 38

Antiferromagnetic state 1 Homogeneous field Inhomogeneous field Spin glass state 1 1 t t Very inhomogeneous field 1/3 t

Normalized Asymmetry 2.4 2.2 2 1.8 1.6 1.4 1.2 1.8.6.4.2 La 2-x Sr x Cu 1-y Fe y O 4 y =.1, T = 2K.5 1 Underdoped regime time (μsec) p = x-y =.5.7.9.115.13.15.17.2.22.225 Fe Muon spin precession K. M. Suzuki et al., Phys. Rev. B 86 (212) 14522 No precession (static shortrange order) Strong electron-correlation Fermi liquid Weak electron-correlation Overdoped regime Fe Stripe order of Cu spins and holes pinned by Fe Spin glass of Fe spins due to RKKY int. 4

1. Introduction to μsr 2. μsr in magnetic materials 3. μsr studies in high-t c superconductors (1) Magnetic anomalies * Antiferromagnetic ordered phase * 1/8 anomaly and stripe order * Impurity-induced magnetism * Undoped superconductivity in T -cuprates (2) Inhomogeneity of internal field * Penetration depth in type-ii superconductors (3) Muon Knight shift * Pseudo gap 4. μsr vs neutron scattering and NMR

Electron-doped system T (K) 3 Hole-doped system x AF SC T N 2 1 underdoped overdoped regime regime optimally doped 1/8 anomaly SC.2.1.1.2 Electron doping Hole doping T c x Nd 2 CuO 4 -type (Tʼ) K 2 NiF 4 -type (T) Excess Oxygen!! O Nd/Ce O La/Sr Cu Cu

Electron-doped system T (K) 3 Hole-doped system x O. Matsumoto, M. Naito et al., Physica C 469, 924 (29) Film sample SC T N 2 1 underdoped overdoped regime regime optimally doped 1/8 anomaly SC.2.1.1.2 Electron doping Hole doping T c x Nd 2 CuO 4 -type (Tʼ) K 2 NiF 4 -type (T) Excess Oxygen!! O Nd/Ce O La/Sr Cu Cu

Low-temperature synthesis of T -La 1.8-x Eu.2 CuO 4 T-La 1.8-x Eu.2 CuO 4 N-La 1.8-x Eu.2 CuO 3.5 T -La 1.8-x Eu.2 CuO 4+ T-La 1.8-x Eu.2 CuO 4 by the conventional solid-state reaction Removal of oxygen oxidation CaH 2 O 2 225ºC, 24 h 4ºC,12 h Reductant To remove Excess Oxygen, Reduction annealing at 7ºC for 24 h in vacuum.4.2 La 1.8 Eu.2 CuO 4+ Excess Oxygen!! O Nd/Ce Cu Powdery bulk sample undoped SC (1-3 emu/g) -.2 -.4 -.6 -.8-1. -1.2 H = 1 Oe Zero-field cooling 5 1 15 2 25 3 T (K) T. Takamatsu et al., Appl. Phys. Express 5, 7311 (212)

Electron-doped system T (K) 3 Hole-doped system x O. Matsumoto, M. Naito et al., Physica C 469, 924 (29) Film sample SC T N 2 1 underdoped overdoped regime regime optimally doped 1/8 anomaly SC.2.1.1.2 Electron doping Hole doping T -La 1.8-x Eu.2 CuO 4 bulk sample Nd 2 CuO 4 -type (Tʼ) T c K 2 NiF 4 -type (T) x Excess Oxygen!! O Nd/Ce O La/Sr Cu Cu

35 3 La 1.8 Eu.2 CuO 4+ μsr in T -La 1.8-x Eu.2 CuO 4 T. Adachi et al., J. Phys. Soc. Jpn. 85, 114716 (216) As-grown 35 3 La 1.8 Eu.2 CuO 4+ 7 o C-reduced (T c = 15 K) Raw Asymmetry (%) 25 2 15 1 T = 2 K 1 K Raw Asymmetry (%) 25 2 15 1 T = 2 K 5 5 K 3 K T = 1.6 K 4 K 1 K Zero field 1 2 3 4 5 6 Time ( sec) Spin correlation is developed at low T. AF long-range order (T N =39K) T. Adachi 5 1 K 2 K T = 1.6 K 4 K 15 K 3 K 1 K Zero field 1 2 3 4 5 6 Time ( sec) Spin correlation is developed at low T. Short-range magnetic order (T N =2K) Volume fraction : 1% Coexistence of superconductivity and short-range magnetic order

μsr in longitudinal external magnetic field Longitudinal field e + (LF-μSR) sample μ + G Z (t) B(t) Internal field F(t) Longitudinal field ~1 x Internal field G Z (t) 1 1 t t

G Z (t) A(t) Spins are fluctuating 1 1 GA(t) Z (t) 1 LF 1/3 t 3/ t t t (b) (c) G Z (t) 1 A(t) Spins are static 1 GA(t) Z (t) 1 LF 1/3 t t t 1/3 t

Raw Asymmetry (%) 35 3 25 2 15 1 T. Adachi et al., J. Phys. Soc. Jpn. 85, 114716 (216) Longitudinal-field 35 La 1.8 Eu.2 CuO 4+ LF μsr in T -La 1.8-x Eu.2 CuO 4 7 o C-reduced (T c = 15 K) Raw Asymmetry (%) 3 25 2 15 1 La 1.8 Eu.2 CuO 4+ 7 o C-reduced (T c = 15 K) T = 2 K 5 T = 1.6 K LF = G 2 G 5 G Longitudinal field 1 G 3 G 1 G 1 2 3 4 5 6 7 8 Time ( sec) Static order at T=1.6K T. Adachi 5 1 K 2 K T = 1.6 K 4 K 15 K 3 K 1 K Zero field 1 2 3 4 5 6 Time ( sec) Spin correlation is developed at low T. Short-range magnetic order (T N =2K) Volume fraction : 1% Coexistence of superconductivity and short-range magnetic order

1. Introduction to μsr 2. μsr in magnetic materials 3. μsr studies in high-t c superconductors (1) Magnetic anomalies * Antiferromagnetic ordered phase * 1/8 anomaly and stripe order * Impurity-induced magnetism * Undoped superconductivity in T -cuprates (2) Inhomogeneity of internal field * Penetration depth in type-ii superconductors (3) Muon Knight shift * Pseudo gap 4. μsr vs neutron scattering and NMR

μsr in transverse external magnetic field Transverse field e + (TF-μSR) sample μ + B(t) Paramagnetic: T > T c Field is homogeneous F(t) Transverse field >> internal field G Z (t) 1 t r -1

Penetration of magnetic filed Magnetic field in a type-ii superconductor H c1 < H < H c2 vortex vortex λ Inhomogeneous field Damping of precession vacuum Damping rate λ -2 n s /m* n s : superconducting electron density superconductor

TF-μSR Damping rate λ -2 n s /m* n s : superconducting electron density Damping rate (μsec -1 )

Y. J. Uemura et al. Phys. Rev. Lett. 62 (1989) 2317 T c Damping rate λ -2 n s /m* n s : superconducting electron density T c n s : not explained in terms of BCS theory Bose-Einstein condensation-like as in the case of superfluidity in liquid He 4 Strong-coupling superconductivity

1. Introduction to μsr 2. μsr in magnetic materials 3. μsr studies in high-t c superconductors (1) Magnetic anomalies * Antiferromagnetic ordered phase * 1/8 anomaly and stripe order * Impurity-induced magnetism * Undoped superconductivity in T -cuprates (2) Inhomogeneity of internal field * Penetration depth in type-ii superconductors (3) Muon Knight shift * Pseudo gap 4. μsr vs neutron scattering and NMR

Electron-doped system T (K) 3 T N 2 Hole-doped system x SC AF 1 Pseudo gap SC.2.1.1.2 Electron doping Hole doping T c x Pseudo gap: Decrease in the density of states at E F Knight shift of NMR, T 1, ARPES, incoherent preformed pair charge order stripe doped electron Antiferromagnetic Mott Insulator d density wave (staggered flux phase) doped hole Cu 2+ spin (s=1/2)

TF-μSR in a paramagnetic metal Transverse field e + Conduction electron spins zero field B(t) sample H F(t) Polarization of conduction electron spins μ + ω = γ μ H γ μ (H + χ Pauli para H) T=2π/ω shorten Knight shift χ Pauli para Density of states at the Fermi level Transverse field G Z (t) 1-1 T = 2π/(γ μ H) t

Hole-Doped Bi 1.76 Pb.36 Sr 1.89 CuO 6+δ M. Miyazaki et al., Phys. Rev. B 94, 115123 (216) FFT spectrum from TF-μSR TF = 5T T = 2-3 K 3 25 Bi 1.76 Pb.35 Sr 1.89 CuO 6+ M. Miyazaki T c (K) OPT 2 SUD OD 15 Optimum 1 HUD HOD 5 HLD LD NSOD.5.1.15.2.25.3 p (per Cu) Two kinds of internal field Two kinds of muon site!!

Hole-Doped Bi 1.76 Pb.36 Sr 1.89 CuO 6+δ M. Miyazaki et al., Phys. Rev. B 94, 115123 (216) FFT spectrum from TF-μSR TF = 5T T = 2-3 K M. Miyazaki Change of internal field with decreasing T Development of pseudo gap

Temperature (K) 3 25 2 15 1 5 Comparison with other probes La-Bi221 (Bi,Pb)221 T * SR T c.8.12.16.2 Hole Concentration p (1/CuO 2 ) T * SR : (Bi,Pb)221 T c ( SR) : (Bi,Pb)221 T * c : (Bi,Pb)221 T c (Res.) : (Bi,Pb)221 T * NMR 1/T 1 T : La-Bi221 T * NMR K S : La-Bi221 T c (NMR) : La-Bi221 T * ARPES : La-(Bi,Pb)221 T c (ARPES) : La-(Bi,Pb)221 Observation of development of pseudo gap Knight shift of μsr (insensitive to sample quality) Knight shift of NMR (sensitive to sample quality)

1. Introduction to μsr 2. μsr in magnetic materials 3. μsr studies in high-t c superconductors (1) Magnetic anomalies * Antiferromagnetic ordered phase * 1/8 anomaly and stripe order * Impurity-induced magnetism * Undoped superconductivity in T -cuprates (2) Inhomogeneity of internal field * Penetration depth in type-ii superconductors (3) Muon Knight shift * Pseudo gap 4. μsr vs neutron scattering and NMR

Neutron scattering μsr NMR Magnetism detailed magnetic detection of structure magnetic anomaly (long-range order) (long-range order) (short-range order) Time ~1-12 sec 1-11 ~1-6 sec ~1-6 sec window more dynamic static more static Sample single crystal single crystal detection (large-sized) poly-crystal of signal robust to disorder weak to disorder μsr : powerful for the study of magnetic systems and strongly correlated electron systems complementary to neutron scattering and NMR

1. Introduction to μsr Thank you!! 2. μsr in magnetic materials 3. μsr studies in high-t c superconductors (1) Magnetic anomalies * Antiferromagnetic ordered phase * 1/8 anomaly and stripe order * Impurity-induced magnetism * Undoped superconductivity in T -cuprates (2) Inhomogeneity of internal field * Penetration depth in type-ii superconductors (3) Muon Knight shift * Pseudo gap 4. μsr vs neutron scattering and NMR