Chapter #3 EEE Subsea Control and Communication Systems

Similar documents
Chapter #5 EEE Control Systems

Chapter #2 EEE Subsea Control and Communication Systems

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University

Advanced Control Theory

The Performance of Feedback Control Systems

Chap8 - Freq 1. Frequency Response

ROUTH-HURWITZ CRITERION

2.Decision Theory of Dependence

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

System Control. Lesson #19a. BME 333 Biomedical Signals and Systems - J.Schesser

Note 7 Root-Locus Techniques

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

10.2 Series. , we get. which is called an infinite series ( or just a series) and is denoted, for short, by the symbol. i i n

Chapter 2 Infinite Series Page 1 of 9

State space systems analysis

Introduction to Modern Control Theory

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

EECE 301 Signals & Systems Prof. Mark Fowler

A New Estimator Using Auxiliary Information in Stratified Adaptive Cluster Sampling

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

732 Appendix E: Previous EEE480 Exams. Rules: One sheet permitted, calculators permitted. GWC 352,

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

2 SKEE/SKEU v R(t) - Figure Q.1(a) Evaluate the transfer function of the network as

Chapter 7 Infinite Series

Linear Open Loop Systems

Last time: Ground rules for filtering and control system design

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators.

positive definite (symmetric with positive eigenvalues) positive semi definite (symmetric with nonnegative eigenvalues)

AUTOMATIC CONTROL SYSTEMS

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE

Discrete Mathematics I Tutorial 12

ELEC 372 LECTURE NOTES, WEEK 4 Dr. Amir G. Aghdam Concordia University

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II

We will look for series solutions to (1) around (at most) regular singular points, which without

All the Laplace Transform you will encounter has the following form: Rational function X(s)

Reversing the Arithmetic mean Geometric mean inequality

Limit of a function:

Introduction to Control Systems

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

3. REVIEW OF PROPERTIES OF EIGENVALUES AND EIGENVECTORS

Chapter 5. Root Locus Techniques

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

Chapter #4 EEE Automatic Control

Graphing Review Part 3: Polynomials

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

ECE-320 Linear Control Systems. Spring 2014, Exam 1. No calculators or computers allowed, you may leave your answers as fractions.

Spherical refracting surface. Here, the outgoing rays are on the opposite side of the surface from the Incoming rays.

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

EVALUATING DEFINITE INTEGRALS

Chapter 10: The Z-Transform Adapted from: Lecture notes from MIT, Binghamton University Dr. Hamid R. Rabiee Fall 2013

8.3 Sequences & Series: Convergence & Divergence

APPENDIX 2 LAPLACE TRANSFORMS

The Exponential Function

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

EE Control Systems LECTURE 8

Homework 12 Solution - AME30315, Spring 2013

1.3 Continuous Functions and Riemann Sums

LECTURE 13 SIMULTANEOUS EQUATIONS

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING. SHEET 2 Bode Plot

Hidden Markov Model Parameters

TI-83/84 Calculator Instructions for Math Elementary Statistics

The Reimann Integral is a formal limit definition of a definite integral

x with A given by (6.2.1). The control ( ) ( )

Area, Volume, Rotations, Newton s Method

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

Let. Then. k n. And. Φ npq. npq. ε 2. Φ npq npq. npq. = ε. k will be very close to p. If n is large enough, the ratio n

Frequency-domain Characteristics of Discrete-time LTI Systems

PROGRESSIONS AND SERIES

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences

ME2142/ME2142E Feedback Control Systems First half: Professor POO Aun Neow Second half: Professor V Subramaniam

MTH 146 Class 16 Notes

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

MATRIX ALGEBRA, Systems Linear Equations

Section IV.6: The Master Method and Applications

CONTROL SYSTEMS LABORATORY ECE311 LAB 3: Control Design Using the Root Locus

We will begin by supplying the proof to (a).

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Northwest High School s Algebra 2

lecture 16: Introduction to Least Squares Approximation

Section 6.3: Geometric Sequences

( a n ) converges or diverges.

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation

National Quali cations AHEXEMPLAR PAPER ONLY

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

, we would have a series, designated as + j 1

Lecture 4 Recursive Algorithm Analysis. Merge Sort Solving Recurrences The Master Theorem

Exponents and Radical

1999 by CRC Press LLC

MA123, Chapter 9: Computing some integrals (pp )

Student Success Center Elementary Algebra Study Guide for the ACCUPLACER (CPT)

Convergence rates of approximate sums of Riemann integrals

Surds, Indices, and Logarithms Radical

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

Systems Analysis. Prof. Cesar de Prada ISA-UVA

Lecture 38 (Trapped Particles) Physics Spring 2018 Douglas Fields

Chapter 8. Root Locus Techniques

Transcription:

EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3

EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL) TF:, c TF of cotroller, TF of lt R - Cotroller E c U Sytem C Feedbck H Feedbck TF Our Tk: DESIN c d H (if licble). OLFT: Oe loo reoe (deired outut): Chter 3 /3

EEE 87 Ste Reoe.8 Amlitude.6.4. 3 Time (ec) CLTF: C CL C R Cloed loo reoe (k): Chter 3 3/3

EEE 87 Ste Reoe.8 Amlitude.6.4. 3 Time (ec) : Ste Reoe.8 Amlitude.6.4. 3 Time (ec) Chter 3 4/3

EEE 87 Higher order ytem Util ow we hve ee oly t order ytem with feedbck. I thee ytem, the feedbck d the cotroller ifluece the tedy tte d the time cott. The decree of the time cott me tht we moved the ole further ito miu ifiity re. Hece we chged the -le of the ytem. Wht i it goig to he if we ue d order ytem i feedbck ytem? ( )( ).4 Ste Reoe. Amlitude.8.6.4. 3 4 5 6 Time (ec) So rt from fter ytem d mller tedy tte error we hve ocilltio! k k CL ( )( ) k 3 k Chter 3 5/3

EEE 87 CE: 3 k but the geerl from: ζ o ζ 3 d k d for k hece 3. 433 ζ ζ : d So the feedbck d the cotroller c comletely chge the loctio of the ole i the -le. Exmle: ( )( )( 3) The oe loo reoe for vriou gi i: 9 Ste Reoe 8 7 6 Amlitude 5 4 3 3 4 5 6 Time (ec) The oe loo ytem will be tble for ll vlue of ice they do ot ifluece the ole of the ytem. The reoe of cloed loo ytem for,, i: Chter 3 6/3

EEE 87 5 Ste Reoe 4 3 Amlitude - - -3-4.5.5.5 3 3.5 4 4.5 5 Time (ec) Hece the feedbck my itroduce itbility. To udertd why we hve thee chge olve the CE. Proertie of feedbck ytem:. Miimie tedy tte error.. Fter ytem. 3. Le eitive to ytem ucertitie. 4. Itroduce itbility (eve for egtive feedbck). 5. Exeive (we eed to feedbck the igl, i.e. ue eor). Chter 3 7/3

EEE 87 PID cotrol Coider the ytem: () for : ( )( )( 3).9 error.8.7 outut.6.5.4.3.. 4 6 8 To icree the tye of the OLTF (which i C x) we dd itegrtor: c ( ) i > OL ( ) i ( )( )( 3) (Thi i the o-clled PI cotroller). Chter 3 8/3

EEE 87 Itegrtor i Ste 36 6 Trfer Fc Scoe.4..8.6.4. i i i 6 4 6 8 Further icree of, i: Chter 3 9/3

EEE 87.4..8.6.4., i 6, i 4 6 8 Check the derivtive of error, i.e. the rte of chge of e:.5 -.5 - De e -.5 4 6 8 Chter 3 /3

EEE 87 Mximum vlue of De jut before e. So De c cotrol the ocilltio: ( ) i d > c OL ( ) d i ( )( )( 3) Ste Itegrtor i 36 6 Trfer Fc Scoe du/dt Derivtive d Chter 3 /3

EEE 87.4..8.6.4 d d 5 d. 4 6 8 Sice I hve o ocilltio I c icree little bit more to mke the ytem fter: Chter 3 /3

EEE 87.4..8.6.4 5. 4 6 8.4. P outut Outut 5 4 3.8.6.4. - 4 6 8 - Chter 3 3/3

EEE 87.5 D outut Outut.5-4 6 8 -.5 6 4.5 I Outut Outut 4 6 8 Chter 3 4/3

EEE 87 Aother wy to write the PID cotroller: CL CL i i d ( ) d ( ) Td Ti Tuig of PID cotroller. Tril d error.. Ziegler Nichol I 3. Ziegler Nichol II 4. Root locu 5. Frequecy reoe 6. Other dvced cotrol method Tril d error: P: Fter ytem, i ome ce reduce the error (c cue itbility). I: Reduce the tedy tte error, icree the umber of ocilltio. D: Reduce the ocilltio. Chter 3 5/3

EEE 87 Ziegler Nichol I Aume ytem with o dely (we do ot tudy thee ytem) d with o-comlex cojugte ole. It oe loo te reoe my look like (obtied exerimetlly of from imultio): Thi c be modelled : C( ) U ( ) L e T Bed o tht we hve the followig tble: Chter 3 6/3

EEE 87 Tye of cotroller P PI PID T i T d T L.9T L L.3.T L L.5L Ziegler Nichol II Iitilly ume i d. Icree util the ytem i mrgilly tble. Record the cr d the frequecy of ocilltio: P cr c(t) t, Chter 3 7/3

EEE 87 Tye of cotroller P PI PID Ti Td.5 cr.45 cr..6 cr.5pcr P cr.5pcr Thee method im t chievig overhoot of 5%. Root locu method With the RL we ecificlly trget ole loctio t the -le, i.e. we trget dmig fctor, turl d dmed frequecie. Exmle: The OLTF i ( ) ue PI cotroller. 34 OL ( ) i 34 ( 34) i CL ( ) ( 34) i i Thi i 3 rd order ytem d order x t order: Chter 3 8/3

EEE 87 CE: ( ) ( )( ) 34 i ζ ( ) ( ) ( ) 3 3 34 i ζ ζ 34 i ζ ζ Aume tht the deig ec re:.5 6 ζ So: 8 5 36 36 6 34 6 i i Homework: Fid the PID gi : the CLTF of 6 6 ) ( h.5 6 ζ d rel ole t -5. Solutio: 5, i 8, d 5. Frequecy reoe Advced method We will ot tudy thee. Chter 3 9/3

EEE 87 Other cotroller By uig the reviou (root locu) method we c deig more geerl cotroller. Exmle: R() ( ) ( b) C() C() b?? 6 θ 6 o 6 ζ co ( ) o 6 6 ζ.5 () ( ) b C R () () ( ) ( b) ( ) CE : CE 3 b ( )( ζ ) 3 : b Chter 3 /3

EEE 87 ( )( ) 3 : b CE ζ ( ) ( ) 3 3 : b CE ζ ζ b ζ ζ 54 3 9 b Exmle: () ( )( ).5 OL, Uity feedbck d iut: r(t)5t ) If.5, fid the tedy tte error b) The ytem mut hve tedy tte error, E<. fid the vlue of C() C() ( )( ).5 5 () R () () ( )( ) R C.5 () ( )( ) C.5 5 Chter 3 /3

EEE 87 E ( ) R( ) C( ) E() 5 ( )(.5 ) E () 5 ( )(.5 ) ( )(.5 ) E ( )(.5 ) ( )( ).5 5 lim 5 E 5 ) E 3.33....5 5 E <. > 5 b) <. Exmle: OL () (. )(. ) ) Fid the vlue of uch the ytem i mrgilly tble b) Fid the frequecy of ocilltio t tht oit Chter 3 /3

EEE 87 C R () () (. )(. ) (. )(. ) CE : For mrgilly tble ytem: j (. j )(. j ) CE : j 3 (.. ) (.. ) j CE : j...3 3 7.7 rd / d 5 Chter 3 3/3