s 0.068μ s Rearrange the function into a more convenient form and verify that it is still equal to the original.

Similar documents
SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

ROUTH HURWITZ ANALYSIS

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. R 4 := 100 kohm

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM-SHAPING CIRCUITS

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Introduction to Laplace Transform Techniques in Circuit Analysis

5.5 Application of Frequency Response: Signal Filters

Chapter 9: Controller design. Controller design. Controller design

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

CHAPTER 8 OBSERVER BASED REDUCED ORDER CONTROLLER DESIGN FOR LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

EE40 Lec 13. Prof. Nathan Cheung 10/13/2009. Reading: Hambley Chapter Chapter 14.10,14.5

Massachusetts Institute of Technology Dynamics and Control II

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

Chapter 17 Amplifier Frequency Response

ECEN620: Network Theory Broadband Circuit Design Fall 2018

55:041 Electronic Circuits

Solving Differential Equations by the Laplace Transform and by Numerical Methods

55:041 Electronic Circuits

Question 1 Equivalent Circuits

376 CHAPTER 6. THE FREQUENCY-RESPONSE DESIGN METHOD. D(s) = we get the compensated system with :

Bogoliubov Transformation in Classical Mechanics

The Measurement of DC Voltage Signal Using the UTI

FUNDAMENTALS OF POWER SYSTEMS

Chapter 9 Review. Block: Date:

Pulsed Magnet Crimping

Digital Control System

( ) 2. 1) Bode plots/transfer functions. a. Draw magnitude and phase bode plots for the transfer function

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Linearteam tech paper. The analysis of fourth-order state variable filter and it s application to Linkwitz- Riley filters

MAE140 Linear Circuits Fall 2012 Final, December 13th

The Electric Potential Energy

Example: Amplifier Distortion

5.5 Sampling. The Connection Between: Continuous Time & Discrete Time

INC 341 Feedback Control Systems. Introduction. Introduction. System modelling

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources

EE/ME/AE324: Dynamical Systems. Chapter 8: Transfer Function Analysis

online learning Unit Workbook 4 RLC Transients

EE247 Lecture 10. Switched-Capacitor Integrator C

HOMEWORK ASSIGNMENT #2

Dimensional Analysis A Tool for Guiding Mathematical Calculations

Analog Computing Technique

The Operational Amplifier

Real Sources (Secondary Sources) Phantom Source (Primary source) LS P. h rl. h rr. h ll. h lr. h pl. h pr

4.1 INTRODUCTION 4. CONTROL FOR VOLTAGE BALANCING 80

ECE382/ME482 Spring 2004 Homework 4 Solution November 14,

EE 4443/5329. LAB 3: Control of Industrial Systems. Simulation and Hardware Control (PID Design) The Inverted Pendulum. (ECP Systems-Model: 505)

Reduction of Multiple Subsystems

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability

EECE 301 Signals & Systems Prof. Mark Fowler

Application of Extended Scaling Law to the Surface Tension of Fluids of Wide Range of Molecular Shapes

March 18, 2014 Academic Year 2013/14

BASIC INDUCTION MOTOR CONCEPTS

Chapter 4. The Laplace Transform Method

ECE 3510 Root Locus Design Examples. PI To eliminate steady-state error (for constant inputs) & perfect rejection of constant disturbances

Control Systems Engineering ( Chapter 7. Steady-State Errors ) Prof. Kwang-Chun Ho Tel: Fax:

Comparison of Hardware Tests with SIMULINK Models of UW Microgrid

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall

NOTE: The items d) and e) of Question 4 gave you bonus marks.

Follow The Leader Architecture

R L R L L sl C L 1 sc

Linear Momentum. calculate the momentum of an object solve problems involving the conservation of momentum. Labs, Activities & Demonstrations:

Lecture #9 Continuous time filter

OBSERVER-BASED REDUCED ORDER CONTROLLER DESIGN FOR THE STABILIZATION OF LARGE SCALE LINEAR DISCRETE-TIME CONTROL SYSTEMS

EE 477 Digital Signal Processing. 4 Sampling; Discrete-Time

Liquid cooling

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

What lies between Δx E, which represents the steam valve, and ΔP M, which is the mechanical power into the synchronous machine?

ECE-202 FINAL December 13, 2016 CIRCLE YOUR DIVISION

Main Topics: The Past, H(s): Poles, zeros, s-plane, and stability; Decomposition of the complete response.

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Micro-grid operation of inverter based distributed generation with voltage and frequency dependent loads

Basic parts of an AC motor : rotor, stator, The stator and the rotor are electrical

EE Control Systems LECTURE 6

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

GNSS Solutions: What is the carrier phase measurement? How is it generated in GNSS receivers? Simply put, the carrier phase

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System

Lecture 15 - Current. A Puzzle... Advanced Section: Image Charge for Spheres. Image Charge for a Grounded Spherical Shell

On Stability of Electronic Circuits

SKEE 3143 CONTROL SYSTEM DESIGN. CHAPTER 3 Compensator Design Using the Bode Plot

Finding the location of switched capacitor banks in distribution systems based on wavelet transform

2008 Physics Bowl Solutions

Several schematic symbols for a capacitor are shown below. The symbol resembles the two conducting surfaces separated with a dielectric.

EE C128 / ME C134 Problem Set 1 Solution (Fall 2010) Wenjie Chen and Jansen Sheng, UC Berkeley

SERIES COMPENSATION: VOLTAGE COMPENSATION USING DVR (Lectures 41-48)

Designing Circuits Synthesis - Lego

60 p. 2. A 200hp 600V, 60 Hz 3-phase induction motor has start code F. What line current should be expected at starting? 4 marks.

Gaussian Plane Waves Plane waves have flat emag field in x,y Tend to get distorted by diffraction into spherical plane waves and Gaussian Spherical

Homework Assignment No. 3 - Solutions

EECS2200 Electric Circuits. RLC Circuit Natural and Step Responses

ECE Linear Circuit Analysis II

Social Studies 201 Notes for March 18, 2005

Sampling and the Discrete Fourier Transform

HIGHER-ORDER FILTERS. Cascade of Biquad Filters. Follow the Leader Feedback Filters (FLF) ELEN 622 (ESS)

AEIJST June Vol 2 Issue 6 ISSN

Riemann s Functional Equation is Not Valid and its Implication on the Riemann Hypothesis. Armando M. Evangelista Jr.

1. Design a 3rd order Butterworth low-pass filters having a dc gain of unity and a cutoff frequency, fc, of khz.

Transcription:

Title: TCS Traner Function Author: Eric Warmbier Decription: Thi document derive the variou traner unction or the TCS ytem on the IRTF. The ytem i broken down into block in a Viio document. A traner unction will be developed or thee block (or group o block) to be ued in Simulink. Not all block will be preent in thi document. Simple block may only be preented in the Viio ile. Contant: μ 6 n 9 p 2 k 3 a BLOCK # & #2 π 68 rad Thee block are inverting umming ampliier with ome iltering and ome compenation on one input. Each input can be calculated eparately and then ummed. Generically, the traner unction i: G_comp() Where: = Z_eedback() Z_ource() Z_G_comp_eedback() Z_G_comp_ource() 3k 3k +.33μ 22p 22 p + 56k + 68k 68k +.68μ.68 μ G_comp() Z_G_comp_eedback() Z_G_comp_ource() G_comp() 3 5.26e26 + 2.3e2 2 2.5e26 + 6.3e23 2 + 2.99e2 3 + 5.3e27 Rearrange the unction into a more convenient orm and veriy that it i till equal to the original. Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page o 33

G_comp_rearranged() 57.63 6 2 +.99 56.39 9 3 + 5. 6 2 +.6 + Graph to veriy that the unction i imiliar to what i expected. It i a bandpa ilter with ome compenation. 2 TCS Block Compenated Input HA Traner Function 2 log G_comp( j 2 π ) 2 log G_comp_rearranged( j 2 π ) 2 3. 3 Generically, the other input traner unction i: G_other() Where: = Z_eedback() Z_ource() Z_G_other_eedback() 3k 3k + 22p 22 p Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 2 o 33

Z_G_other_ource k G_other() Z_G_other_eedback() Z_G_other_ource() G_other() 5. 3 33. + 5. Rearrange the unction into a more convenient orm and veriy that it i till equal to the original. G_other_rearranged() 3 66 6 + Graph to veriy that the unction i imiliar to what i expected. It i a lowpa ilter. Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 3 o 33

2 TCS Block Other Input HA Traner Function 2 log G_other( j 2 π ) 2 log G_other_rearranged( j 2 π ) 2 3. 3 BLOCK #3 Thee block are dierence ampliier with ome low pa iltering. Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page o 33

Generically, the traner unction i: G3() = Where: Z_eedback() Z_ource() Z_G3_eedback() k k +.22μ.22 μ Z_G3_ource 7k G3() Z_G3_eedback() Z_G3_ource() G3() collect 3 967.. + 55. Rearrange the unction into a more convenient orm and veriy that it i till equal to the original. Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 5 o 33

G3_rearranged().23 22 6 + Graph to veriy that the unction i imiliar to what i expected. It i a low pa with le than unity gain. TCS Block 3 HA Traner Function 5 2 log G3( j 2 π ) 2 log G3_rearranged( j 2 π ) 2 25 3. 3 The tachometer alo have a gain (converion rom motion, in radian, to volt). From teting, the reult below were obtained. Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 6 o 33

TCS Tachometer Voltage v. Speed 2.8.6 y =.885x +.583 R 2 =.999922. Voltage (V).2.8.6 y =.865x -.27 R 2 =.999997 Eat Wet Linear (Wet) Linear (Eat)..2 5 5 2 25 -.2 Speed (a/) Aume that a "nominal" tach will have a gain equal to the average o thee two lope. V V.885 +.865 a a nom_tach_gain 2 nom_tach_gain =.87 V a The unit above are in V(arcecond/). The input will be in radian/, o thi need to be converted into V/(radian/). nom_tach_gain = 8.739 V rad BLOCK # Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 7 o 33

Thee block are inverting umming ampliier with ome iltering on the irt tage. A traner unction or each input can be determined and then added to together. Generically, the traner unction or each o the irt tage input (Z3) i: G() = Where: Z_eedback() Z_ource() Z_G_eedback() 33.2k 33.2k +.7μ.7 μ Z_G_ource 68.k G() Z_G_eedback() Z_G_ource() G() 3.36e9.36e8 + 2.79e9 Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 8 o 33

Rearrange the unction into a more convenient orm and veriy that it i till equal to the original. G_rearranged().875.87 + Graph to veriy that the unction i imiliar to what i expected - a low pa ilter with gain o ~.5. TCS Block HA Traner Function 2 log G( j 2 π ) 2 log G_rearranged( j 2 π ) 2 3. 3 BLOCK #7 The block i a group o inverting umming ampliier. There are two tage. The irt tage ha two inverting ampliier without iltering that are ummed into the inal tage that ha iltering. The only tage that will be calculated i the inal tage or only the command input. The mathematic behind thi circuit create a magnitude output limited circuit with a gain o. The irt tage are jut imple addition. Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 9 o 33

Generically, the traner unction or the econd tage CMD input (Z9) i: G7() = Where: Z_eedback() Z_ource() Z_G7_eedback() 5k 5k +.68μ.68 μ Z_G7_ource 5k G7() Z_G7_eedback() Z_G7_ource() Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page o 33

G7() 3 2.9e8. + 2.9e8 Rearrange the unction into a more convenient orm and veriy that it i till equal to the original. G7_rearranged() 3 6 + Graph to veriy that the unction i imiliar to what i expected - a low pa ilter with gain o (db). TCS Block HA Traner Function 2 log G7( j 2 π ) 2 log G7_rearranged( j 2 π ) 2 3. 3 BLOCK #9 The block i an inverting umming ampliier with 5 input, ome iltering, and output magntiude limiting. The "Joytick" input will be ignored ince it will not be ued in the ervo analyi. Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page o 33

Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 2 o 33

Generically, the traner unction or each input i: G9() = Where: Z_eedback() Z_ource() Z_G9_eedback() 7k 7k +.μ. μ The ource impedance or each input will vary or each input. For "proportional output": Z_G9_prop_ource() 56k 56k + + 5.k.7μ.7μ + 5.k G9_proportional() Z_G9_eedback() Z_G9_prop_ource() G9_proportional() 3 5.6e + 6.2e5 5.93e3 + 2.62e 2 + 7.e5 Rearrange the unction into a more convenient orm and veriy that it i till equal to the original. G9_prop_rearranged().75 +.8387 3.522 6 2 +.8 + Graph to veriy that the unction i imiliar to what i expected - a low pa ilter with another pole. Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 3 o 33

TCS Block HA Traner Function 2 2 log G9_proportional( j 2 π ) 2 log G9_prop_rearranged( j 2 π ) 2. 3 For "integrator output": Z_G9_int_ource 56k G9_integrator() Z_G9_eedback() Z_G9_int_ource() G9_integrator() 3 5.37e8 38. + 6.e8 Rearrange the unction into a more convenient orm and veriy that it i till equal to the original. G9_int_rearranged().839 7 6 + Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page o 33

Graph to veriy that the unction i imiliar to what i expected - a low pa ilter. TCS Block 9 HA Traner Function 2 log G9_integrator( j 2 π ) 2 log G9_int_rearranged( j 2 π ) 2 3. 3 For "EAST and WEST" lew: Z_G9_lew_ource 7.5k G9_lew() Z_G9_eedback() Z_G9_lew_ource() G9_lew() 3.25e9 9. + 2.e8 Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 5 o 33

Rearrange the unction into a more convenient orm and veriy that it i till equal to the original. G9_lew_rearranged() 6.25 7 6 + Graph to veriy that the unction i imiliar to what i expected - a low pa ilter. TCS Block 9 HA Traner Function 2 log G9_integrator( j 2 π ) 2 log G9_int_rearranged( j 2 π ) 2 3. 3 BLOCK # Thi block i an inverting ampliier with iltering: Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 6 o 33

Generically, the HA axi traner unction i: G() Where: = Z_eedback() Z_ource() Z_G_HA_eedback() k k +.μ. μ Z_G_HA_ource 5.k G_HA() Z_G_HA_eedback() Z_G_HA_ource() G_HA() 3 3.3e9 6. +.6e9 Rearrange the unction into a more convenient orm and veriy that it i till equal to the original. G_HA_rearranged().96 6 + Graph to veriy that the unction i imiliar to what i expected - a low pa ilter with gain. Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 7 o 33

6 TCS Block HA Traner Function 2 log G_HA( j 2 π ) 2 log G_HA_rearranged( j 2 π ) 2. 3 The DEC axi ha a lightly dierent gain. Generically, the traner unction i: G () = Where: Z_eedback() Z_ource() Z_G_DEC_eedback() k k +.μ. μ Z_G_DEC_ource 7.5k G_DEC() Z_G_DEC_eedback() Z_G_DEC_ource() Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 8 o 33

G_DEC() 3 2.3e9 6. +.6e9 Rearrange the unction into a more convenient orm and veriy that it i till equal to the original. G_DEC_rearranged().33. +. Graph to veriy that the unction i imiliar to what i expected - a low pa ilter with gain. 3 TCS Block DEC Traner Function 2 2 log G_DEC( j 2 π ) 2 log G_DEC_rearranged( j 2 π ). 3 BLOCK #2 Thi block conit o a umming, inverting integrator that can be cleared (cap horted with 3Ω). Each input will be calculated eparately and thee reult can be ummed together or the complete unction. When the integrator i put in parallel with a reitor, the gain or all the input become very mall and the ilter ormed ha a relatively low cuto requency. Normal operation i with the capacitor NOT in parallel with R7. Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 9 o 33

ALL calculation below are with no R7 in parallel with the capacitor (normal operation) until noted. Generically, the traner unction or each input i: G () = Where: Z_eedback() Z_ource() Z2_eedback() μ For the error input: Z2_error_ource 62k G2_error() Z2_eedback() Z2_error_ource() Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 2 o 33

G2_error() 6.73 Rearrange the unction into a more convenient orm and veriy that it i till equal to the original. G2_err_rearranged().62 Graph to veriy that the unction i imilar to what i expected - an integrator. TCS Block DEC Traner Function 5 2 log G2_error( j 2 π ) 2 log G2_err_rearranged( j 2 π ) 5. For both EAST and WEST eed orward input: Z2_FF_ource 5k G2_FF() Z2_eedback() Z2_FF_ource() Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 2 o 33

G2_FF() 66.67 Rearrange the unction into a more convenient orm and veriy that it i till equal to the original. G2_FF_rearranged().5 Graph to veriy that the unction i imiliar to what i expected: an inverting integrator. 2 TCS Block DEC Traner Function 2 log G2_FF( j 2 π ) 2 log G2_FF_rearranged( j 2 π ) 2. ALL calculation below are with R7 in parallel with the capacitor. Generically, the traner unction or each input i: G () = Where: Z_eedback() Z_ource() Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 22 o 33

Z2_eedback_R7() 3 μ 3 + μ For the error input: Z2_error_ource 62 G2_error_R7() Z2_eedback_R7() Z2_error_ource() G2_error_R7().852e2 3.e9 +.e23 Rearrange the unction into a more convenient orm and veriy that it i till equal to the original. G2_err_R7_rearranged().852 3 3 6 + Graph to veriy that the unction i imilar to what i expected: inverting ampliier with low gain & ilter. Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 23 o 33

TCS Block 2 Error, R7 Traner Function 2 log G2_error_R7( j 2 π ) 2 log G2_err_R7_rearranged( j 2 π ) 5. 3 For both EAST and WEST eed orward input: Z2_FF_ource_R7 5k G2_FF_R7() Z2_eedback_R7() Z2_FF_ource_R7() G2_FF_R7() 2. 3. +. Rearrange the unction into a more convenient orm and veriy that it i till equal to the original. G2_FF_rearranged_R7().2 3 6 + Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 2 o 33

Graph to veriy that the unction i imilar to what i expected: inverting ampliier with low gain & ilter. 3 TCS Block 2 Feed Forward, R7 Tran. Function 32 2 log G2_FF_R7( j 2 π ) 2 log G2_FF_rearranged_R7( j 2 π ) 3 36 38. 3 Mathcad TCS Traner Function 27_7.xmcdZ:\public_html\Preentation\ Lat Save: /27/27 Page 25 o 33