Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method

Similar documents
Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Basic Feedback Analysis & Design

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response

Proportional, Integral & Derivative Control Design. Raktim Bhattacharya

Exercise 1 (A Non-minimum Phase System)

Exercise 1 (A Non-minimum Phase System)

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Frequency methods for the analysis of feedback systems. Lecture 6. Loop analysis of feedback systems. Nyquist approach to study stability

Control System Design

Control Systems I Lecture 10: System Specifications

Frequency domain analysis

Analysis of SISO Control Loops

MAE 143B - Homework 9

Process Control & Instrumentation (CH 3040)

Plan of the Lecture. Goal: wrap up lead and lag control; start looking at frequency response as an alternative methodology for control systems design.

Nyquist Criterion For Stability of Closed Loop System

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

Frequency Response Techniques

CDS 101/110a: Lecture 8-1 Frequency Domain Design

Homework 7 - Solutions

Singular Value Decomposition Analysis

EE3CL4: Introduction to Linear Control Systems

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

The loop shaping paradigm. Lecture 7. Loop analysis of feedback systems (2) Essential specifications (2)

EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions

Radar Dish. Armature controlled dc motor. Inside. θ r input. Outside. θ D output. θ m. Gearbox. Control Transmitter. Control. θ D.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall 2007

Classify a transfer function to see which order or ramp it can follow and with which expected error.

Lecture 5: Frequency domain analysis: Nyquist, Bode Diagrams, second order systems, system types

Prüfung Regelungstechnik I (Control Systems I) Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10

Topic # Feedback Control

The Frequency-Response

Outline. Classical Control. Lecture 1

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Systems Analysis and Control

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Systems Analysis and Control

1 (s + 3)(s + 2)(s + a) G(s) = C(s) = K P + K I

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

Introduction to Feedback Control

FREQUENCY-RESPONSE DESIGN

H(s) = s. a 2. H eq (z) = z z. G(s) a 2. G(s) A B. s 2 s(s + a) 2 s(s a) G(s) 1 a 1 a. } = (z s 1)( z. e ) ) (z. (z 1)(z e at )(z e at )

INTRODUCTION TO DIGITAL CONTROL

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Systems Analysis and Control

ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION

Stability of CL System

Frequency Response Analysis

Active Control? Contact : Website : Teaching

Control Systems I. Lecture 9: The Nyquist condition

16.30/31, Fall 2010 Recitation # 2

D(s) G(s) A control system design definition

School of Mechanical Engineering Purdue University

ECE 486 Control Systems

MAE 143B - Homework 9

Lecture 1: Feedback Control Loop

Systems Analysis and Control

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

ECE 388 Automatic Control

MAE143a: Signals & Systems (& Control) Final Exam (2011) solutions

Topic # Feedback Control Systems

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

Richiami di Controlli Automatici

Root Locus Design Example #3

Topic # Feedback Control Systems

Frequency Response of Linear Time Invariant Systems

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

CDS 101/110a: Lecture 10-1 Robust Performance

Controls Problems for Qualifying Exam - Spring 2014

Robust Performance Example #1

ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design

Exercises for lectures 13 Design using frequency methods

1 (20 pts) Nyquist Exercise

STABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable

FEL3210 Multivariable Feedback Control

Control Systems I. Lecture 9: The Nyquist condition

Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes

Systems Analysis and Control

Loop shaping exercise

MAS107 Control Theory Exam Solutions 2008

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Chapter 6 - Solved Problems

Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n

MEM 355 Performance Enhancement of Dynamical Systems

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e

Systems Analysis and Control

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.

CDS 101/110a: Lecture 10-2 Control Systems Implementation

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION

K(s +2) s +20 K (s + 10)(s +1) 2. (c) KG(s) = K(s + 10)(s +1) (s + 100)(s +5) 3. Solution : (a) KG(s) = s +20 = K s s

STABILITY ANALYSIS TECHNIQUES

H 2 Optimal State Feedback Control Synthesis. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

Lecture 11. Frequency Response in Discrete Time Control Systems

Engraving Machine Example

Uncertainty and Robustness for SISO Systems

An Internal Stability Example

Transcription:

.. AERO 422: Active Controls for Aerospace Vehicles Frequency Response- Method Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University.

... Response to Sinusoidal Input.. u(t) y(t). P Let u(t) = A u sin(ωt) Vary ω from to A linear system s response to sinusoidal inputs is called the system s frequency response AERO 422, Instructor: Raktim Bhattacharya 3 / 52

... Response to Sinusoidal Input.. Example Let P (s) = s+, u(t) = sin(t) y(t) = 2 e t 2 cos(t) + 2 sin(t) = 2 e t + sin(t π }{{} 2 4 ) }{{} natural response forced response Forced response has form A y sin(ωt + ϕ) A y and ϕ are functions of ω AERO 422, Instructor: Raktim Bhattacharya 4 / 52

... Response to Sinusoidal Input.. Generalization In general ω Y (s) = G(s) s 2 + ω 2 = α α n + + α + α s p s p n s + jω s jω = y(t) = α e pt + + α n e p nt + A }{{} y sin(ω + ϕ) }{{} natural forced Forced response has same frequency, different amplitude and phase. AERO 422, Instructor: Raktim Bhattacharya 5 / 52

... Response to Sinusoidal Input.. Generalization (contd.) For a system P (s) and input u(t) = A u sin(ω t), forced response is y(t) = A u M sin(ω t + ϕ), where M(ω ) = P (s) s=jω = P (jω ), magnitude ϕ(ω ) = P (jω ) phase In polar form P (jω ) = Me jϕ. AERO 422, Instructor: Raktim Bhattacharya 6 / 52

... Fourier Series Expansion.. Given a signal y(t) with periodicity T, y(t) = a 2 + ( 2πnt a n cos T a = 2 T a n = 2 T b n = 2 T n=,2, T T T y(t)dt ( 2πnt y(t) cos T ( 2πnt y(t) sin T ) dt ) dt ) + b n sin ( ) 2πnt T AERO 422, Instructor: Raktim Bhattacharya 8 / 52

... Fourier Series Expansion.. Approximation of step function.2 N=2.2 N=6.8.8.6.6.4.4.2.2.2.5.5 2 2.5 3 3.5 4 4.5 5.2.5.5 2 2.5 3 3.5 4 4.5 5.2 N=8.2 N=.8.8.6.6.4.4.2.2.2.5.5 2 2.5 3 3.5 4 4.5 5.2.5.5 2 2.5 3 3.5 4 4.5 5.2 N=2.2 N=5.8.8.6.6.4.4.2.2.2.5.5 2 2.5 3 3.5 4 4.5 5.2.5.5 2 2.5 3 3.5 4 4.5 5 AERO 422, Instructor: Raktim Bhattacharya 9 / 52

.. Fourier Transform... Step function Fourier transform reveals the frequency content of a signal AERO 422, Instructor: Raktim Bhattacharya / 52

.. Fourier Transform... Step function frequency content.2.8 y(t).6.4.2.2.2.4.6.8.2.4.6.8 2 t.7.6.5 ŷ(ω).4.3.2. 5 5 2 25 3 35 4 45 5 ω AERO 422, Instructor: Raktim Bhattacharya / 52

.. Signals & Systems... Input Output. u(t) P y(t) Fourier Series Expansion superposition principle. i u i(t) P i y i(t) Fourier Transform Ụ(jω) Y (jω). P u i (t) = a i sin(ω i t) y iforced (t) = a i M sin(ω i t + ϕ) Y (jω) = P (jω)u(jω) Suffices to study P (jω) P (jω), P (jω) AERO 422, Instructor: Raktim Bhattacharya 2 / 52

.. First Order System... Bode Diagram Freq =. rad/s 5 y(t) 5 2 25 3 35 4 y(t) y(t) 2 3 4 5 6 7 8 9 Freq =. rad/s 2 3 4 5 6 7 8 9 Freq = 5. rad/s Phase (deg) 45 y(t) 2 3 4 5 6 7 8 9 Freq =. rad/s 9 2 2 2 3 4 5 6 7 8 9 P (s) = /(s + ) loglog scale db = log ( ) 2dB = log (/) u(t) = A sin(ω t) y forced (t) = AM sin(ω t + ϕ) AERO 422, Instructor: Raktim Bhattacharya 4 / 52

... Second Order System.. 2 3 4 Bode Diagram y(t) y(t) 2 Freq =. rad/s 2 2 3 4 5 6 7 8 9 Freq =. rad/s 2 2 2 3 4 5 6 7 8 9 Freq = 5. rad/s Phase (deg) 45 9 35 y(t) y(t) 2 3 4 5 6 7 8 9 Freq =. rad/s 8 2 3 4 5 6 7 8 9 P (s) = /(s 2 +.5s + ) ω n = rad/s u(t) = A sin(ω t) y forced (t) = AM sin(ω t + ϕ) AERO 422, Instructor: Raktim Bhattacharya 5 / 52

.. Lead Compensator 5 5 Lead Controller. Phase lead low gain at low frequency high gain at high frequency.. relate it to derivative control 5 6 Phase (deg) 3 2 2 3 AERO 422, Instructor: Raktim Bhattacharya 6 / 52

.. Lag Compensator 6 5 4 3 2 Lag Controller. Phase lag high gain at low frequency low gain at high frequency relate it to integral control.. 5 Phase (deg) 5 2 2 AERO 422, Instructor: Raktim Bhattacharya 7 / 52

.. S(jω) + T (jω) =. d.. n r + u + + + e y + y. m C P y m Magnitude S(jω) P (s) = C(s) = (s+)(s/2+) S = G er = +P C = +P T = G yr = P C +P C = P +P 2 2 2 ω rad/s Bode Diagram S T S+T Magnitude T(jω) 2 3 2 4 5 3 2 ω rad/s 6 2 2 AERO 422, Instructor: Raktim Bhattacharya 8 / 52

.. All transfer functions... With proportional controller G er G ed G en 2 2 4 6 2 3 2 2 8 2 3 2 2 G yr G yd G yn 2 2 2 4 2 4 6 2 4 6 2 8 2 6 2 AERO 422, Instructor: Raktim Bhattacharya 9 / 52

... Piper Dakota Control System.. ed with root locus method System Transfer function from δ e (elevator angle) to θ (pitch angle) is P (s) = θ(s) δ e (s) = 6(s + 2.5)(s +.7) (s 2 + 5s + 4)(s 2 +.3s +.6) Control Objective an autopilot so that the step response to elevator input has t r < and M p < % = ω n >.8 rad/s and ζ >.6 2 nd order Controller C(s) =.5 s + 3 ( +.5/s) s + 25 AERO 422, Instructor: Raktim Bhattacharya 2 / 52

... Piper Dakota Control System.. Time Response Ref to Control Ref to Error Ref to Output.5.5 Elevator angle (deg).5 Error (deg).5 Pitch Angle (deg).5.5.2.4.6 Time (seconds).5 2 Time (seconds) 2 Time (seconds) Dist to Control Dist to Error Dist to Output 5 Elevator angle (deg).5 Error (deg) 2 3 4 Pitch angle (deg) 4 3 2.5 2 Time (seconds) 5 2 4 Time (seconds) 2 4 Time (seconds) AERO 422, Instructor: Raktim Bhattacharya 2 / 52

... Piper Dakota Control System.. Frequency Response G er G ed G en 2 2 2 2 4 6 2 3 2 4 6 8 4 8 G yr G yd G yn 2 2 2 2 4 6 2 3 2 4 6 8 4 8 AERO 422, Instructor: Raktim Bhattacharya 22 / 52

... Piper Dakota Control System.. Frequency Response (contd.) G ur 2 2 4 6 8 2 2 3 G ud 2 2 4 6 8 2 3 AERO 422, Instructor: Raktim Bhattacharya 23 / 52

... Approximate.. Useful for & Analysis Let open-loop transfer function be Write in Bode form KG(s) = K (s z )(s z 2 ) (s p )(s p 2 ) KG(jω) = K (jωτ + )(jωτ 2 + ) (jωτ a + )(jωτ b + ) K is the DC gain of the system. Example G(s) = (s + ) (s + 2)(s + 3) = G(jω) = jω + (jω + 2)(jω + 3) = 6 jω + (jω/2 + )(jω/3 + ) AERO 422, Instructor: Raktim Bhattacharya 25 / 52

... Approximate.. contd. Transfer function in Bode Form KG(jω) = K (jωτ + )(jωτ 2 + ) (jωτ a + )(jωτ b + ) Three cases. K (jω) n pole, zero at origin 2. (jω + ) ± real pole, zero 3. [ ( jω ω n ) 2 + 2ζ jω ω n + ] ± complex pole, zero AERO 422, Instructor: Raktim Bhattacharya 26 / 52

..... Case: K (jω) n pole, zero at origin Gain log K (jω) n = log K + n log jw = log K + n log w Phase K (jω) n = K + n jω = + n 9 2 8 6 4 2 Gain Phase 2 2 4 3 6 8 4 2 3 2 3 (a) Gain (b) Phase AERO 422, Instructor: Raktim Bhattacharya 27 / 52

..... Case:2 (jωτ + ) ± real pole, zero Gain (jωτ + ) = Frequency ω = /τ is the break point {, ωτ <<, jωτ, ωτ >>. 2 Gain 2 3 4 2 3 AERO 422, Instructor: Raktim Bhattacharya 28 / 52

... Case:2 (jωτ + ) ± real pole, zero (contd.).. Phase, ωτ <<, = jωτ + = jωτ, ωτ >>, jωτ = 9 ωτ, jωτ + = 45 8 6 4 2 Phase 2 4 6 8 2 3 AERO 422, Instructor: Raktim Bhattacharya 29 / 52

.. Example... G(s) = 2(s +.5) s(s + )(s + 5) Bode Diagram Bode Diagram 4 4 2 2 2 4 2 4 6 6 8 8 Phase (deg) 45 9 35 8 2 2 3 Phase (deg) 3 6 9 2 5 8.. AERO 422, Instructor: Raktim Bhattacharya 3 / 52

Errors

.. Closed-loop system... r + e u y. C P y Closed-loop transfer function G er = + P C = K (jω) n (jωτ + )(jωτ 2 + ) (jωτ a + )(jωτ b + ) Steady-state gain lim sger(s) s s lim Ger(jω) ω P C = 2(s +.5) s(s + )(s + 5) Typically analysis is done with open-loop system 2 3 4 Bode Diagram 5 6 3 2 2 AERO 422, Instructor: Raktim Bhattacharya 32 / 52

.. Open-loop system... r + e u y. C P y Open-loop transfer function 2(s +.5) P C = s(s + )(s + 5) = K (jω) n (jωτ + )(jωτ 2 + ) (jωτ a + )(jωτ b + ) Steady-state error step e ss = Steady-state error ramp + K p, K p := K. 4 2 Bode Diagram e ss = K v 2 4 System type is the slope of the low frequency asymptote K v is the value of low frequency asymptote at ω = rad/s 6 8 2 2 3 AERO 422, Instructor: Raktim Bhattacharya 33 / 52

Analysis

.. r + e u y. C P y Given open-loop data C(s) = K, P (s) = s(s+) 2 Imaginary Axis (seconds ) 3 2 2 Root Locus. All points on root locus satisfy + P (s)c(s) = P (s)c(s) = = P (s)c(s) = and P (s)c(s) = 8 At neutral stability point s = jω, P (jω)c(jω) = P (jω)c(jω) = 8.. 3 5 4 3 2 2 Stable for K < 2 Real Axis (seconds ) AERO 422, Instructor: Raktim Bhattacharya 35 / 52

... P (jω)c(jω) < at P (jω)c(jω) = 8.. Bode Diagram 5 5 Phase (deg) 5 45 9 35 8 K=. K=2 K= 225 27 2 2 AERO 422, Instructor: Raktim Bhattacharya 36 / 52

.. Gain Margin... Open loop Bode Diagram 5 5 Phase (deg) 5 45 9 35 8 K=. K=2 K= 225 27 2 2 Gain Margin (GM): factor by which gain can be increased at P (jω)c(jω) = 8 AERO 422, Instructor: Raktim Bhattacharya 37 / 52

.. Phase Margin... Open loop Bode Diagram 5 5 Phase (deg) 5 45 9 35 8 K=. K=2 K= 225 27 2 2 Phase Margin (PM): amount by which phase exceeds 8 at P (jω)c(jω) = AERO 422, Instructor: Raktim Bhattacharya 38 / 52

.. Nyquist Plot... Relates open-loop frequency response to number of unstable closed-loop poles Residue theorem in complex analysis Plot P (jω)c(jω) in the complex plain Number of encirclements of equals Z P of + P (s)c(s) AERO 422, Instructor: Raktim Bhattacharya 39 / 52

.. Nyquist Plot... contd. Write P (s)c(s) = KG(s) = K N(s) D(s) = + P (s)c(s) = D(s) + KN(s) D(s) Poles of + P (s)c(s) = Poles of G(s) none of them on RHP Number of encirclements = number of zeros of + P (s)c(s) on RHP number of poles of closed-loop system AERO 422, Instructor: Raktim Bhattacharya 4 / 52

.. Nyquist Plot... Example: P (s)c(s) = K s(s+) 2 Nyquist Diagram 3 2 K= K=2 K= Imaginary Axis 2 3 5 5 Real Axis AERO 422, Instructor: Raktim Bhattacharya 4 / 52

.. Nyquist Plot Determining Gain. Given P (s)c(s) = K, what is K for stability? s(s+) 2 Encirclement of /K + G(s) =.. Nyquist Diagram 2.5 Imaginary Axis.5.5.5 2 2.8.6.4.2.8.6.4.2 Real Axis AERO 422, Instructor: Raktim Bhattacharya 42 / 52

.. Nyquist Plot... Gain and Phase Margin Nyquist plot of P (s)c(s) Nyquist Diagram 2.5 Imaginary Axis.5.5.5 2 2.5.5.5.5 2 Real Axis AERO 422, Instructor: Raktim Bhattacharya 43 / 52

Frequency Domain

... Using of P (jω)c(jω) Loop Shaping.. Develop conditions on the Bode plot of the open loop transfer function Sensitivity +P C Steady-state errors: slope and magnitude at lim ω Robust to sensor noise Disturbance rejection Controller roll off = not excite high-frequency modes of plant Robust to plant uncertainty Look at Bode plot of L(jω) := P (jω)c(jw) AERO 422, Instructor: Raktim Bhattacharya 45 / 52

... Frquency Domain Specifications Constraints on the shape of L(jω).. P (j!)c(j!) Steady-state error boundary slope! c Sensor noise, plant uncertainty! Choose C(jω) to ensure L(jω) does not violate the constraints Slope at ω c ensures P M 9 stable if P M > = Sensor noise, disturbance Plant uncertainty P C > 8 AERO 422, Instructor: Raktim Bhattacharya 46 / 52

.. Plant Uncertainty... P (jω) = P (jω)( + P (jω)) Bode Diagram 5 5 True Model Unc+ Unc P (j!)c(j!) Steady-state error boundary slope!c Sensor noise, plant uncertainty! slope 5 2 P (j!)c(j!) Steady-state error boundary!c Sensor noise, disturbance Plant uncertainty! 25 2 2 3 AERO 422, Instructor: Raktim Bhattacharya 47 / 52

... Sensor Characteristics.. Noise spectrum P (j!)c(j!) Steady-state error boundary slope!c Sensor noise, plant uncertainty! P (j!)c(j!) slope!c Steady-state error boundary Sensor noise, disturbance Plant uncertainty! G yn = P C + P C AERO 422, Instructor: Raktim Bhattacharya 48 / 52

.. Reference Tracking... Bandlimited else conflicts with noise rejection Spectrum of r(t) X(f).5.4.3.2. P (j!)c(j!) Steady-state error boundary slope!c Sensor noise, plant uncertainty! 5 5 2 25 Frequency (Hz) X(f).5.4.3.2. Spectrum of n(t) slope Sensor noise, disturbance Plant uncertainty!!c Steady-state error boundary 5 5 2 25 Frequency (Hz) P (j!)c(j!) G yr = G yn = P C +P C P C + P C AERO 422, Instructor: Raktim Bhattacharya 49 / 52

... Disturbance Rejecton.. Bandlimited else conflicts with noise rejection Spectrum of d(t) X(f).5.4.3.2. P (j!)c(j!) Steady-state error boundary slope!c Sensor noise, plant uncertainty! 5 5 2 25 Frequency (Hz) X(f).5.4.3.2. Spectrum of n(t) slope Sensor noise, disturbance Plant uncertainty!!c Steady-state error boundary 5 5 2 25 Frequency (Hz) P (j!)c(j!) G yd = G yn = P C +P C P + P C AERO 422, Instructor: Raktim Bhattacharya 5 / 52

..... AERO 422, Instructor: Raktim Bhattacharya 5 / 52