A Neuro-Fuzzy Approach to Reactive Power Compensation for Improvement of Transmission Line Performance

Similar documents
Transmission Line Compensation using Neuro-Fuzzy Approach for Reactive Power

Simultaneous placement of Distributed Generation and D-Statcom in a radial distribution system using Loss Sensitivity Factor

Optimal Performance Enhancement of Capacitor in Radial Distribution System Using Fuzzy and HSA

OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC

Optimal capacitor placement and sizing via artificial bee colony

OPTIMAL CAPACITORS PLACEMENT IN DISTRIBUTION NETWORKS USING GENETIC ALGORITHM: A DIMENSION REDUCING APPROACH

A PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION FEEDERS

CAPACITOR PLACEMENT USING FUZZY AND PARTICLE SWARM OPTIMIZATION METHOD FOR MAXIMUM ANNUAL SAVINGS

Optimal Capacitor Placement in Radial Distribution Systems Using Flower Pollination Algorithm

Optimal Placement and Sizing of Distributed Generators in 33 Bus and 69 Bus Radial Distribution System Using Genetic Algorithm

A Novel Analytical Technique for Optimal Allocation of Capacitors in Radial Distribution Systems

PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION FEEDERS

A Study of the Factors Influencing the Optimal Size and Site of Distributed Generations

Optimal Placement of Multi DG Unit in Distribution Systems Using Evolutionary Algorithms

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

THE loss minimization in distribution systems has assumed

Congestion Alleviation using Reactive Power Compensation in Radial Distribution Systems

COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS

ENERGY LOSS MINIMIZATION AND RELIABILITY ENHANCEMENT IN RADIAL DISTRIBUTION SYSTEMS DURING LINE OUTAGES

Meta Heuristic Harmony Search Algorithm for Network Reconfiguration and Distributed Generation Allocation

Fuzzy Control for Shunt Capacitors Applied in Distribution Feeders

K. Valipour 1 E. Dehghan 2 M.H. Shariatkhah 3

Chapter-2 Literature Review

Optimal Capacitor Placement in Distribution System with Random Variations in Load

CHAPTER 6 STEADY-STATE ANALYSIS OF SINGLE-PHASE SELF-EXCITED INDUCTION GENERATORS

Optimal Capacitor Placement and Sizing on Radial Distribution System by using Fuzzy Expert System

Application of Teaching Learning Based Optimization for Size and Location Determination of Distributed Generation in Radial Distribution System.

Optimal Placement & sizing of Distributed Generator (DG)

Optimal Capacitor placement in Distribution Systems with Distributed Generators for Voltage Profile improvement by Particle Swarm Optimization

Minimization of Energy Loss using Integrated Evolutionary Approaches

Study of a neural network-based system for stability augmentation of an airplane

EE5250 TERM PROJECT. Report by: Akarsh Sheilendranath

International Journal of Mechatronics, Electrical and Computer Technology

Distribution System s Loss Reduction by Optimal Allocation and Sizing of Distributed Generation via Artificial Bee Colony Algorithm

Optimal Capacitor Placement in Radial Distribution System to minimize the loss using Fuzzy Logic Control and Hybrid Particle Swarm Optimization

J. Electrical Systems x-x (2010): x-xx. Regular paper

APPLICATION OF RECURRENT NEURAL NETWORK USING MATLAB SIMULINK IN MEDICINE

Design of PSS and SVC Controller Using PSO Algorithm to Enhancing Power System Stability

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 03 Mar p-issn:

J. Electrical Systems 10-1 (2014): Regular paper. Optimal Power Flow and Reactive Compensation Using a Particle Swarm Optimization Algorithm

Two-Layer Network Equivalent for Electromagnetic Transients

OPTIMAL DG AND CAPACITOR ALLOCATION IN DISTRIBUTION SYSTEMS USING DICA

An Improved Method for Determining Voltage Collapse Proximity of Radial Distribution Networks

A FUZZY NEURAL NETWORK MODEL FOR FORECASTING STOCK PRICE

Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm

Performance Of Power System Stabilizerusing Fuzzy Logic Controller

Short Term Load Forecasting Of Chhattisgarh Grid Using Artificial Neural Network

Fast Power Loss Computation and Shunt Capacitor Insertion Using Fuzzy Logic Technique

Optimal capacitor placement and sizing using combined fuzzy-hpso method

A Comparative Study Of Optimization Techniques For Capacitor Location In Electrical Distribution Systems

Comparison of Loss Sensitivity Factor & Index Vector methods in Determining Optimal Capacitor Locations in Agricultural Distribution

Harmonic Modeling of Networks

OPTIMAL LOCATION AND SIZING OF DISTRIBUTED GENERATOR IN RADIAL DISTRIBUTION SYSTEM USING OPTIMIZATION TECHNIQUE FOR MINIMIZATION OF LOSSES

OPTIMAL DISPATCH OF REAL POWER GENERATION USING PARTICLE SWARM OPTIMIZATION: A CASE STUDY OF EGBIN THERMAL STATION

Transient Stability Assessment and Enhancement Using TCSC with Fuzzy Logic Controller

Power System Engineering Prof. Debapriya Das Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Reliability of Bulk Power Systems (cont d)

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

NEW EVOLUTIONARY TECHNIQUE FOR OPTIMIZATION SHUNT CAPACITORS IN DISTRIBUTION NETWORKS

Application of Artificial Neural Networks in Evaluation and Identification of Electrical Loss in Transformers According to the Energy Consumption

ANALYSIS OF SUBSYNCHRONOUS RESONANCE EFFECT IN SERIES COMPENSATED LINE WITH BOOSTER TRANSFORMER

K. MAHESH 2 Asst Prof & HOD, Sri kottam tulasi reddy memorial college of engineering, AP-INDIA

EXCITATION CONTROL OF SYNCHRONOUS GENERATOR USING A FUZZY LOGIC BASED BACKSTEPPING APPROACH

A Scenario-based Transmission Network Expansion Planning in Electricity Markets

FOR REDUCE SUB-SYNCHRONOUS RESONANCE TORQUE BY USING TCSC

Study of Transient Stability with Static Synchronous Series Compensator for an SMIB

CAPACITOR PLACEMENT IN UNBALANCED POWER SYSTEMS

CHAPTER 4 BASICS OF ULTRASONIC MEASUREMENT AND ANFIS MODELLING

Solving Distribution System Overload Contingency Using Fuzzy Multi-Objective Approach Considering Customer Load Pattern

Optimal Unified Power Quality Conditioner Allocation in Distribution Systems for Loss Minimization using Grey Wolf Optimization

A Soft Computing Approach for Fault Prediction of Electronic Systems

Adaptive Fuzzy Logic Power Filter for Nonlinear Systems

AN IMMUNE BASED MULTI-OBJECTIVE APPROACH TO ENHANCE THE PERFORMANCE OF ELECTRICAL DISTRIBUTION SYSTEM

CONTROL OF POWER SYSTEMS WITH FACTS DEVICES CONSIDERING DIFFERENT LOAD CHARACTERISTICS

Farzaneh Ostovar, Mahdi Mozaffari Legha

Optimal Placement and Sizing of Distributed Generation for Power Loss Reduction using Particle Swarm Optimization

Role of Synchronized Measurements In Operation of Smart Grids

An Adaptive Approach to Posistioning And Optimize Size of DG Source to Minimise Power Loss in Distribution Network

CHAPTER 5 STEADY-STATE ANALYSIS OF THREE-PHASE SELF-EXCITED INDUCTION GENERATORS

Real Time Voltage Control using Genetic Algorithm

Dynamic Classification of Power Systems via Kohonen Neural Network

ANFIS Modelling of a Twin Rotor System

SSSC Modeling and Damping Controller Design for Damping Low Frequency Oscillations

Centralized Supplementary Controller to Stabilize an Islanded AC Microgrid

Analyzing the Effect of Loadability in the

SINGLE OBJECTIVE RISK- BASED TRANSMISSION EXPANSION

Classification of Capacitor Allocation Techniques

Analytical Study Based Optimal Placement of Energy Storage Devices in Distribution Systems to Support Voltage and Angle Stability

DYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID

OPTIMAL CAPACITOR PLACEMENT AND SIZING IN A RADIAL DISTRIBUTION SYSTEM USING CLONAL SELECTION ALGORITHM

ABSTRACT INTRODUCTION

Performance Improvement of the Radial Distribution System by using Switched Capacitor Banks

Effects of Capacitor Bank Installation in a Medium Voltage (MV) Substation

TRANSIENT STABILITY IMPROVEMENT OF POWER SYSTEM USING UPFC AND FEEDBACK LINEARIZATION CONTROL

Multiple Distribution Generation Location in Reconfigured Radial Distribution System Distributed generation in Distribution System

Power System Parameter Estimation for Enhanced Grid Stability Assessment in Systems with Renewable Energy Sources

Analytical approach for placement and sizing of distributed generation on distribution systems

MODELLING OF TOOL LIFE, TORQUE AND THRUST FORCE IN DRILLING: A NEURO-FUZZY APPROACH

Trajectory Sensitivity Analysis as a Means of Performing Dynamic Load Sensitivity Studies in Power System Planning

DISTRIBUTION SYSTEM OPTIMISATION

Transcription:

A Neuro-Fuzzy Approach to Reactive Power Compensation for Improvement of Transmission Line Performance 1 Paramjit Singh, 2 Rajesh Chaudhary, 3 R.S. Sachdev 1 Mtech Scholar, 2 Assistant Prof., 3 Assistant Prof. 1 Electrical Engineering Department, 1 E-Max Group Of Institutions, Badhauli Ambala, Haryana Abstract-- Reactive power control in transmission line has been an important problem for the last many years. The role of reactive power can be understood as it affects voltage stability, power factor and losses in a power system. To solve this problem many approaches have been used in the literature. Capacitors are utilized for the same. But the problem lies in finding the optimal location and size of the capacitors. This has been targeted by many researchers using evolutionary algorithms. This thesis proposes a novel idea of using Adaptive Neuro Fuzzy Inference System for finding the optimal placement of capacitors and size of the capacitors deployed. ANFIS based algorithm is designed utilizing neural network and fuzzy logic. The membership functions are formulated using an initial inference and then the weights of the common membership functions are found by using Neural Network. Gradient Learning is utilized for tuning. The results are found to be quite encouraging and convergence is achieved. The system is tested on a designed transmission T shape model. Keywords Face recognition; Preprocessing; characteristics match; Image Processing etc. I. INTRODUCTION Power Compensation During the past 20 years, the rise in current demand has conferred higher needs from the facility business. A lot of power plants, substations, and transmission lines got to be created. However, the foremost [4] ordinarily used devices in gift power system square measure the mechanically-controlled circuit breakers. The long change periods and distinct operation create them tough to handle the overtimes modified masses swimmingly and damp out the transient oscillations quickly. So as to compensate these drawbacks, giant operational margins and redundancies square measure maintained to safeguard the system from dynamic variation and live through faults. This not solely will increase the price and lowers the potency, however additionally will increase the quality of the system and augments the problem of operation and management. Severe black-outs happened recently in power grids worldwide and these have disclosed that typical transmission systems square measure unable to manage the management needs of the difficult interconnections and variable power flow. Therefore, investment is critical for the studies into the protection and stability of the facility grid, yet because the improved management schemes of the transmission. Completely different approaches like reactive power [2] compensation and section shifting are applied to extend the soundness and therefore the security of the facility systems. Basic principal of power compensation in transmission It shows the simplified model of an influence transmission. 2 power grids square measure [10] connected by a cable that is assumed lossless and painted by the electrical phenomenon XL. 11δ V and 22δ V represent the voltage phasors of the 2 power system buses with angle δ= δ1- δ2 between the 2. Figure: 1. Power transmission system: (a) simplified model; (b) phase diagram The magnitude of this within the cable is given by: The active and reactive parts of this flow at bus one square measure given by: (1) IJEDR1503064 International Journal of Engineering Development and Research (www.ijedr.org) 1

(2) Reactive Power Compensation Var compensation is delineated as management of the reactive power to prolong the performance of ac power systems. The most construct of the power unit compensation contains a good field of each client and system issues, connected with the facility quality problems, since power quality issues attenuated or solved with [11] adequate management of the reactive power. Within the drawback of reactive power compensation it are often viewed from 2 aspects: voltage support and cargo compensation. In load compensation objectives can be accustomed increase the worth of system power issue, to balance real power that is drawn from ac provide, to compensate voltage regulation, and to gift harmonic parts are often made by massive and unsteady nonlinear industrial masses. II. LITERATURE REVIEW Neelima, S. has described the distribution system is interface between bulk power system and consumers. Among these systems are radial distributions system is well known because of the low cost and design. In the distribution systems, the voltages at buses decreases moved away from the substation, also losses are large. The reason for decreasing in voltage and huge losses is insufficient amount of the reactive power that is provided by shunt capacitors [1]. Reddy, M. has projected two-stage methodology while using the fuzzy and Harmony search algorithm for placement of the capacitors on primary feeders of radial distribution systems with the objective to decrease power losses and to prolong the voltage profile. In first stage, fuzzy approach has been used to search optimal capacitor locations and second stage, the Harmony search algorithm has used to find search optimal sizes of capacitors [2]. Sarma, A. Kartikeya has plaanned an efficient approach for the capacitor placement in the radial distribution systems that define optimal locations of capacitor with an objective to improve voltage profile and reduction of the power loss. The solution has two parts: in part one loss sensitivity factors which are used to opt candidate locations for capacitor placement and two a algorithm that works Plant growth Simulation Algorithm is used to estimate optimal size of the capacitors at optimal buses determined in part one [3]. Sirjani, Reza has discussed the power systems capacitors which are used to transfer reactive power to decrease loss and to increase the voltage profile. The optimal placement of capacitors is important to ensure the system total capacitor costs and power losses are minimal. This capacitor placement problem has solved using the heuristic optimization methods that are diverse and subject of ongoing enhancements [4]. Abul Wafa Ahmed R. had prescribed an effective and efficient approach for capacitor in radial distribution systems define optimal sizes and locations capacitors with objective reduction of power loss or improve voltage profile. A loss sensitivity method is used to opting candidate locations for capacitor placement. The size of optimal capacitor at compensated nodes which have been defined simultaneously to optimize loss save equation with respect to capacitor currents [5]. Singh, S. P., A had presented the particle swarm optimization method for searching optimal size and location of the capacitors which has reported in work. The method finds optimal places for shunt capacitors from daily load curve. Additionally, it defines suitable values of switched and fixed capacitors. The dynamic sensitivity analysis technique has used to opt candidate installation places of capacitors to decrease the search space of problem [6]. Rao, R. has displayed an efficient method for capacitor placement of radial distribution systems which describe optimal size and locations of the capacitor with objective to improve voltage profile and reduce power loss. The solution has two parts: in one part of the loss sensitivity factors which are used to choose candidate places for capacitor placement and new algorithm which works Plant growth Simulation Algorithm which is used for optimal size of the capacitors at fix buses defined in part one. The key advantage of technique is that it doesn t want any external control parameters [7]. Sarma, had invented a new technique that applies (ABC) artificial bee colony algorithm for the capacitor placement in the distribution systems with objective to improve voltage profile and reduces of power loss. The solution has two parts: in part one loss sensitivity factors are used to choose candidate locations for capacitor placement and in second part algorithm called Artificial Bee Colony Algorithm which is used to approximate the fixed size of capacitors at the optimal buses determined in part one [8]. Reddy, V. U. has discussed about the electricity which is not only become a necessity but also tool to determine economic growth and standing of a nation. The growth of exponential in demand over two decades and widening space between demands or supply is growing concern. So reducing the gap, in addition to include new creating units, automation technology employed to reduce the T&D losses and thus increases necessity of efficient and fast algorithms [9]. Kansal, Satish et al. has proposed an optimal placement of individual types of DGs which has been proposed. The optimal size and locations of DG s have defined to minimize power distribution loss. The power factor for DG supplying, both reactive and real power, has been attained in work. Individual types of DGs are supplying reactive and real power at individual bus has been considered in approach [10]. Franco, John F., et al defined a mixed-integer programming model to solve problem to allocate voltage regulators and switched capacitors in the radial distribution systems. The mixed integer usage linear model which guarantees to the convergence of optimality while using exist optimization software. In this model, steady-state operation of radial distribution system is modelled via linear expressions. [11]. IJEDR1503064 International Journal of Engineering Development and Research (www.ijedr.org) 2

Gallego et al. has been planned capacitor placement problem for the radial distribution networks that describes the capacitor sizes, types, control schemes and locations. Optimal capacitor placement is hard combinatorial problem which has been formulated as mixed integer nonlinear program. The NP complete problem the solution approach uses combinatorial search algorithm. The method has tested in range of the networks which available in superior results regarding both cost and quality of solutions [12]. III. PROBLEM FORMULATION Application of shunt capacitors to the primary distribution feeders is a common practice in most of the countries. The advantages anticipated include boosting the load level of the feeder so that additional loads can be carried by the feeder for the same maximum voltage drop, releasing a certain kva at the substation that can be used to feed additional loads along other feeders and reducing power and energy losses in the feeder. The objective of this paper is to solve the problem of reactive power compensation in transmission line to improve its performance. Even though considerable amount of research work was done in the area of optimal capacitor placement, there is still a need to develop more suitable and effective methods for the optimal capacitor placement. Although some of these methods to solve capacitor allocation problem are efficient, their efficacy relies entirely on the goodness of the data used. The objective of capacitor placement in the distribution system is to minimize the cost of the system, subjected to certain operating constraints and load pattern. The three-phase system is considered as balanced and loads are assumed as time invariant. Mathematically, the objective function of the problem is given as: min f = min(cost) Where COST is the objective function which includes the cost of power loss and the capacitor placement. The voltage magnitude at each bus must be maintained within its limits as: Vi Where is the voltage magnitude of bus i, and are bus minimum and maximum voltage limits respectively. The problem of optimal allocation of the capacitor unit is formulated in the form of an optimisation problem. A cost function considering the voltage and the real power loss in the transmission line is formed. OBJECTIVES The objectives of this thesis can be described as follows: Designing of a Transmission Line model Application of TCR in the transmission line model Using Neuro-Fuzzy approach to control the TCR Comparative analysis on the basis of power, voltage, current and power factor. IV. PROPOSED METHODOLOGY The problem of TCR control of capacitors will be addressed in this thesis and it is proposed to utilize evolutionary algorithms for solving this problem. A T shaped transmission model bus system is used for testing our proposed algorithm. First of all, the bus system is designed as per the IEEE standards and the line losses and the voltage profile of all the buses are calculated using load flow studies Figure: 2 ANFIS for compensation Artificial Neural Network An artificial neural network may be system support the operation of the biological neural networks, in individual words, is Associate in emulation of the biological neural system. Why would be crucial the implementation of artificial neural networks? Though computer recently is really advanced, there square measure bound tasks that program created for typical microchip can unable to perform; nonetheless a software package implementation of neural network may be created with the blessings and downsides. IJEDR1503064 International Journal of Engineering Development and Research (www.ijedr.org) 3

Fuzzy Logic Description of mathematical logic In the recent years, amount and kind of applications of fuzzy logic have been multiplied considerably. The applications vary from the shopper product like camcorders, cameras, microwave ovens and laundry machines to process medical instrumentation, management, portfolio choice and decision-support systems. Fuzzy approach Fuzzy logic is conceptually straightforward to grasp. The mathematical idea behind the fuzzy reasoning square measure is easy. Fuzzy logic may be lot of intuitive approach while not far-reaching quality. Fuzzy logic is versatile. With given system, straightforward to layer on lot of practicality while not starting once more from scratch. The Concept of fuzzy logic is tolerant to the imprecise knowledge. Problems with Fuzzy Fuzzy logic is not a cure-all. Once you have to not use fuzzy logic? The safe statement is the initial one created during introduction: fuzzy logic may be a convenient to map Associate in input house to Associate in output house. If you discover it isn't convenient, attempt thing else. If less complicated resolution already exists, use it. Fuzzy logic is that the modifications of wisdom use wisdom once you implement it and you'll in all probability build the correct call. Several controllers, as an example, do a fine job while not using fuzzy logic. ANFIS Adaptive control and neuron fuzzy control are two advanced methods for time-varying and non-linear processes. This course will begin with adaptive control of linear systems. Nonlinear systems and related control issues will be then briefly reviewed. Neural network and fuzzy model will be described as general structures for approximating non-linear functions and dynamic processes. Based on the comparison of the two methods, neuron fuzzy model will be proposed as a promising technology for the control and adaptive control of nonlinear processes. ANFIS STRUCTURE The adaptive network-based fuzzy inference systems (ANFIS) is used to solve problems related to parameter identification. This parameter identification is done through a hybrid learning rule combining the back-propagation gradient descent and a leastsquares method. ANFIS is basically a graphical network representation of Sugeno-type fuzzy systems endowed with the neural learning capabilities. The network is comprised of nodes with specific functions collected in layers. ANFIS is able to construct a network realization of IF / THEN rules. Consider a Sugeno type of fuzzy system having the rule base 1. If y is B1 and x is A1, then f 1 = c 11x+c 12y+c 10 2. If y is B2 and x is A2, then f 2 = c 21x+c 22y+c 20 Figure 3: Structure of the ANFIS network. Figure 4. ANFIS Architecture V. SIMULATION RESULTS AND DISCUSSION This chapter discusses the various simulation results obtained by implementing the proposed algorithm explained in previous chapter for our problem statement. All the simulations have been done MATLAB R 2013b with a 6GB RAM computer with core i5 processor. IJEDR1503064 International Journal of Engineering Development and Research (www.ijedr.org) 4

The THD of the current is minimised through ANFIS which controls the firing angle of the TCR as shown below. The THD in current in case of neuro fuzzy and normal fuzzy are found to be 7.29 * 10^-5 and 6.3 * 10^-3 respectively. As observed, there is a significant decrease in the current THD in our proposed approach. The voltage waveform in our proposed approach and normal fuzzy are shown below. When compared in terms of power the following represents the real and reactive power in our proposed approach and normal fuzzy. The THD in voltage our proposed approach and normal fuzzy are found to be 0.03779 and 0.139. Also shown below is a comparative graph of both the methodologies in a single graph. IJEDR1503064 International Journal of Engineering Development and Research (www.ijedr.org) 5

The power factor obtained in our proposed approach is found to be 0.8328 and in normal fuzzy is found to be 0.79. As observed, there is an improved power factor in our proposed approach. VI. Conclusion and Future Scope A novel idea of Adaptive Neur0-Fuzzy Inference System has been developed in this thesis to solve the reactive power control problem of the power system. Reactive power is an important parameter in power system which affects many factors such as stability, voltage level, losses etc. To find the optimal location of the capacitor to control the reactive power is a challenging task. To solve this problem a novel approach has been discussed in this thesis. The system has been tested T type transmission model. The results are found to be quite satisfactory the losses are minimised which was the target of the proposed algorithm. In future, other algorithms can be tried on the same bus systems. Also the proposed algorithm can be tested on other bus systems. Also hybrid algorithms can be developed to solve the problem. Also STATCOM and SSSC etc can be used to enhance the performance. REFERENCES [1] Neelima, S., and P. S. Subramanyam. "Optimal capacitors placement in distribution networks using genetic algorithm: A dimension reducing approach." Journal of Theoretical and Applied Information Technology 30.1 (2011): 28-34. [2] Reddy, M. Damodar, and N. V. Kumar. "Optimal capacitor placement for loss reduction in distribution systems using fuzzy and harmony search algorithm." ARPN Journal of Engineering and Applied Sciences 7.1 (2012): 15-19. [3] Sarma, A. Kartikeya, and K. Mahammad Rafi. "Optimal selection of capacitors for radial distribution systems using plant growth simulation algorithm." International Journal of Advanced Science and Technology30.May (2011): 43-54. [4] Sirjani, Reza, Azah Mohamed, and Hussain Shareef. "Optimal capacitor placement in three-phase distribution systems using improved harmony search algorithm." system 2.18 (2011): 19. [5] Abul Wafa, Ahmed R. "Optimal capacitor allocation in radial distribution systems for loss reduction: A two stage method." Electric Power Systems Research 95 (2013): 168-174. [6] Singh, S. P., and A. R. Rao. "Optimal allocation of capacitors in distribution systems using particle swarm optimization." International Journal of Electrical Power & Energy Systems 43.1 (2012): 1267-1275. [7] Rao, R. Srinivasas, S. V. L. Narasimham, and M. Ramalingaraju. "Optimal capacitor placement in a radial distribution system using plant growth simulation algorithm." International Journal of Electrical Power & Energy Systems 33.5 (2011): 1133-1139. [8] Sarma, Avadhanam Kartikeya, and Kakarla Mahammad Rafi. "Optimal capacitor placement in radial distribution systems using artificial bee colony (abc) algorithm." Innovative Systems Design and Engineering 2.4 (2011): 177-185. [9] Reddy, V. U., and A. Manoj. "Optimal capacitor placement for loss reduction in distribution systems using bat algorithm." IOSR journal of Engineering2.10 (2012): 23-27. [10] Kansal, Satish, Vishal Kumar, and Barjeev Tyagi. "Optimal placement of different type of DG sources in distribution networks." International Journal of Electrical Power & Energy Systems 53 (2013): 752-760. [11] Franco, John F., et al. "A mixed-integer LP model for the optimal allocation of voltage regulators and capacitors in radial distribution systems."international Journal of Electrical Power & Energy Systems 48 (2013): 123-130. [12] Gallego, Ramon A., Alcir J. Monticelli, and Ruben Romero. "Optimal capacitor placement in radial distribution networks" Power Systems, IEEE Transactions on 16.4 (2001): 630-637. IJEDR1503064 International Journal of Engineering Development and Research (www.ijedr.org) 6