INTRODUCTION TO NMR and NMR QIP

Similar documents
INTRODUCTION TO NMR and NMR QIP

The Deutsch-Josza Algorithm in NMR

NMR, the vector model and the relaxation

Measuring Spin-Lattice Relaxation Time

The NMR Inverse Imaging Problem

Chemistry 431. Lecture 23

MR Fundamentals. 26 October Mitglied der Helmholtz-Gemeinschaft

Introduction to NMR Quantum Information Processing

Spectral Broadening Mechanisms

Topics. The concept of spin Precession of magnetic spin Relaxation Bloch Equation. Bioengineering 280A Principles of Biomedical Imaging

Factoring 15 with NMR spectroscopy. Josefine Enkner, Felix Helmrich

Biochemistry 530 NMR Theory and Practice

Classical behavior of magnetic dipole vector. P. J. Grandinetti

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Quantum Information Processing with Liquid-State NMR

Nuclear Magnetic Resonance Imaging

Spin Relaxation and NOEs BCMB/CHEM 8190

Nuclear Magnetic Resonance Spectroscopy

Biophysical Chemistry: NMR Spectroscopy

Lecture #6 NMR in Hilbert Space

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

Topics. Spin. The concept of spin Precession of magnetic spin Relaxation Bloch Equation

Quantum Computing with NMR: Deutsch-Josza and Grover Algorithms

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Experimental Realization of Shor s Quantum Factoring Algorithm

V27: RF Spectroscopy

Introduction of Key Concepts of Nuclear Magnetic Resonance

Magnetic Resonance in Quantum Information

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

Classical Description of NMR Parameters: The Bloch Equations

COPYRIGHTED MATERIAL. Production of Net Magnetization. Chapter 1

13C. Los Alamos Science Number

10.4 Continuous Wave NMR Instrumentation

The Nuclear Emphasis

The Basics of Magnetic Resonance Imaging

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

Classical Description of NMR Parameters: The Bloch Equations

Magnetic Resonance Imaging. Pål Erik Goa Associate Professor in Medical Imaging Dept. of Physics

1 Magnetism, Curie s Law and the Bloch Equations

NMR of CeCoIn5. AJ LaPanta 8/15/2016

Observations of Quantum Dynamics by Solution-State NMR Spectroscopy

Introduction to MRI. Spin & Magnetic Moments. Relaxation (T1, T2) Spin Echoes. 2DFT Imaging. K-space & Spatial Resolution.

Biomedical Imaging Magnetic Resonance Imaging

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by:

The Theory of Nuclear Magnetic Resonance Behind Magnetic Resonance Imaging. Catherine Wasko Physics 304 Physics of the Human Body May 3, 2005

Nuclear Magnetic Resonance Imaging

Biophysical Chemistry: NMR Spectroscopy

General NMR basics. Solid State NMR workshop 2011: An introduction to Solid State NMR spectroscopy. # nuclei

Fundamental MRI Principles Module Two

Biophysical Chemistry: NMR Spectroscopy

Basic principles COPYRIGHTED MATERIAL. Introduction. Introduction 1 Precession and precessional

Topics. The History of Spin. Spin. The concept of spin Precession of magnetic spin Relaxation

T 1, T 2, NOE (reminder)

NMR: Formalism & Techniques

VIII. NUCLEAR MAGNETIC RESONANCE (NMR) SPECTROSCOPY

Physical Background Of Nuclear Magnetic Resonance Spectroscopy

MRI Physics I: Spins, Excitation, Relaxation

Relaxation. Ravinder Reddy

Magnetic Resonance in Quantum

Nuclear spin maser with a novel masing mechanism and its application to the search for an atomic EDM in 129 Xe

3 Chemical exchange and the McConnell Equations

Chapter 7. Nuclear Magnetic Resonance Spectroscopy

NUCLEAR MAGNETIC RESONANCE QUANTUM COMPUTATION

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012

NMR Spectroscopy: A Quantum Phenomena

Physical fundamentals of magnetic resonance imaging

Experimental Quantum Computing: A technology overview

Principles of MRI. Vinyl Record. Last time: Today: Homework Due tonight! EE225E / BIO265. Transforms a temporal signal to a spatial signal

Principles of Magnetic Resonance Imaging

NANOSCALE SCIENCE & TECHNOLOGY

Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005

Electron spins in nonmagnetic semiconductors

Superoperators for NMR Quantum Information Processing. Osama Usman June 15, 2012

Nuclear Magnetic Resonance Spectroscopy

arxiv:quant-ph/ v2 28 Aug 2006

An introduction to Solid State NMR and its Interactions

Basic p rinciples COPYRIGHTED MATERIAL. Introduction. Atomic s tructure

1. THEORETICAL BACKGROUND AND EXPERIMENTAL TECHNIQUES. 1.1 History of Quantum Computation

Control of Spin Systems

e 2m p c I, (22.1) = g N β p I(I +1), (22.2) = erg/gauss. (22.3)

The Physical Basis of Nuclear Magnetic Resonance Part I ESMRMB. Jürgen R. Reichenbach

NMR Quantum Computation

Spin. Nuclear Spin Rules

Magnetic Resonance Imaging in a Nutshell

Nuclear Magnetic Resonance

Lecture 5: Bloch equation and detection of magnetic resonance

Error tolerance in an NMR Implementation of Grover s Fixed-Point Quantum Search Algorithm

Quantum Optics and Quantum Informatics FKA173

Sketch of the MRI Device

arxiv:quant-ph/ v1 13 Oct 2004

Short Course in Quantum Information Lecture 8 Physical Implementations

arxiv:quant-ph/ v2 10 Jun 2004

Physics 221A Fall 1996 Notes 13 Spins in Magnetic Fields

PHYSICAL REVIEW A, 66,

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ.

BMB/Bi/Ch 173 Winter 2018

Quantum Information Processing with NMR

Nuclear Magnetic Resonance (NMR)

More NMR Relaxation. Longitudinal Relaxation. Transverse Relaxation

Transcription:

Books (NMR): Spin dynamics: basics of nuclear magnetic resonance, M. H. Levitt, Wiley, 2001. The principles of nuclear magnetism, A. Abragam, Oxford, 1961. Principles of magnetic resonance, C. P. Slichter, Springer, 1990. Reviews (NMR QIP): NMR techniques for quantum control and computation, LMK Vandersypen and I. Chuang, Reviews of Modern Physics (2004) vol. 76 (4) pp. 1037 1069. Quantum information processing using nuclear and electron magnetic resonance: review and prospects, et al., 2007. arxiv: 0710.1447. NMR Based Quantum Information Processing: Achievements and Prospects, D. G. Cory et al., 2000. arxiv:quant ph/0004104.

What is Spin? Stern-Gerlach Experiment (1922) (s=1/2) E = µ B = µ z B z

Zeeman Energy E = µ B 1 0 = µ z B z H = µb z σ z /2 = µb 2 z 0 1 2 E = hν = µb z H = µb z 2 H = +µb z 2 Electron: µ 2µ B = e m Nucleus: µ = γ n gyromagnetic ratio of isotope n

Spin 1/2 nucleus NMR freq (MHz) (at 10 T) natural abundance 1 H 426 99.9% 13 C 107 1.1% 15 N 43 0.4% 19 F 401 100% 28 Si 85 4.7% 31 P 175 100% Nuclei with an odd (even) number of nucleons possess half integer (integer) spin Nuclei with an even number of protons and neutrons are spinless

1 H NMR Hamiltonian: 2 coupled spins in liquid state NMR (e.g. 13 C labelled Chloroform) ( =1) H 0 = 1 ( 2 ω 1σ 1z + ω 2 σ 2z + πj 12 σ 1z σ ) 2z 13 C Chloroform molecule, CHCl 3 Larmor frequency (rad/s): External magnetic field (T): Coupling strength (Hz): J kl ω k = γ k B B Chemical shielding: For the same isotope, γ j = γ ( 0 1 δ ) j for nucleus at the j th chemical site. Ability to address different nuclei as qubits

Larmor precession of a single spin H 0 = ω 1σ 1z 2 U(t) = e iω 1tσ 1z 2 = Take ψ = + 2 U(t) ψ = e iω 1t 2 + e +iω 1t 2 2 + e +iω =e iω 1 t 2 1 t 2 + i = +

1 H Eigenstates of the Hamiltonian H 0 = 1 ( 2 ω 1σ 1z + ω 2 σ 2z + πj 12 σ 1z σ ) 2z state 1: 1 H 2: 13 C eigenvalue 1 ( 2 ω 1 + ω 2 + πj 12 ) 1 2 ω 1 + ω 2 πj 12 1 ( 2 ω 1 ω 2 πj 12 ) ( ) 1 ( 2 ω ω + πj 1 2 12) ω 1 = 2π 426MHz ω 2 = 2π 107MHz J 12 200Hz B =10T 1 ( 2 ω 1 + ω 2 ) 1 ( 2 ω + ω 1 2) 1 ( 2 ω 1 ω 2 ) 1 ( 2 ω 1 ω 2 ) + π 2 J 12 π 2 J 12 π 2 J 12 + π 2 J 12 13 C Chloroform molecule, CHCl 3

NMR transitions (spectrum) 1 ( 2 ω 1 + ω 2 ) + π 2 J 12 2 2 1 1 1 ( 2 ω 1 + ω 2 ) 1 ( 2 ω 1 ω 2 ) π 2 J 12 π 2 J 12 2πJ 2πJ 1 ( 2 ω 1 ω 2 ) + π 2 J 12 ω 1 ω 2 frequency These are magnetic dipole transitions, and are thus driven by an oscillating (Radiofrequency, RF ) magnetic field Need transverse spin operators to drive them. σ x,σ y ( )

RF Hamiltonian: H rf (t) = Ω(t) 2 θ(t) = ω rf t + φ [ σ 1x cos(θ(t)) + σ 1y sin(θ(t)) ] RF amplitude RF frequency B x cos(ω rf t) ω rf +ω rf

Rotating reference frame transformation: two isotopes (doubly rotating frame) R(t) = e iω 1rf tσ 1z 2 e iω 2rf tσ 2z 2 ψ R = R(t) ψ lab id ψ lab dt = H lab ψ lab id ψ R dt = H R ψ R H lab = H 0 + H rf (t) H R = 1 2 ω 1 ω 1rf [( )σ 1z + ( ω 2 ω 2rf )σ 2z + πj 12 σ 1z σ 2z ] + 1 [ 2 Ω 1(t) ( σ 1x cos(φ 1 ) + σ 1y sin(φ 1 ))] + 1 [ 2 Ω 2(t) ( σ 2x cos(φ 2 ) + σ 2y sin(φ 2 ))]

Rotating frame = We had Larmor precession in Lab frame: + e +iω1t U(t) ψ Lab = e iω 1 t 2 2 But in the rotating frame (on resonance): + i R(t) U(t) + R(t) ψ Lab (t) = R(t) ( U(t) ψ Lab ) = + 2 =

Resonant pulses as Bloch sphere rotations Consider a single spin at resonance: ω 1 = ω 1rf H R = 1 [( 2 ω 1 ω 1rf )σ 1z + Ω 1 (t)( σ 1x cos(φ 1 ) + σ 1y sin(φ 1 ))] In NMR, we can control both RF phase ( ) and amplitude ( ) in φ Ω time, so we can perform arbitrary single spin rotations U(t) = e iω 1 t ( σ 1x cos(φ 1 )+σ 1y sin(φ 1 ) ) / 2 R y (π /2) φ = π /2 Ωt = π /2 R x (π /2) φ = π Ωt = π /2 Y X ( 0 + 1 ) 2 Y Y X Y ( 0 + i 1 ) 2

Example of two qubit logic: the CNOT gate H(t) = 1 ( 2 ω 1σ 1z + ω 2 σ 2z + πjσ 1z σ 2z ) + H rf (t) Zeeman coupling RF pulses (control)

q 1 q 2 1 2 3 4 5 R z (90) R y (90) R y ( 90) R x (90) U 1 = e i π 2 I 1 σ 1y 2 t = π /2J time U 2 = e i π 2 σ 1z σ 2z / 2 U 3 = e iπ 2 σ 1z 2 I 2 U 4 = e +iπ 2 I 1 σ 2y 2 U CNOT = U 5 U 4 U 3 U 2 U 1 = 0 0 1 I 2 + 1 1 1 σ 2x U 5 = e iπ 2 I 1 σ 2x 2

The thermal state A general mixed state: ρ = k a k ψ k ψ k Thermal equilibrium (Boltzmann distribution): ρ th = e H 0 kt Tr e H 0 ( kt ) In the high temperature limit ( ) H 0 << kt ρ th 1 2 I H 0 I kt 2 1 4kT ω 1σ 1z + ω 2 σ 2z ( ) (two spin case) ω kt ~ 10 5 at room temperature in NMR

The thermal state ρ th 1 2 I H 0 I kt 2 1 4kT ω 1σ 1z + ω 2 σ 2z ( ) The identity term cannot be changed by pulses or observed So we define a deviation density matrix (note it is not a proper density matrix, since ) Tr(ρ) 1 ρ dev = H 0 kt ω 1σ 1z + ω 2 σ 2z indicates a population difference σ z between spin up and spin down states (the J coupling term is ~10 6 times smaller than Zeeman energy)

Pseudopure states To initialize an NMR quantum info. processor, we want a pure state or at least one that behaves like a pure state: ρ pp = I 2 α ψ ψ Example: making a 1 H 13 C pseudopure state 5 0 0 0 0 3 0 0 ρ dev 4σ 1z + σ 2z = 0 0 3 0 0 0 0 5

Example: making a 1 H 13 C pseudopure state Apply three permutation circuits and sum results: ρ dev ρ dev 5 0 0 0 0 3 0 0 0 0 3 0 0 0 0 5 5 0 0 0 0 5 0 0 0 0 3 0 0 0 0 3 15 0 0 0 0 5 0 0 = 20 00 00 5 I 0 0 5 0 0 0 0 5 ρ dev 5 0 0 0 0 3 0 0 0 0 5 0 0 0 0 3 ρ dev 00 00

Measurement in NMR Bulk magnetization of j th isotope: M z j = µ j ( n j n ) j 90 degree ( readout ) pulse rotates magnetization to x y plane: Z M z B // ˆ z Ensemble of identical, noninteracting processor molecules Y X M x Y

Measurement in NMR In the lab frame, magnetization precesses in the x y plane, at the Larmor frequency Z Y X M x Y the oscillating magnetic flux induces an emf in the solenoid coil via Faraday s law.

Measurement in NMR This corresponds to an expectation value measurement, with observables: M x = Tr ρ σ x,k = Tr ρ dev k M y = Tr ρ σ y,k = Tr ρ dev k k k σ x,k σ y,k We call these observables transverse magnetization

Measurement in NMR Example: 1 qubit tomography of an arbitrary state ρ dev Expt. 1 ρ dev M x, M y p x, p y Expt. 2 ρ dev R y (π /2) M x p z ρ dev p xσ x + p y σ y + p z σ z p x 2 + p y 2 + p z 2 Unfortunately, the # of expts needed grows exponentially with # qubits, regardless of the physical system we use for implementation!

Measurement in NMR : FT spectrum V (0) M x (0) NMR transitions Voltage T 2 V (0) /1.6 Fourier transform Δω ~ T 2 1 Time amp M x (0) Frequency free induction signal ( ) M x (t) = Tr( ρ(t) σ x ) = Tr e ih 0 t ρ(0)e +ih 0 t σ x

NMR Spectrometer

Deutch-Jozsa Algorithm balanced constant

Quantum circuit to compute binary function f. Or another representation:

Hadamard gate H 1 ( ) f (x) 0 1 2

NMR pulse sequence 1 H 1 0 R y 90 R x 180 R x 180 R z 90 1 H 2 0 R 180 90 x R y R y 90 τ τ Rx 180 R x 180 R x ±90 ( U 01,U 10 )

NMR results f 00 f 01 f 10 f 11 Jones and Mosca, 1998

Factoring 15 Vandersypen et al, 2001

Current experiments at IQC: 12-qubit NMR QIP

Relaxation and decoherence General Kraus operator sum: ρ A k ρa k + k k A k + A k = I Z Relaxation Dephasing Spin operators σ x,σ y σ z X Y Example: pure dephasing A = e iφσ z ρ dφ e iφσ z ρe+iφσ z f (φ,t,t 2 ) Lorentzian with time dependent FWHM ( ) a be t /T 2 b * e t /T 2 Dephasing on the Bloch sphere 1 a

Pure dephasing Or in another form: Z Λ(ρ) = ( 1 p) ψ ψ + pσ z ψ ψ σ z With Kraus operators: A 0 = 1 pi Y A 1 = pσ z p = 1 e t /T 2 2 Dephasing on the Bloch sphere

Relaxation A 0 = p 1 0 0 1 η A 1 = p 0 η 0 0 A 2 = 1 η 0 1 p 0 1 A 3 = 1 p 0 0 η 0 see e.g. Nielsen & Chuang ( Λ(ρ) = a a 0)e t /T 1 + a 0 be t / 2T 1 b * e t / 2T 1 ( a 0 a)e t /T 1 + (1 a 0) For pure relaxation, T 2 = 2T 1 In liq. state NMR, typically T 2 ~ 0.5 5 s T 1 ~ 5 20 s