Optimal Capacitor placement in Distribution Systems with Distributed Generators for Voltage Profile improvement by Particle Swarm Optimization

Size: px
Start display at page:

Download "Optimal Capacitor placement in Distribution Systems with Distributed Generators for Voltage Profile improvement by Particle Swarm Optimization"

Transcription

1 Optimal Capacitor placement in Distribution Systems with Distributed Generators for Voltage Profile improvement by Particle Swarm Optimization G. Balakrishna 1, Dr. Ch. Sai Babu 2 1 Associate Professor, Department of Electrical and Electronics Engg., Intell Engineering Collge, Anantapur(AP), INDIA 2 Professor, Department of Electrical and Electronics Engg., JNTU College of Engg., Kakinada(AP), INDIA ABSTRACT To ensure the good quality of power in electrical distribution systems, voltages at the different nodes should be within reasonable limits. Shunt capacitors banks installed in the distribution feeders can supply part of the reactive power required by the inductive loads and hence reduces the voltage drops. Further Distributed Generators (DGs) also supplies the reactive power and hence improves the voltage profile and also provides the local real power generation. The improvement in voltage profile in the system is very much sensitive to the locations of the Shunt capacitor banks as well as Distributed Generators. In this paper, an optimization method based on Particle Swarm Optimization is proposed to solve for optimal placement of shunt capacitor banks along with the DG units for a distribution system for voltage profile improvement. The proposed method is tested on IEEE 41 bus radial distribution system and results are presented. Keywords: Distribution systems, Distributed Generators, Shunt Capacitor Banks, Particle Swarm Optimization 1. INTRODUCTION In a practical power system network especially in distribution system the system operators are always obligated with voltage levels of each customer bus within the satisfied limits. To ensure good voltage profile in distribution systems, several standards have been established to provide recommendations and stipulations. In general many electrical power supply companies try to maintain/control the distribution voltage variations within the range of. One of the most commonly used methods to improve the voltage profiles of distribution systems is connecting shunt capacitor banks along the feeders. Due to the recent advances DGs came into picture to better the voltage profiles further. Distributed Generators (DGs) and Shunt capacitor bank modifies and improves the voltage profile by changing the power flow patterns. Therefore locations of DGs and Shunt capacitor banks have a significant role and impact on the enhancement of voltage profile. In the past two decades, great effort has been contributed to solve the optimal capacitor placement problem that utilizes different methods/algorithms that is based on different objectives. The optimal capacitor placement problem generally be formulated as a mixed integer optimization problem. Several algorithms can help in getting the solution of optimal capacitor placement problem. For instance, a heuristic constructive algorithm (HCA) is presented in [2] where in the integer variable are denoted by a sigmoid function. Another heuristic method is used in [3] to get a near optimal solution for realistic sized systems with a objective function of minimizing harmonic levels, capacitance costs and losses. This method is extended to unbalanced loads in [4]. Ant colony search algorithm (ACSA) is usd in [5] to get solution to optimal capacitor placement problem and network reconfiguration problem. The Optimal Capacitor placement and its sizing problem in [6] has an objective function of minimizing the cost subjected to voltage profile limits, capacitor sizes at each bus and power quality limits of harmonics. The effect of placement of capacitor on distribution system reliability is considered in [7] by defining multi objective function i.e. reliability cost, investment cost and cost of losses. Considerable amount of research has also been done on optimal placement of DG as well. An analytical method is presented in [8] to obtain the optimal location of DG units in radial and networked systems to minimize the losses. Optimal placement of DGs in [9] is fixed by using exhaustive search to optimize the efficiency and system reliability. In this work the system SAIDI is used to represent the reliability. An iterative based algorithm is given in [10], where in continuous power flow is used to find the most sensitive bus to voltage collapse or maximum loading for DG installation. The objective functions of this include the power loss reduction, power transfer capability improvement and to increase the voltage stability margins. Genetic algorithm (GA) is used in [11], to find the optimal DG location with various load models. The objective function here is base on multi objective index that considers real and reactive power losses, voltage profile and capacity of DG. Immune Volume 2, Issue 12, December 2014 Page 21

2 Algorithm (IA) is used in [13] to optimize the voltage profiles by changing the location of DGs with the constraints of bus voltage limits and line current limits. 2. PROBLEM FORMULATION The primary objective of Optimal DG placement and Optimal Shunt Capacitor banks is to improve the voltage profile satisfying all practical constrains. The main objective function defined in this work is to maximize the minimum voltage in the distribution system by installing DGs and Shunt capacitor banks at its optimal locations. Distributed Generators installed in Electrical power distribution systems can generate active power as well as reactive power to meet the requirements of local demands and hence reduces the voltage drop in a radial distribution system. At the same time Shunt capacitors installed in distribution systems generate the lagging reactive powers to meet the reactive power demands of the lagging inductive loads and thereby decreasing the voltage drops and hence helps in maintaining the good voltage profile. However, there are some criterions to evaluate how good a voltage profile is. It is difficult to develop a mathematical formulation of voltage profile for any optimization problem. In this section, formulas which will deal with the goodness of voltage profile in an optimization model is presented and hence the optimal locations of DGs as well as optimal locations of Shunt capacitor banks can be obtained for a better voltage profile. The most difficult issue in optimizing voltage profile of a distribution system is to ensure the lowest bus voltage in the system greater than the lower voltage limit. Generally in radial distribution system the voltage drops along the line thereby the loads far away from the substation end experiences low voltage problems. The objective function in this modeling is focused on the maximization of lowest bus voltage magnitude which can be written as (1) Where is an unknown variable, which can be fixed by observing voltage magnitude at all load buses of the distribution system and is subjected to the following constraints. (i) Power Flow Constraints: If shunt capacitor banks are used to connect in the system these equation will be (2) (3) (ii) Voltage magnitude Constraints The voltage at all buses should be within the range allowable minimum voltage value and maximum voltage i.e., for i all the load buses.(6) At the same time the voltage should be always greater than the minimum allowable bus voltage Here the objective function to maximize the (iii) Distributed Generator Constraints: In this model, optimal locations of DGs and its active and reactive power output are to be found. DG units can be installed at any bus except substation bus of the system. If a DG unit is installed at bus, its active and reactive power generations should be within the DG unit s capacity limits i.e., 3. APPLICATION OF PSO In this section, an approach is proposed to implement the PSO algorithm in solving the optimal network reconfiguration. The step by step procedure for PSO algorithm can be summarized as Step 1 : Initialization of population at random Step 2 : Velocity and position update Step 3 : updating P best and G best Step 4 : Goto step 2 until satisfying the terminating criterion Volume 2, Issue 12, December 2014 Page 22

3 3.1. INITIALIZATION It is the process of generating a particle at random. The particle consists of optimal location of DG, its real power output and reactive power output for mere DG placement problem(for case-1 to case-3). For case 4 and case 5 the locations of DG units is fixed and Optimal location of shunt capacitor banks are to found that is why the particle consists of optimal location list of shunt capacitor banks and real and reactive power output of DG units. Generation of a particle: For case-1 to case-3, the individual particle consists of the optimal location of DG unit, real power output and reactive power output of the DG as given in (10) X i 0 =(LDG, P DG, Q DG ) (10) Where X i 0 is the i th particle in 0 th iteration LDG is the location of DG P DG is the real power output of the DG Q DG is the reactive power output of the DG For case-4 and case-5, the individual particle consists of the location list of Capacitor units (it may be for 2 or 4 or 6 or 8 capacitor banks), real power output and reactive power output of the DG X i 0 =(LCB1,LCB2,..LCBn, P DG, Q DG ) (11) Where X i 0 is the i th particle in 0 th iteration, LCB1 is the location of first capacitor bank, LCBn is the location of n th capacitor bank, n is the number of capacitor banks used, P DG is the real power output of the DG, Q DG is the reactive power output of the DG, The velocity of individual particle i can be observed as V i 0 = (V il,, V in ) 3.2. THE PSO ALGORITHM: Step1. Initialization-initialize all particles Step2. Set iteration count=0 Step3. Evaluate the fitness function i.e. the minimum voltage in the system and fix the individual particles minimum voltage to individuals Pbest and find the maximum value from minimum voltages of all the particles and fix it as Gbest for this iteration Step4. Evaluate the velocity of each population by using the equation Step5. Update the position of each population by using the equation.(12) (13) Step6. Find the new values of fitness function for each of the population and replace Pbest with it if it is greater than the former value and also fix the maximum value of Pbest among all the population to Gbest Step7. Increase the iteration count by 1 Step8. Check the stopping criterion, if not satisfied go to step3 Finally the optimum solution can be obtained through Gbest 4. EXAMPLE The performance of the proposed PSO algorithm for Optimal Capacitor placement and Optimal DG placement is verified on IEEE-41 bus system, consisting of 41 buses, 40 lines with a total real power load of 4635 kw and total reactive power load of 3250 kvar. For this test system five cases are considered: Case-1: Optimal DG placement of capacity about of total load without Shunt Capacitor Banks. Case-2: Optimal DG placement of capacity that can meet total load of the system without Shunt Capacitor Banks. Case-3: Optimal DG placement of capacity of total load of the system and DG is operated in islanding mode, without Shunt Capacitors Banks. Case-4: Optimal Capacitor placement in Grid connected mode with DG Case-5: Optimal Capacitor placement in Island operation mode of DG. In case-1, the rating of the DG used is of 1/3 rd of total load of the distribution system which is approximately equal to 1500 kw and 1200 kvar. The simulation results for this case are given in Table 1. In case-2, the real and reactive power capacities of DG unit are increased to 5000 kw and 4000 kvar and is sufficient to feed all the loads of the system. Therefore DG can be operated either in grid connected mode or in islanding mode. For case-2 the DG is operated in Grid connected mode. The simulation results for case-2 are given in Table 1. Volume 2, Issue 12, December 2014 Page 23

4 In case-3, also the real and reactive power capacities of DG unit used are 5000 kw and 4000 kvar and is sufficient to feed all the loads of the system. When the entire distribution system suffers from the power outage then it is completely disconnected from the substation and is connected to DG unit. The operation of DG in such case is called as Islanding operation of DG. In this case also only one DG is used in the system. The simulation results for case-3 are given in Table 1. Table 1: Simulation Results for case-1, case-2 and case-3 and minimum voltage comparison From case-1 to case-3, better results are observed for case-2 where the capacity of the DG is sufficient to meet the entire load and is to be operated in grid connected mode. Figure 1 shows the voltage profile of a distribution system for case- 1, case-2 and case CASE-1 CASE-2 CASE Voltage (p.u) Bus Number Figure 1: The voltage profile of a distribution system In case-4 also the real and reactive power capacities of DG unit used are 4000 kw and 2500 kvar and is sufficient to feed all the loads of the system. In addition to the DG units Shunt capacitors are also used to improve the voltage profile. The total number capacitors used in this case are 2 to 8 and the reactive power rating of each capacitor is fixed at 400 kvar. In this case the distribution system is operated in grid connected mode. The DG unit in this case is located at bus number 9 which is as found in case -2. The simulation results and comparison of results with existing method for case-4 is given in Table 2. Table 2: Simulation Results for case-4 and minimum voltage comparison Volume 2, Issue 12, December 2014 Page 24

5 Case-5 is similar to case-4 but in case-5 the DG is used to operate in island mode. The DG unit in this case is located at bus number 8 which is as found in case -3. The simulation results and comparison of results with existing method for case-5 is given in Table 3 Table 3: Simulation Results for case-4 and minimum voltage comparison From the simulations results of case-4 and case-5, it is observed that better voltage profile is obtained when the DG has the capacity of supplying the total load of the system and it can be either operated in grid connected mode or island mode when the distribution system is connected simultaneously with capacitors. 4.CONCLUSIONS In this paper, a Particle Swarm Optimization algorithm has been proposed to find the optimal locations of shunt capacitor bank in the distribution network in the presence of DG units. The problem here is formulated as a non-linear optimization problem with an objective function of maximizing the minimum voltage subject to a set of constraints. Test results has been presented, that shows that using PSO the optimal capacitor placement problem with DG units can be solved effectively for loss reduction when compared to existing algorithm. REFERENCES [1] I. American National Standards Institute, "American National Standard For Electric Power Systems and Equipment Voltage Ratings (60 Hertz)," National Electrical Manufacturers Association, [2] I. C. da Silva, S. Carneiro, E. J. de Oliveira, J. de Souza Costa, J. L. Rezende Pereira, and P. A. N. Garcia, "A Heuristic Constructive Algorithm for Capacitor Placement on Distribution Systems," IEEE Transactions on Power Systems, vol. 23, pp , [3] B. Gou and A. Abur, "Optimal capacitor placement for improving power quality," proceedings of IEEE Power Engineering Society Summer Meeting, 1999, pp , vol.1. [4] G. Carpinelli, P. Varilone, V. Di Vito, and A. Abur, "Capacitor placement in three-phase distribution systems with nonlinear and 6 unbalanced loads," Generation, Transmission and Distribution, IEE Proceedings-, vol. 152, pp , [5] C. Chung-Fu, "Reconfiguration and Capacitor Placement for Loss Reduction of Distribution Systems by Ant Colony Search Algorithm," IEEE Transactions on Power Systems, vol. 23, pp , [6] M. Ladjavardi and M. A. S. Masoum, "Genetically Optimized Fuzzy Placement and Sizing of Capacitor Banks in Distorted Distribution Networks," IEEE Transactions on Power Delivery, vol. 23, pp , [7] A. H. Etemadi and M. Fotuhi-Firuzabad, "Distribution system reliability enhancement using optimal capacitor placement," Generation, Transmission & Distribution, IET, vol. 2, pp , [8] W. Caisheng and M. H. Nehrir, "Analytical approaches for optimal placement of distributed generation sources in power systems," IEEE Transactions on Power Systems, vol. 19, pp , [9] D. Zhu, R. P. Broadwater, T. Kwa-Sur, R. Seguin, and H. sgeirsson, "Impact of DG placement on reliability and efficiency with time-varying loads," IEEE Transactions on Power Systems, vol. 21, pp , [10] H. Hedayati, S. A. Nabaviniaki, and A. Akbarimajd, "A Method for Placement of DG Units in Distribution Networks," IEEE Transactions on Power Delivery, vol. 23, pp , Volume 2, Issue 12, December 2014 Page 25

6 [11] D. Singh and K. S. Verma, "Multiobjective Optimization for DG Planning With Load Models," IEEE Transactions on Power Systems, vol. 24, pp , [12] W. Prommee and W. Ongsakul, "Optimal multi-distributed generation placement by adaptive weight particle swarm optimization," International Conference on Control, Automation and Systems, ICCAS 2008, pp [13] M. R. Aghaebrahimi, M. Amiri, and S. H. Zahiri, "An immune-based optimization method for distributed generation placement in order to optimize voltage profile," International Conference on Sustainable Power Generation and Supply, SUPERGEN '09., [14] T. Jen-Hao, L. Tain-Syh, and L. Yi-Hwa, "Strategic distributed generator placements for service reliability improvements," in proceeding of IEEE Power Engineering Society Summer Meeting, 2002, pp , vol.2. [15] M. E. Baran and F. F. Wu, "Network reconfiguration in distribution systems for loss reduction and load balancing", IEEE Transations on Power Delivery, vol. 4, pp , Volume 2, Issue 12, December 2014 Page 26

Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012

Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012 Multi-objective Based Optimization Using Tap Setting Transformer, DG and Capacitor Placement in Distribution Networks Abdolreza Sadighmanesh 1, Mehran Sabahi 2, Kazem Zare 2, and Babak Taghavi 3 1 Department

More information

Optimal Capacitor Placement in Distribution System with Random Variations in Load

Optimal Capacitor Placement in Distribution System with Random Variations in Load I J C T A, 10(5) 2017, pp. 651-657 International Science Press Optimal Capacitor Placement in Distribution System with Random Variations in Load Ajay Babu B *, M. Ramalinga Raju ** and K.V.S.R. Murthy

More information

Comparison of Loss Sensitivity Factor & Index Vector methods in Determining Optimal Capacitor Locations in Agricultural Distribution

Comparison of Loss Sensitivity Factor & Index Vector methods in Determining Optimal Capacitor Locations in Agricultural Distribution 6th NATIONAL POWER SYSTEMS CONFERENCE, 5th-7th DECEMBER, 200 26 Comparison of Loss Sensitivity Factor & Index Vector s in Determining Optimal Capacitor Locations in Agricultural Distribution K.V.S. Ramachandra

More information

CAPACITOR PLACEMENT IN UNBALANCED POWER SYSTEMS

CAPACITOR PLACEMENT IN UNBALANCED POWER SYSTEMS CAPACITOR PLACEMET I UBALACED POWER SSTEMS P. Varilone and G. Carpinelli A. Abur Dipartimento di Ingegneria Industriale Department of Electrical Engineering Universita degli Studi di Cassino Texas A&M

More information

PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION FEEDERS

PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION FEEDERS IMPACT: International ournal of Research in Engineering & Technology (IMPACT: IRET) ISSN 2321-8843 Vol. 1, Issue 3, Aug 2013, 85-92 Impact ournals PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION

More information

A PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION FEEDERS

A PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION FEEDERS A PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION FEEDERS 1 P.DIVYA, 2 PROF. G.V.SIVA KRISHNA RAO A.U.College of Engineering, Andhra University, Visakhapatnam Abstract: Capacitors in

More information

International Journal of Mechatronics, Electrical and Computer Technology

International Journal of Mechatronics, Electrical and Computer Technology A Hybrid Algorithm for Optimal Location and Sizing of Capacitors in the presence of Different Load Models in Distribution Network Reza Baghipour* and Seyyed Mehdi Hosseini Department of Electrical Engineering,

More information

Optimal Performance Enhancement of Capacitor in Radial Distribution System Using Fuzzy and HSA

Optimal Performance Enhancement of Capacitor in Radial Distribution System Using Fuzzy and HSA IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 2 Ver. I (Mar Apr. 2014), PP 26-32 Optimal Performance Enhancement of Capacitor in

More information

K. Valipour 1 E. Dehghan 2 M.H. Shariatkhah 3

K. Valipour 1 E. Dehghan 2 M.H. Shariatkhah 3 International Research Journal of Applied and Basic Sciences 2013 Available online at www.irjabs.com ISSN 21-838X / Vol, 4 (7): 1663-1670 Science Explorer Publications Optimal placement of Capacitor Banks

More information

Optimal Capacitor Placement in Radial Distribution System to minimize the loss using Fuzzy Logic Control and Hybrid Particle Swarm Optimization

Optimal Capacitor Placement in Radial Distribution System to minimize the loss using Fuzzy Logic Control and Hybrid Particle Swarm Optimization Optimal Capacitor Placement in Radial Distribution System to minimize the loss using Fuzzy Logic Control and Hybrid Particle Swarm Optimization 1 S.Joyal Isac, 2 K.Suresh Kumar Department of EEE, Saveetha

More information

Optimal Placement of Multi DG Unit in Distribution Systems Using Evolutionary Algorithms

Optimal Placement of Multi DG Unit in Distribution Systems Using Evolutionary Algorithms IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume, Issue 6 Ver. IV (Nov Dec. 2014), PP 47-52 www.iosrjournals.org Optimal Placement of Multi

More information

CAPACITOR PLACEMENT USING FUZZY AND PARTICLE SWARM OPTIMIZATION METHOD FOR MAXIMUM ANNUAL SAVINGS

CAPACITOR PLACEMENT USING FUZZY AND PARTICLE SWARM OPTIMIZATION METHOD FOR MAXIMUM ANNUAL SAVINGS CAPACITOR PLACEMENT USING FUZZY AND PARTICLE SWARM OPTIMIZATION METHOD FOR MAXIMUM ANNUAL SAVINGS M. Damodar Reddy and V. C. Veera Reddy Department of Electrical and Electronics Engineering, S.V. University,

More information

Multi-objective Placement of Capacitor Banks in Distribution System using Bee Colony Optimization Algorithm

Multi-objective Placement of Capacitor Banks in Distribution System using Bee Colony Optimization Algorithm Journal of Advances in Computer Research Quarterly pissn: 2345-606x eissn: 2345-6078 Sari Branch, Islamic Azad University, Sari, I.R.Iran (Vol. 6, No. 2, May 2015), Pages: 117-127 www.jacr.iausari.ac.ir

More information

OPTIMAL DG AND CAPACITOR ALLOCATION IN DISTRIBUTION SYSTEMS USING DICA

OPTIMAL DG AND CAPACITOR ALLOCATION IN DISTRIBUTION SYSTEMS USING DICA Journal of Engineering Science and Technology Vol. 9, No. 5 (2014) 641-656 School of Engineering, Taylor s University OPTIMAL AND CAPACITOR ALLOCATION IN DISTRIBUTION SYSTEMS USING DICA ARASH MAHARI 1,

More information

Multiple Distribution Generation Location in Reconfigured Radial Distribution System Distributed generation in Distribution System

Multiple Distribution Generation Location in Reconfigured Radial Distribution System Distributed generation in Distribution System IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Multiple Distribution Generation Location in Reconfigured Radial Distribution System Distributed generation in Distribution System

More information

Simultaneous placement of Distributed Generation and D-Statcom in a radial distribution system using Loss Sensitivity Factor

Simultaneous placement of Distributed Generation and D-Statcom in a radial distribution system using Loss Sensitivity Factor Simultaneous placement of Distributed Generation and D-Statcom in a radial distribution system using Loss Sensitivity Factor 1 Champa G, 2 Sunita M N University Visvesvaraya college of Engineering Bengaluru,

More information

THE loss minimization in distribution systems has assumed

THE loss minimization in distribution systems has assumed Optimal Capacitor Allocation for loss reduction in Distribution System Using Fuzzy and Plant Growth Simulation Algorithm R. Srinivasa Rao Abstract This paper presents a new and efficient approach for capacitor

More information

Optimal capacitor placement in radial distribution networks with artificial honey bee colony algorithm

Optimal capacitor placement in radial distribution networks with artificial honey bee colony algorithm Bulletin of Environment, Pharmacology and Life Sciences Bull. Env.Pharmacol. Life Sci., Vol 4 [Spl issue 1] 2015: 255-260 2014 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal

More information

A Novel Analytical Technique for Optimal Allocation of Capacitors in Radial Distribution Systems

A Novel Analytical Technique for Optimal Allocation of Capacitors in Radial Distribution Systems 236 J. Eng. Technol. Sci., Vol. 49, No. 2, 2017, 236-246 A Novel Analytical Technique for Optimal Allocation of Capacitors in Radial Distribution Systems Sarfaraz Nawaz*, Ajay Kumar Bansal & Mahaveer Prasad

More information

Meta Heuristic Harmony Search Algorithm for Network Reconfiguration and Distributed Generation Allocation

Meta Heuristic Harmony Search Algorithm for Network Reconfiguration and Distributed Generation Allocation Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6 th & 7 th March 2014 Meta Heuristic Harmony Search Algorithm for Network Reconfiguration and Distributed Generation Allocation

More information

J. Electrical Systems x-x (2010): x-xx. Regular paper

J. Electrical Systems x-x (2010): x-xx. Regular paper JBV Subrahmanyam Radhakrishna.C J. Electrical Systems x-x (2010): x-xx Regular paper A novel approach for Optimal Capacitor location and sizing in Unbalanced Radial Distribution Network for loss minimization

More information

A Study of the Factors Influencing the Optimal Size and Site of Distributed Generations

A Study of the Factors Influencing the Optimal Size and Site of Distributed Generations Journal of Clean Energy Technologies, Vol. 2, No. 1, January 2014 A Study of the Factors Influencing the Optimal Size and Site of Distributed Generations Soma Biswas, S. K. Goswami, and A. Chatterjee system

More information

A Comparative Study Of Optimization Techniques For Capacitor Location In Electrical Distribution Systems

A Comparative Study Of Optimization Techniques For Capacitor Location In Electrical Distribution Systems A Comparative Study Of Optimization Techniques For Capacitor Location In Electrical Distribution Systems Ganiyu A. Ajenikoko 1, Jimoh O. Ogunwuyi 2 1, Department of Electronic & Electrical Engineering,

More information

Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm

Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm Bharat Solanki Abstract The optimal capacitor placement problem involves determination of the location, number, type

More information

ENERGY LOSS MINIMIZATION AND RELIABILITY ENHANCEMENT IN RADIAL DISTRIBUTION SYSTEMS DURING LINE OUTAGES

ENERGY LOSS MINIMIZATION AND RELIABILITY ENHANCEMENT IN RADIAL DISTRIBUTION SYSTEMS DURING LINE OUTAGES ENERGY LOSS MINIMIZATION AND RELIABILITY ENHANCEMENT IN RADIAL DISTRIBUTION SYSTEMS DURING LINE OUTAGES N. Gnanasekaran 1, S. Chandramohan 2, P. Sathish Kumar 3 and T. D. Sudhakar 4 1 Misrimal Navajee

More information

Congestion Alleviation using Reactive Power Compensation in Radial Distribution Systems

Congestion Alleviation using Reactive Power Compensation in Radial Distribution Systems IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 6 Ver. III (Nov. Dec. 2016), PP 39-45 www.iosrjournals.org Congestion Alleviation

More information

OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION AND CAPACITOR IN DISTRIBUTION NETWORKS BY ANT COLONY ALGORITHM

OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION AND CAPACITOR IN DISTRIBUTION NETWORKS BY ANT COLONY ALGORITHM International Journal on Technical and Physical Problems of Engineering (IJTPE) Published by International Organization of IOTPE ISSN 2077-3528 IJTPE Journal www.iotpe.com ijtpe@iotpe.com September 204

More information

Optimal capacitor placement and sizing using combined fuzzy-hpso method

Optimal capacitor placement and sizing using combined fuzzy-hpso method MultiCraft International Journal of Engineering, Science and Technology Vol. 2, No. 6, 2010, pp. 75-84 INTERNATIONAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY www.ijest-ng.com 2010 MultiCraft Limited.

More information

Application of Teaching Learning Based Optimization for Size and Location Determination of Distributed Generation in Radial Distribution System.

Application of Teaching Learning Based Optimization for Size and Location Determination of Distributed Generation in Radial Distribution System. Application of Teaching Learning Based Optimization for Size and Location Determination of Distributed Generation in Radial Distribution System. Khyati Mistry Electrical Engineering Department. Sardar

More information

K. MAHESH 2 Asst Prof & HOD, Sri kottam tulasi reddy memorial college of engineering, AP-INDIA

K. MAHESH 2 Asst Prof & HOD, Sri kottam tulasi reddy memorial college of engineering, AP-INDIA www.ijatir.org ISSN 2143-4535 Volume.05, September-2013, Pages:306-317 Optimal Capacitor Placement and Sizing in Unbalanced Distribution Systems with Harmonics Consideration using Particle Swarm Optimization

More information

AN IMMUNE BASED MULTI-OBJECTIVE APPROACH TO ENHANCE THE PERFORMANCE OF ELECTRICAL DISTRIBUTION SYSTEM

AN IMMUNE BASED MULTI-OBJECTIVE APPROACH TO ENHANCE THE PERFORMANCE OF ELECTRICAL DISTRIBUTION SYSTEM AN IMMUNE BASED MULTI-OBJECTIVE APPROACH TO ENHANCE THE PERFORMANCE OF ELECTRICAL DISTRIBUTION SYSTEM P. RAVI BABU Head of the Department of Electrical Engineering Sreenidhi Institute of science and technology

More information

Optimal Placement of Capacitor Banks in order to Improvement of Voltage Profile and Loss Reduction based on PSO

Optimal Placement of Capacitor Banks in order to Improvement of Voltage Profile and Loss Reduction based on PSO Research Journal of Applied Sciences, Engineering and Technology 4(8): 957-961, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: October 26, 2011 Accepted: November 25, 2011 ublished:

More information

Optimal Placement & sizing of Distributed Generator (DG)

Optimal Placement & sizing of Distributed Generator (DG) Chapter - 5 Optimal Placement & sizing of Distributed Generator (DG) - A Single Objective Approach CHAPTER - 5 Distributed Generation (DG) for Power Loss Minimization 5. Introduction Distributed generators

More information

EE5250 TERM PROJECT. Report by: Akarsh Sheilendranath

EE5250 TERM PROJECT. Report by: Akarsh Sheilendranath EE5250 TERM PROJECT Analytical Approaches for Optimal Placement of Distributed Generation Sources in Power System Caisheng Wang, student member, IEEE, and M. Hashem Nehrir, senior member, IEEE Report by:

More information

Optimal capacitor placement and sizing via artificial bee colony

Optimal capacitor placement and sizing via artificial bee colony International Journal of Smart Grid and Clean Energy Optimal capacitor placement and sizing via artificial bee colony Mohd Nabil Muhtazaruddin a*, Jasrul Jamani Jamian b, Danvu Nguyen a Nur Aisyah Jalalludin

More information

Farzaneh Ostovar, Mahdi Mozaffari Legha

Farzaneh Ostovar, Mahdi Mozaffari Legha Quantify the Loss Reduction due Optimization of Capacitor Placement Using DPSO Algorithm Case Study on the Electrical Distribution Network of north Kerman Province Farzaneh Ostovar, Mahdi Mozaffari Legha

More information

Optimal Placement and Sizing of Distributed Generation for Power Loss Reduction using Particle Swarm Optimization

Optimal Placement and Sizing of Distributed Generation for Power Loss Reduction using Particle Swarm Optimization Available online at www.sciencedirect.com Energy Procedia 34 (2013 ) 307 317 10th Eco-Energy and Materials Science and Engineering (EMSES2012) Optimal Placement and Sizing of Distributed Generation for

More information

MODIFIED DIRECT-ZBR METHOD PSO POWER FLOW DEVELOPMENT FOR WEAKLY MESHED ACTIVE UNBALANCED DISTRIBUTION SYSTEMS

MODIFIED DIRECT-ZBR METHOD PSO POWER FLOW DEVELOPMENT FOR WEAKLY MESHED ACTIVE UNBALANCED DISTRIBUTION SYSTEMS MODIFIED DIRECT-ZBR METHOD PSO POWER FLOW DEVELOPMENT FOR WEAKLY MESHED ACTIVE UNBALANCED DISTRIBUTION SYSTEMS Suyanto, Indri Suryawati, Ontoseno Penangsang, Adi Soeprijanto, Rony Seto Wibowo and DF Uman

More information

A Modified Genetic Algorithm for Optimal Allocation of Capacitor Banks in MV Distribution Networks

A Modified Genetic Algorithm for Optimal Allocation of Capacitor Banks in MV Distribution Networks Intell Ind Syst (2015) 1:201 212 DOI 10.1007/s40903-015-0019-4 ORIGINAL PAPER A Modified Genetic Algorithm for Optimal Allocation of Capacitor Banks in MV Distribution Networks Antonino Augugliaro 1 Luigi

More information

OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC

OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC CHAPTER - 5 OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC 5.1 INTRODUCTION The power supplied from electrical distribution system is composed of both active and reactive components. Overhead lines, transformers

More information

OPTIMAL LOCATION AND SIZING OF DISTRIBUTED GENERATOR IN RADIAL DISTRIBUTION SYSTEM USING OPTIMIZATION TECHNIQUE FOR MINIMIZATION OF LOSSES

OPTIMAL LOCATION AND SIZING OF DISTRIBUTED GENERATOR IN RADIAL DISTRIBUTION SYSTEM USING OPTIMIZATION TECHNIQUE FOR MINIMIZATION OF LOSSES 780 OPTIMAL LOCATIO AD SIZIG OF DISTRIBUTED GEERATOR I RADIAL DISTRIBUTIO SYSTEM USIG OPTIMIZATIO TECHIQUE FOR MIIMIZATIO OF LOSSES A. Vishwanadh 1, G. Sasi Kumar 2, Dr. D. Ravi Kumar 3 1 (Department of

More information

Network reconfiguration and capacitor placement for power loss reduction using a combination of Salp Swarm Algorithm and Genetic Algorithm

Network reconfiguration and capacitor placement for power loss reduction using a combination of Salp Swarm Algorithm and Genetic Algorithm International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 11, Number 9 (2018), pp. 1383-1396 International Research Publication House http://www.irphouse.com Network reconfiguration

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 03 Mar p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 03 Mar p-issn: Optimum Size and Location of Distributed Generation and for Loss Reduction using different optimization technique in Power Distribution Network Renu Choudhary 1, Pushpendra Singh 2 1Student, Dept of electrical

More information

Power Quality improvement of Distribution System by Optimal Location and Size of DGs Using Particle Swarm Optimization

Power Quality improvement of Distribution System by Optimal Location and Size of DGs Using Particle Swarm Optimization 72 Power Quality improvement of Distribution System by Optimal Location and Size of DGs Using Particle Swarm Optimization Ankita Mishra 1, Arti Bhandakkar 2 1(PG Scholar, Department of Electrical & Electronics

More information

A LOOP BASED LOAD FLOW METHOD FOR WEAKLY MESHED DISTRIBUTION NETWORK

A LOOP BASED LOAD FLOW METHOD FOR WEAKLY MESHED DISTRIBUTION NETWORK VOL. 3, NO. 4, AUGUST 28 ISSN 89-668 26-28 Asian Research Publishing Network (ARPN). All rights reserved. A LOOP BASED LOAD FLOW METHOD FOR WEAKLY MESHED S. Sivanagaraju, J. Viswanatha Rao 2 and M. Giridhar

More information

2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes

2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes 2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

More information

A PARTICLE SWARM OPTIMIZATION TO OPTIMAL SHUNT-CAPACITOR PLACEMENT IN RADIAL DISTRIBUTION SYSTEMS

A PARTICLE SWARM OPTIMIZATION TO OPTIMAL SHUNT-CAPACITOR PLACEMENT IN RADIAL DISTRIBUTION SYSTEMS ISSN (Print) : 30 3765 ISSN (Online): 78 8875 (An ISO 397: 007 Certified Organization) ol., Issue 0, October 03 A PARTICLE SWARM OPTIMIZATION TO OPTIMAL SHUNT-CAPACITOR PLACEMENT IN RADIAL DISTRIBUTION

More information

Optimal Placement and Sizing of Distributed Generators in 33 Bus and 69 Bus Radial Distribution System Using Genetic Algorithm

Optimal Placement and Sizing of Distributed Generators in 33 Bus and 69 Bus Radial Distribution System Using Genetic Algorithm American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

OPTIMAL CAPACITOR PLACEMENT AND SIZING IN A RADIAL DISTRIBUTION SYSTEM USING CLONAL SELECTION ALGORITHM

OPTIMAL CAPACITOR PLACEMENT AND SIZING IN A RADIAL DISTRIBUTION SYSTEM USING CLONAL SELECTION ALGORITHM OPTIMAL CAPACITOR PLACEMENT AND SIZING IN A RADIAL DISTRIBUTION SYSTEM USING CLONAL SELECTION ALGORITHM V. Tamilselvan 1, K. Muthulakshmi 1 and T. Jayabarathi 2 1 Department of Electrical and Electronics

More information

Distributed vs Bulk Power in Distribution Systems Considering Distributed Generation

Distributed vs Bulk Power in Distribution Systems Considering Distributed Generation Distributed vs Bulk Power in Distribution Systems Considering Distributed Generation Abdullah A. Alghamdi 1 and Prof. Yusuf A. Al-Turki 2 1 Ministry Of Education, Jeddah, Saudi Arabia. 2 King Abdulaziz

More information

Failure Rate Modification For Evaluating Reliability Indices A Case Study of IEEE 30 Bus System For Optimal Capacitor Placement

Failure Rate Modification For Evaluating Reliability Indices A Case Study of IEEE 30 Bus System For Optimal Capacitor Placement Failure Rate Modification For Evaluating Reliability Indices A Case Study of IEEE 30 Bus System For Optimal Capacitor Placement Pravin Machhindra Sonwane Associate Professor, Electrical Engg. Dept., K.K.Wagh

More information

Performance Improvement of the Radial Distribution System by using Switched Capacitor Banks

Performance Improvement of the Radial Distribution System by using Switched Capacitor Banks Int. J. on Recent Trends in Engineering and Technology, Vol. 10, No. 2, Jan 2014 Performance Improvement of the Radial Distribution System by using Switched Capacitor Banks M. Arjun Yadav 1, D. Srikanth

More information

PARTICLE SWARM OPTIMIZATION BASED APPROACH FOR LOSS REDUCTION IN UNBALANCED RADIAL DISTRIBUTION SYSTEM

PARTICLE SWARM OPTIMIZATION BASED APPROACH FOR LOSS REDUCTION IN UNBALANCED RADIAL DISTRIBUTION SYSTEM PARTICLE SWARM OPTIMIZATION BASED APPROACH FOR LOSS REDUCTION IN UNBALANCED RADIAL DISTRIBUTION SYSTEM P. UMAPATHI REDDY Department of Electrical and Electronics Engineering, Sree Vidyaniethan Engineering

More information

J. Electrical Systems 10-1 (2014): Regular paper. Optimal Power Flow and Reactive Compensation Using a Particle Swarm Optimization Algorithm

J. Electrical Systems 10-1 (2014): Regular paper. Optimal Power Flow and Reactive Compensation Using a Particle Swarm Optimization Algorithm Ahmed Elsheikh 1, Yahya Helmy 1, Yasmine Abouelseoud 1,*, Ahmed Elsherif 1 J. Electrical Systems 10-1 (2014): 63-77 Regular paper Optimal Power Flow and Reactive Compensation Using a Particle Swarm Optimization

More information

CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM

CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM 16 CHAPTER 2 LOAD FLOW ANALYSIS FOR RADIAL DISTRIBUTION SYSTEM 2.1 INTRODUCTION Load flow analysis of power system network is used to determine the steady state solution for a given set of bus loading

More information

Chapter-2 Literature Review

Chapter-2 Literature Review Chapter-2 Literature Review ii CHAPTER - 2 LITERATURE REVIEW Literature review is divided into two parts; Literature review of load flow analysis and capacitor allocation techniques. 2.1 LITERATURE REVIEW

More information

Power system reconfiguration and loss minimization for a distribution systems using Catfish PSO algorithm

Power system reconfiguration and loss minimization for a distribution systems using Catfish PSO algorithm Front. Energy 2014, 8(4): 434 442 DOI 10.1007/s11708-014-0313-y RESEARCH ARTICLE K Sathish KUMAR, S NAVEEN Power system reconfiguration and loss minimization for a distribution systems using Catfish PSO

More information

Tanuj Manglani 1, Y.S.Shishodia 2

Tanuj Manglani 1, Y.S.Shishodia 2 International Journal of Recent Research and Review, Vol. I, March 2012 ISSN 2277 8322 A Survey of Optimal Capacitor Placement Techniques on Distribution Lines to Reduce Losses Tanuj Manglani 1, Y.S.Shishodia

More information

DG-Embedded Radial Distribution System Planning Using Binary-Selective PSO

DG-Embedded Radial Distribution System Planning Using Binary-Selective PSO DG-Embedded Radial Distribution System Planning Using Binary-Selective PSO Ahvand Jalali S K. Mohammadi H. Sangrody A. Rahim-Zadegan University of Melbourne, Islamic Azad University, Binghamton University,

More information

Optimal Unified Power Quality Conditioner Allocation in Distribution Systems for Loss Minimization using Grey Wolf Optimization

Optimal Unified Power Quality Conditioner Allocation in Distribution Systems for Loss Minimization using Grey Wolf Optimization RESEARCH ARTICLE OPEN ACCESS Optimal Unified Power Quality Conditioner Allocation in Distribution Systems for Loss Minimization using Grey Wolf Optimization M. Laxmidevi Ramanaiah*, Dr. M. Damodar Reddy**

More information

Optimal Capacitor Placement and Sizing on Radial Distribution System by using Fuzzy Expert System

Optimal Capacitor Placement and Sizing on Radial Distribution System by using Fuzzy Expert System 274 Optimal Placement and Sizing on Radial Distribution System by using Fuzzy Expert System T. Ananthapadmanabha, K. Parthasarathy, K.Nagaraju, G.V. Venkatachalam Abstract:--This paper presents a mathematical

More information

LOAD FLOW SOLUTION FOR UNBALANCED RADIAL DISTRIBUTION SYSTEMS

LOAD FLOW SOLUTION FOR UNBALANCED RADIAL DISTRIBUTION SYSTEMS International Journal of Electrical and Electronics Engineering Research (IJEEER) ISSN 2250155X Vol.2, Issue 3 Sep 2012 3755 TJPRC Pvt. Ltd., LOAD FLOW SOLUTION FOR UNBALANCED RADIAL DISTRIBUTION SYSTEMS

More information

Optimal placement of capacitor in distribution networks according to the proposed method based on gradient search

Optimal placement of capacitor in distribution networks according to the proposed method based on gradient search Applied mathematics in Engineering, Management and Technology 2 (6) 2014:570-581 www.amiemt-journal.com Optimal placement of capacitor in distribution networks according to the proposed method based on

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION ABSTRACT 2015 ISRST Volume 1 Issue 2 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science Network Reconfiguration for Loss Reduction of a Radial Distribution System Laxmi. M. Kottal, Dr.

More information

Optimal Sizing And Placement Of Capacitor In A Radial Distribution System Using Loss Sensitivity Factor And Firefly Algorithm.

Optimal Sizing And Placement Of Capacitor In A Radial Distribution System Using Loss Sensitivity Factor And Firefly Algorithm. www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 3 Issue 4 April, 2014 Page No. 5346-5352 Optimal Sizing And Placement Of Capacitor In A Radial Distribution

More information

Optimal Compensation of Reactive Power in Transmission Networks using PSO, Cultural and Firefly Algorithms

Optimal Compensation of Reactive Power in Transmission Networks using PSO, Cultural and Firefly Algorithms Volume 114 No. 9 2017, 367-388 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Optimal Compensation of Reactive Power in Transmission Networks using

More information

An Improved Method for Determining Voltage Collapse Proximity of Radial Distribution Networks

An Improved Method for Determining Voltage Collapse Proximity of Radial Distribution Networks An Improved Method for Determining Voltage Collapse Proximity of Radial Distribution Networks A. AUGUGLIARO, L. DUSONCHET, S. FAVUA, S. MANGIONE Dept. of Electrical, Electronic and Telecommunication Engineering

More information

Power Loss Reduction in Radial Distribution System by Using. Plant Growth Simulation Algorithm

Power Loss Reduction in Radial Distribution System by Using. Plant Growth Simulation Algorithm Power Loss Reduction in Radial Distribution System by Using Plant Growth Simulation Algorithm Sambugari Anil Kumar 1*, K.Jitendra Goud 2 1. Department of Electrical and Electronics Engineering, G.Pulla

More information

Optimal DG allocation and sizing in a Radial Distribution System using Analytical Approach

Optimal DG allocation and sizing in a Radial Distribution System using Analytical Approach Optimal allocation and sizing in a Radial Distribution System using Analytical Approach N.Ramya PG Student GITAM University, T.Padmavathi, Asst.Prof, GITAM University Abstract This paper proposes a comprehensive

More information

OPTIMAL DISPATCH OF REAL POWER GENERATION USING PARTICLE SWARM OPTIMIZATION: A CASE STUDY OF EGBIN THERMAL STATION

OPTIMAL DISPATCH OF REAL POWER GENERATION USING PARTICLE SWARM OPTIMIZATION: A CASE STUDY OF EGBIN THERMAL STATION OPTIMAL DISPATCH OF REAL POWER GENERATION USING PARTICLE SWARM OPTIMIZATION: A CASE STUDY OF EGBIN THERMAL STATION Onah C. O. 1, Agber J. U. 2 and Ikule F. T. 3 1, 2, 3 Department of Electrical and Electronics

More information

Optimal Placement And Sizing Of Dg Using New Power Stability Index

Optimal Placement And Sizing Of Dg Using New Power Stability Index International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 9 (September 2014), PP.06-18 Optimal Placement And Sizing Of Dg Using

More information

OPTIMAL CAPACITORS PLACEMENT IN DISTRIBUTION NETWORKS USING GENETIC ALGORITHM: A DIMENSION REDUCING APPROACH

OPTIMAL CAPACITORS PLACEMENT IN DISTRIBUTION NETWORKS USING GENETIC ALGORITHM: A DIMENSION REDUCING APPROACH OPTIMAL CAPACITORS PLACEMENT IN DISTRIBUTION NETWORKS USING GENETIC ALGORITHM: A DIMENSION REDUCING APPROACH S.NEELIMA #1, DR. P.S.SUBRAMANYAM *2 #1 Associate Professor, Department of Electrical and Electronics

More information

Power Flow Analysis of Radial Distribution System using Backward/Forward Sweep Method

Power Flow Analysis of Radial Distribution System using Backward/Forward Sweep Method Power Flow Analysis of Radial Distribution System using Backward/Forward Sweep Method Gurpreet Kaur 1, Asst. Prof. Harmeet Singh Gill 2 1,2 Department of Electrical Engineering, Guru Nanak Dev Engineering

More information

Optimal Placement of Capacitors for Loss Reduction in Distribution System Using EPSO

Optimal Placement of Capacitors for Loss Reduction in Distribution System Using EPSO I J C T A, 10(5) 2017, pp. 727-741 International Science Press Optimal Placement of Capacitors for Loss Reduction in Distribution System Using EPSO D. Suryakala * and D. Sudha Rani ** Abstract: This paper

More information

Published online: 06 Jan 2014.

Published online: 06 Jan 2014. This article was downloaded by: [Universite Laval] On: 24 May 2014, At: 07:49 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer

More information

NEW EVOLUTIONARY TECHNIQUE FOR OPTIMIZATION SHUNT CAPACITORS IN DISTRIBUTION NETWORKS

NEW EVOLUTIONARY TECHNIQUE FOR OPTIMIZATION SHUNT CAPACITORS IN DISTRIBUTION NETWORKS Journal of ELECTRICAL ENGINEERING, VOL. 62, NO. 3, 2011, 163 167 NEW EVOLUTIONARY TECHNIQUE FOR OPTIMIZATION SHUNT CAPACITORS IN DISTRIBUTION NETWORKS Ali Elmaouhab Mohamed Boudour Rabah Gueddouche The

More information

SINGLE OBJECTIVE RISK- BASED TRANSMISSION EXPANSION

SINGLE OBJECTIVE RISK- BASED TRANSMISSION EXPANSION Vol.2, Issue.1, Jan-Feb 2012 pp-424-430 ISSN: 2249-6645 SINGLE OBJECTIVE RISK- BASED TRANSMISSION EXPANSION V.Sumadeepthi 1, K.Sarada 2 1 (Student, Department of Electrical and Electronics Engineering,

More information

OPTIMAL POWER FLOW BASED ON PARTICLE SWARM OPTIMIZATION

OPTIMAL POWER FLOW BASED ON PARTICLE SWARM OPTIMIZATION U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 3, 2016 ISSN 2286-3540 OPTIMAL POWER FLOW BASED ON PARTICLE SWARM OPTIMIZATION Layth AL-BAHRANI 1, Virgil DUMBRAVA 2 Optimal Power Flow (OPF) is one of the most

More information

Multi-Deployment of Dispersed Power Sources Using RBF Neural Network

Multi-Deployment of Dispersed Power Sources Using RBF Neural Network Energy and Power Engineering, 2010, 2, 213-222 doi:10.4236/epe.2010.24032 Published Online November 2010 (http://www.scirp.org/journal/epe) Multi-Deployment of Dispersed Power Sources Using RBF Neural

More information

Voltage Profile Improvement by Capacitor Placement and Control in Unbalanced Distribution Systems Using Differential Evolution Algorithm

Voltage Profile Improvement by Capacitor Placement and Control in Unbalanced Distribution Systems Using Differential Evolution Algorithm Voltage Profile Improvement by Capacitor Placement and Control in Unbalanced Distribution Systems Using Differential Evolution Algorithm A.Hemasekhar 1, Chevireddy Harika 2 Associate professor, H.O.D,

More information

Placement of Distributed Generator, Capacitor and DG and Capacitor in Distribution System for Loss reduction and Reliability Improvement

Placement of Distributed Generator, Capacitor and DG and Capacitor in Distribution System for Loss reduction and Reliability Improvement Placement of Distributed Generator, and DG and in Distribution System for Loss reduction and Reliability Improvement S.Chandrashekhar Reddy P.V.N.Prasad A.Jaya Laxmi Associate Professor Professor Associate

More information

Fuzzy Control for Shunt Capacitors Applied in Distribution Feeders

Fuzzy Control for Shunt Capacitors Applied in Distribution Feeders Proceedings of the 7th WSEAS International Conference on Power Systems, Beijing, China, September 5-7, 2007 225 Fuzzy Control for Shunt Capacitors Applied in Distribution Feeders EDUARDO KAZUMI YAMAKAWA

More information

DISTRIBUTION SYSTEM OPTIMISATION

DISTRIBUTION SYSTEM OPTIMISATION Politecnico di Torino Dipartimento di Ingegneria Elettrica DISTRIBUTION SYSTEM OPTIMISATION Prof. Gianfranco Chicco Lecture at the Technical University Gh. Asachi, Iaşi, Romania 26 October 2010 Outline

More information

OPTIMAL LOCATION OF COMBINED DG AND CAPACITOR FOR REAL POWER LOSS MINIMIZATION IN DISTRIBUTION NETWORKS

OPTIMAL LOCATION OF COMBINED DG AND CAPACITOR FOR REAL POWER LOSS MINIMIZATION IN DISTRIBUTION NETWORKS OPTIMAL LOCATION OF COMBINED DG AND CAPACITOR FOR REAL POWER LOSS MINIMIZATION IN DISTRIBUTION NETWORKS Purushottam Singh Yadav 1, Laxmi Srivastava 2 1,2 Department of Electrical Engineering, MITS Gwalior,

More information

Transmission Line Compensation using Neuro-Fuzzy Approach for Reactive Power

Transmission Line Compensation using Neuro-Fuzzy Approach for Reactive Power Transmission Line Compensation using Neuro-Fuzzy Approach for Reactive Power 1 Gurmeet, 2 Daljeet kaur 1,2 Department of Electrical Engineering 1,2 Giani zail singh college of Engg., Bathinda (Punjab),India.

More information

Analytical approaches for Optimal Placement and sizing of Distributed generation in Power System

Analytical approaches for Optimal Placement and sizing of Distributed generation in Power System IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN : 2278-1676 Volume 1, Issue 1 (May-June 2012), PP 20- Analytical approaches for Optimal Placement and sizing of Distributed generation

More information

XLVI Pesquisa Operacional na Gestão da Segurança Pública

XLVI Pesquisa Operacional na Gestão da Segurança Pública A strong mixed integer formulation for a switch allocation problem Fábio Luiz Usberti 1, Celso Cavellucci 2 and Christiano Lyra Filho 2 1 Institute of Computing, 2 School of Electrical and Computer Engineering

More information

Optimal Location and Sizing of Capacitors in Radial Distribution Networks Using an Exact MINLP Model for Operating Costs Minimization

Optimal Location and Sizing of Capacitors in Radial Distribution Networks Using an Exact MINLP Model for Operating Costs Minimization Optimal Location and Sizing of Capacitors in Radial Distribution Networks Using an Exact MINLP Model for Operating Costs Minimization OSCAR D. MONTOYA GIRALDO Technological University of Pereira Electrical

More information

Operation of the Power Distribution System via Sensitivity Analysis

Operation of the Power Distribution System via Sensitivity Analysis Memorias del XVI Congreso Latinoamericano de Control Automático, CLCA 2014 Operation of the Power Distribution System via Sensitivity Analysis William M. da Rosa, Priscila Rossoni, Julio C. Teixeira e

More information

Distribution System Power Loss Reduction by Optical Location and Size of Capacitor

Distribution System Power Loss Reduction by Optical Location and Size of Capacitor International Journal of Research in Advent Technology, Vol.2, No.3, March 2014 E-ISSN: 2321-9637 Distribution System Power Loss Reduction by Optical Location and Size of Capacitor PUSHPENDRA SINGH, BALVENDER

More information

OPTIMAL DG UNIT PLACEMENT FOR LOSS REDUCTION IN RADIAL DISTRIBUTION SYSTEM-A CASE STUDY

OPTIMAL DG UNIT PLACEMENT FOR LOSS REDUCTION IN RADIAL DISTRIBUTION SYSTEM-A CASE STUDY 2006-2007 Asian Research Pulishing Network (ARPN). All rights reserved. OPTIMAL DG UNIT PLACEMENT FOR LOSS REDUCTION IN RADIAL DISTRIBUTION SYSTEM-A CASE STUDY A. Lakshmi Devi 1 and B. Suramanyam 2 1 Department

More information

A Multi Target Function for Ideal Siting and Sizing of Distributed Generation (DG) Systems using Particle Swarm Optimisation (PSO)

A Multi Target Function for Ideal Siting and Sizing of Distributed Generation (DG) Systems using Particle Swarm Optimisation (PSO) I J C T A, 10(5) 2017, pp. 237-247 International Science Press A Multi Target Function for Ideal Siting and Sizing of Distributed Generation (DG) Systems using Particle Swarm Optimisation (PSO) Thummala

More information

Vedant V. Sonar 1, H. D. Mehta 2. Abstract

Vedant V. Sonar 1, H. D. Mehta 2. Abstract Load Shedding Optimization in Power System Using Swarm Intelligence-Based Optimization Techniques Vedant V. Sonar 1, H. D. Mehta 2 1 Electrical Engineering Department, L.D. College of Engineering Ahmedabad,

More information

STATE ESTIMATION IN DISTRIBUTION SYSTEMS

STATE ESTIMATION IN DISTRIBUTION SYSTEMS SAE ESIMAION IN DISRIBUION SYSEMS 2015 CIGRE Grid of the Future Symposium Chicago (IL), October 13, 2015 L. Garcia-Garcia, D. Apostolopoulou Laura.GarciaGarcia@ComEd.com Dimitra.Apostolopoulou@ComEd.com

More information

Reactive Power Contribution of Multiple STATCOM using Particle Swarm Optimization

Reactive Power Contribution of Multiple STATCOM using Particle Swarm Optimization Reactive Power Contribution of Multiple STATCOM using Particle Swarm Optimization S. Uma Mageswaran 1, Dr.N.O.Guna Sehar 2 1 Assistant Professor, Velammal Institute of Technology, Anna University, Chennai,

More information

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the 2 nd International Conference on Current Trends in Engineering and Management ICCTEM -2014 ISSN 0976 6545(Print)

More information

Determination of Optimal Location and Sizing of Distributed Generator in Radial Distribution Systems for Different Types of Loads

Determination of Optimal Location and Sizing of Distributed Generator in Radial Distribution Systems for Different Types of Loads AMSE JOURNALS 015-Series: Modelling A; Vol. 88; N 1; pp 1-3 Submitted Feb. 014; Revised July 0, 014; Accepted March 15, 015 Determination of Optimal Location and Sizing of Distributed Generator in Radial

More information

Electrical Power and Energy Systems

Electrical Power and Energy Systems Electrical Power and Energy Systems 32 (2010) 840 848 Contents lists available at ScienceDirect Electrical Power and Energy Systems journal homepage: www.elsevier.com/locate/ijepes Optimal reconfiguration

More information

Research on DG Capacity Selection Based on Power Flow Calculation

Research on DG Capacity Selection Based on Power Flow Calculation IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Research on DG Capacity Selection Based on Power Flow Calculation To cite this article: Junjie Ma 017 IOP Conf. Ser.: Mater. Sci.

More information

Optimal Location and Size of Capacitor Banks to Improve Reliability and Reduce Power Loss in Distribution Network Using GSO Algorithm

Optimal Location and Size of Capacitor Banks to Improve Reliability and Reduce Power Loss in Distribution Network Using GSO Algorithm International Journal of Reliability, Risk and Safety: Theory and Application www.ijrrs.com Optimal Location and Size of Capacitor Banks to Improve Reliability and Reduce Power Loss in Distribution Network

More information