Rank equalities for idempotent and involutory matrices

Similar documents
Linear Algebra and its Applications

On some linear combinations of hypergeneralized projectors

On V-orthogonal projectors associated with a semi-norm

A property of orthogonal projectors

More on generalized inverses of partitioned matrices with Banachiewicz-Schur forms

A revisit to a reverse-order law for generalized inverses of a matrix product and its variations

A note on the equality of the BLUPs for new observations under two linear models

Operators with Compatible Ranges

The generalized Schur complement in group inverses and (k + 1)-potent matrices

Moore Penrose inverses and commuting elements of C -algebras

The Drazin inverses of products and differences of orthogonal projections

Optimization problems on the rank and inertia of the Hermitian matrix expression A BX (BX) with applications

New insights into best linear unbiased estimation and the optimality of least-squares

Rank and inertia optimizations of two Hermitian quadratic matrix functions subject to restrictions with applications

Solutions of a constrained Hermitian matrix-valued function optimization problem with applications

Yongge Tian. China Economics and Management Academy, Central University of Finance and Economics, Beijing , China

On equality and proportionality of ordinary least squares, weighted least squares and best linear unbiased estimators in the general linear model

On the Moore-Penrose and the Drazin inverse of two projections on Hilbert space

SPECIAL FORMS OF GENERALIZED INVERSES OF ROW BLOCK MATRICES YONGGE TIAN

ELA

Dragan S. Djordjević. 1. Introduction

Nonsingularity and group invertibility of linear combinations of two k-potent matrices

Some results on matrix partial orderings and reverse order law

Generalized Principal Pivot Transform

Re-nnd solutions of the matrix equation AXB = C

Multiplicative Perturbation Bounds of the Group Inverse and Oblique Projection

Generalized inverses of partitioned matrices in Banachiewicz Schur form

HUA S MATRIX EQUALITY AND SCHUR COMPLEMENTS

arxiv: v1 [math.ra] 21 Jul 2013

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES

Analytical formulas for calculating the extremal ranks and inertias of A + BXB when X is a fixed-rank Hermitian matrix

Rank and inertia of submatrices of the Moore- Penrose inverse of a Hermitian matrix

The DMP Inverse for Rectangular Matrices

Analytical formulas for calculating extremal ranks and inertias of quadratic matrix-valued functions and their applications

ON WEIGHTED PARTIAL ORDERINGS ON THE SET OF RECTANGULAR COMPLEX MATRICES

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

SOLUTIONS TO PROBLEMS

Dragan S. Djordjević. 1. Introduction and preliminaries

Electronic Journal of Linear Algebra

Intrinsic products and factorizations of matrices

The equalities of ordinary least-squares estimators and best linear unbiased estimators for the restricted linear model

Formulae for the generalized Drazin inverse of a block matrix in terms of Banachiewicz Schur forms

Chapter 1. Matrix Algebra

On a matrix result in comparison of linear experiments

Matrix Inequalities by Means of Block Matrices 1

On some matrices related to a tree with attached graphs

Generalized core inverses of matrices

ELA ON THE GROUP INVERSE OF LINEAR COMBINATIONS OF TWO GROUP INVERTIBLE MATRICES

On pairs of generalized and hypergeneralized projections on a Hilbert space

The Hermitian R-symmetric Solutions of the Matrix Equation AXA = B

A new algebraic analysis to linear mixed models

The symmetric minimal rank solution of the matrix equation AX=B and the optimal approximation

~ g-inverses are indeed an integral part of linear algebra and should be treated as such even at an elementary level.

Introduction to Matrix Algebra

Some additive results on Drazin inverse

On Sums of Conjugate Secondary Range k-hermitian Matrices

Lecture notes: Applied linear algebra Part 1. Version 2

MATRIX ALGEBRA AND SYSTEMS OF EQUATIONS. + + x 1 x 2. x n 8 (4) 3 4 2

Product of Range Symmetric Block Matrices in Minkowski Space

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 1 Introduction to Linear Algebra

arxiv: v1 [math.ra] 24 Aug 2016

Column space decomposition and partial order on matrices,

ON SOME DISTRIBUTIONAL PROPERTIES OF QUADRATIC FORMS IN NORMAL VARIABLES AND ON SOME ASSOCIATED MATRIX PARTIAL ORDERINGS

A CLASS OF THE BEST LINEAR UNBIASED ESTIMATORS IN THE GENERAL LINEAR MODEL

Two applications of the theory of primary matrix functions

PROBLEMS AND SOLUTIONS

The Moore-Penrose inverse of differences and products of projectors in a ring with involution

Some results on the reverse order law in rings with involution

arxiv: v1 [math.ra] 14 Apr 2018

a Λ q 1. Introduction

Diagonal and Monomial Solutions of the Matrix Equation AXB = C

The Equality of OLS and GLS Estimators in the

ELA THE OPTIMAL PERTURBATION BOUNDS FOR THE WEIGHTED MOORE-PENROSE INVERSE. 1. Introduction. Let C m n be the set of complex m n matrices and C m n

Chapter 2 Notes, Linear Algebra 5e Lay

Spectrally arbitrary star sign patterns

Moore-Penrose-invertible normal and Hermitian elements in rings

Applied Mathematics Letters. Comparison theorems for a subclass of proper splittings of matrices

(AA-A = A) and A + be the Moore-Penrose inverse of A [4]. A matrix A is called EP r

arxiv: v1 [math.ra] 25 Jul 2013

MOORE-PENROSE INVERSE IN AN INDEFINITE INNER PRODUCT SPACE

Linear Algebra and its Applications

On Hadamard and Kronecker Products Over Matrix of Matrices

Partial isometries and EP elements in rings with involution

The reflexive re-nonnegative definite solution to a quaternion matrix equation

Orthogonal similarity of a real matrix and its transpose

Linear estimation in models based on a graph

On the Moore-Penrose Inverse in C -algebras

A matrix over a field F is a rectangular array of elements from F. The symbol

HYPO-EP OPERATORS 1. (Received 21 May 2013; after final revision 29 November 2014; accepted 7 October 2015)

Some inequalities for sum and product of positive semide nite matrices

Estimation under a general partitioned linear model

POLI270 - Linear Algebra

Group inverse for the block matrix with two identical subblocks over skew fields

arxiv: v1 [math.ra] 28 Jan 2016

ELA ON A SCHUR COMPLEMENT INEQUALITY FOR THE HADAMARD PRODUCT OF CERTAIN TOTALLY NONNEGATIVE MATRICES

Elementary maths for GMT

Weaker assumptions for convergence of extended block Kaczmarz and Jacobi projection algorithms

Absolute value equations

EXPLICIT SOLUTION OF THE OPERATOR EQUATION A X + X A = B

Journal of Inequalities in Pure and Applied Mathematics

Transcription:

Linear Algebra and its Applications 335 (2001) 101 117 www.elsevier.com/locate/laa Rank equalities for idempotent and involutory matrices Yongge Tian a, George P.H. Styan a, b, a Department of Mathematics and Statistics, Queen s University, Kingston, Ont., Canada K7L 3N6 b Department of Mathematics and Statistics, McGill University, 805 rue Sherbrooke Ouest, Montréal, Qué., Canada H3A 2K6 Received 11 August 1998; accepted 16 December 2000 Submitted by D.H. Carlson Abstract We establish several rank equalities for idempotent and involutory matrices. In particular, we obtain new formulas for the rank of the difference, the sum, the product and the commutator of idempotent or involutory matrices. Extensions to scalar-potent matrices are also included. Our matrices are complex and are not necessarily Hermitian. 2001 Elsevier Science Inc. All rights reserved. AMS classification: 15A03; 15A09 Keywords: Commutator; Commutativity; Generalized inverse; Idempotent matrix; Involutory matrix; Oblique projector; Orthogonal projector; Partitioned matrix; Rank additivity; Rank equality; Rank inequality; Rank of a difference; Rank of a product; Rank of a sum; Rank of the commutator; Rank subtractivity; Scalar-potent matrix; Schur complement 1. Introduction and preliminaries A complex square matrix A is said to be idempotent, or a projector, whenever A 2 = A; whena is Hermitian (real symmetric) and idempotent, it is often called an orthogonal projector, otherwise an oblique projector. As one of the fundamental building blocks in matrix theory, idempotent matrices are very useful in many contexts and have been extensively studied in the literature, see, e.g., [1 11,14 17]. Corresponding author. E-mail addresses: ytian@mast.queensu.ca (Y. Tian), styan@total.net (G.P.H. Styan). 0024-3795/01/$ - see front matter 2001 Elsevier Science Inc. All rights reserved. PII:S0024-3795(01)00297-X

102 Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 In particular, many authors have studied the questions: if both P and Q are idempotent, then: Under what conditions are P ± Q and PQ idempotent? Under what conditions are P ± Q nonsingular? Under what conditions do P and Q commute? In this paper we find several new and interesting rank equalities for the matrices P ± Q, PQ± QP, I PQ, and so on. Through these rank equalities we derive a variety of new properties for idempotent matrices, including some new solutions to the questions just mentioned. We write C m n for the set of all m n matrices over the field of complex numbers. The symbols A,A, r(a) and R(A) denote, respectively, the conjugate transpose, a generalized inverse, the rank and the range space of a matrix A. The partitioned (block) matrix M C m (n+k) with A C m n placed next to B C m k is [ denoted by [A, B], andn C (m+l) n with A C m n placed above C C l n by A ] C. Some well-known results on ranks of matrices used in the sequel are given in the following lemma due to Marsaglia and Styan [12]. Lemma 1.1. Let A C m n,b C m k,c C l n and D C l k be given. Then they satisfy the following rank equalities: r[a, B] = r(a) + r(b AA B) = r(b) + r(a BB A), (1.1) [ A r = r(a) + r(c CA C] A) = r(c) + r(a AC C), (1.2) A B r = r(b) + r(c) + r[(i C 0 m BB )A(I n C C)], (1.3) where the generalized inverses A,B,C are chosen arbitrarily. 2. Rank equalities for idempotent matrices We begin this section with some rank equalities for the difference and for the sum of two idempotent matrices, and then consider various consequences. The ranks of P ± Q when both P and Q are idempotent were studied by Groß and Trenkler [9], where they also considered nonsingularity of the difference of two idempotent matrices; here we will present a more complete discussion of this topic. Theorem 2.1. Let P,Q C m m be any two idempotent matrices. Then the difference P Q satisfies the following rank equalities: [ P r(p Q)=r + r[p, r(p) r(q) (2.1) =r(p PQ)+ r(pq Q) (2.2) =r(p QP ) + r(qp Q). (2.3)

Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 103 Proof. It is easy to see by block Gaussian elimination that P 0 P P 0 0 r 0 Q Q =r 0 Q 0 P Q 0 0 0 P Q =r(p) + r(q) + r(p Q). On the other hand, since P 2 = P and Q 2 = Q it is also easy to find by block Gaussian elimination that P 0 P P 0 P r 0 Q Q =r QP 0 Q P Q 0 P Q 0 0 0 P =r 0 0 Q P Q 0 [ P =r + r[p,. Combining the above two equalities yields (2.1). Then applying (1.1) and (1.2), respectively, to [P, and [ P in (2.1) yields r[p,=r(p) + r(q PQ), r[p,=r(q) + r(p QP ), [ [ P P r = r(p) + r(q QP ), r = r(q) + r(p PQ). Substitution in (2.1) yields (2.2) and (2.3). Some direct consequences of (2.1) (2.3) are given in the following corollary. The result (d) is due to Hartwig and Styan [11] and (e), to Groß and Trenkler [9]. Corollary 2.2. Let P,Q C m m be any two idempotent matrices. Then: (a) If PQ = 0 or QP = 0, then r(p Q) = r(p) + r(q). (b) If PQ = 0, then r(p QP ) + r(qp Q) = r(p) + r(q). (c) If QP = 0, then r(p PQ)+ r(pq Q) = r(p) + r(q). (d) r(p Q) = r(p) r(q) PQP = Q R(Q) R(P) and R(Q ) R(P ). (e) The difference P Q is nonsingular if and only if [ P r = r[p,=r(p) + r(q) = m, or equivalently R(P) R(Q) = R(P ) R(Q ) = C m.

104 Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 We note that when P is idempotent, then I m P is also idempotent. Replacing P in (2.1) (2.3) by I m P yields the following corollary. Corollary 2.3. Let P,Q C m m be any two idempotent matrices. Then the rank of I m P Q satisfies the rank equalities r(i m P Q)=r(PQ) + r(qp) r(p) r(q) + m (2.4) =r(i m P Q + PQ)+ r(pq) (2.5) =r(i m P Q + QP ) + r(qp). (2.6) Furthermore, (a) P + Q = I m PQ = QP = 0 and r(p + Q) = r(p) + r(q) = m. (b) I m P Q is nonsingular if and only if r(pq) = r(qp) = r(p) = r(q). Proof. Replacing P in (2.1) by I m P yields Im P r(i m P Q) = r + r[i Q m P, r(i m P) r(q). (2.7) By (1.1) and (1.2), it follows that r[i m P,=r(I m P)+ r[q (I m P)=m r(p) + r(pq) and Im P r = r(i Q m P)+ r[q Q(I m P)]=m r(p) + r(qp). Substitution in (2.7) yields (2.4). On the other hand, replacing P in (2.2) by I m P produces r[(i m P) =r[(i m P) (I m P)+r[(I m P)Q =r(i m P Q + PQ)+ r(pq) establishing (2.5); the rank equality (2.6) follows similarly. The results in (a) and (b) are direct consequences of (2.4) (2.6). Theorem 2.4. Let P,Q C m m be any two idempotent matrices. Then the sum P + Q satisfies the rank equalities P Q Q P r(p + Q)=r r(q) = r r(p) (2.8) Q 0 P 0 =r(p PQ QP + QP Q) + r(q) (2.9) =r(q PQ QP + PQP)+ r(p). (2.10) Furthermore, (a) If PQ = QP, then r(p + Q) = r(p PQ)+ r(q) = r(q PQ)+ r(p). (b) If PQ = 0 or QP = 0, then r(p + Q) = r(p) + r(q).

Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 105 Our proof of Theorem 2.4 is essentially identical to that of Theorem 2.1 and so it is omitted. We now use (2.8) to find some necessary and sufficient conditions for the sum P + Q to be nonsingular. Corollary 2.5. Let P,Q C m m be any two idempotent matrices. Then the following five statements are equivalent: (a) The sum P + Q is nonsingular. [ [ P P Q (b) r = m and R R ={0}. 0 P (c) r[p,=mand R Q R Q ={0}. 0 Q Q P (d) r = m and R R ={0}. P P 0 Q (e) r[q, P ]=mand R P R P ={0}. 0 Proof. From (2.8) we see that the sum P + Q is nonsingular if and only if r P Q = r(q) + m or r Q 0 Combining (2.11) with the following inequalities: [ P Q P Q r r + r m + r(q), Q 0 0 P Q r r[p,+r[q, 0] m + r(q), Q 0 Q P Q P r r + r m + r(p), P 0 P 0 Q P r r[q, P ]+r[p,0] m + r(p), P 0 Q P = r(p) + m. (2.11) P 0 yields (a) (e) and our proof is complete. Replacing P and Q in (2.8) by I m P and I m Q, respectively, we obtain the following corollary.

106 Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 Corollary 2.6. Let P,Q C m m be any two idempotent matrices. Then (a) r(i m + P Q) = r(qp Q) r(q) + m. (b) r(2i m P Q) = r(q QP Q) r(q) + m = r(p PQP) r(p) + m. (c) r(i m + P Q) = m r(qp Q) = r(q). (d) r(2i m P Q) = m r(p PQP) = r(p) r(q QP Q) = r(q). We now present some rank equalities for the commutator PQ QP,whereP and Q are idempotent; these rank equalities will lead us to some new necessary and sufficient conditions for the commutativity of P and Q; see also [2]. Theorem 2.7. Let P,Q C m m be any two idempotent matrices. Then the rank of the commutator r(pq QP ) = r(p Q) + r(i m P Q) m = r(p Q) + r(pq) + r(qp) r(p) r(q) [ P = r + r[p,+r(pq) + r(qp) 2r(P) 2r(Q) = r(p PQ)+ r(pq Q) + r(pq) + r(qp) r(p) r(q) = r(p QP ) + r(qp Q) + r(pq) + r(qp) r(p) r(q). Furthermore, if both P and Q are Hermitian idempotent, then r(pq QP ) = 2{r[P,+r(PQ) r(p) r(q)}. Proof. Since PQ QP = (P Q)(P + Q I m ),wehave r(pq QP ) = r Im P + Q I m m. P Q 0 On the other hand, it is easy to verify by block Gaussian elimination that r Im P + Q I m = r(p Q) + r(i P Q 0 m P Q) and so the first equality is established. Substituting (2.4) yields the second equality, substituting (2.1) the third, and (2.2) and (2.3) the fourth and fifth equalities. The first equality in Theorem 2.7 reveals an interesting relationship among the three matrices PQ QP, P Q and I m P Q. This leads at once to the following three corollaries.

Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 107 Corollary 2.8. Let P,Q C m m be any two idempotent matrices. Then the following five statements are equivalent: (a) PQ = QP. (b) r(p Q) + r(i m P Q) = m. (c) r(p Q) = r(p) + r(q) r(pq) r(qp). (d) r(p PQ) = r(p) r(pq) and r(q PQ) = r(q) r(pq). (e) r(p QP ) = r(p) r(qp) and r(q QP ) = r(q) r(qp). Corollary 2.9. Let P,Q C m m be any two idempotent matrices. Then the following three statements are equivalent: (a) r(pq QP ) = r(p Q). (b) r(pq) = r(qp) = r(p) = r(q). (c) I m P Q is nonsingular. Proof. It is easy to see that (a) (b) follows from the second equality in Theorem 2.7, and (b) (c) from Corollary 2.3(b). Corollary 2.10. Let P,Q C m m be any two idempotent matrices. Then the following three statements are equivalent: (a) PQ QP is nonsingular. (b) Both P Q and I m P Q are nonsingular. (c) R(P) R(Q)=R(P ) R(Q )=C m and r(pq)=r(qp)=r(p)=r(q). Proof. It is easy to see that (a) (b) follows from the first equality in Theorem 2.7, and (b) (c) from Theorem 2.2(e) and Corollary 2.3(b). Cochran s Theorem (see, e.g., [1,12]) tells us that the sum P + Q of two idempotent matrices P and Q is also idempotent if and only if PQ = QP = 0, and then rank is additive: r(p + Q) = r(p) + r(q).[to see that this holds without the matrices being Hermitian we note first that (P + Q) 2 (P + Q) = PQ+ QP. Premultiplying PQ+ QP = 0byP yields PQ+ PQP = 0andsoQP = PQP; postmultiplying PQ+ QP = 0 by P yields PQP + QP = 0, and so PQP = QP. Hence QP = 0 = PQ.] The difference P Q of two idempotent matrices P and Q is idempotent if and only if PQP = Q or equivalently r(p Q) = r(p) r(q), i.e., rank is subtractive and P is said to be above Q in the minus order, see, e.g., [5,10,11]. These results motivate us to consider the rank of (P + Q) 2 (P + Q) and the rank of (P Q) 2 (P Q) when P and Q are idempotent. Based on the following well-known rank formula for A C m m, see, e.g., [1]: r(a 2 A) = r(a) + r(a I m ) m (2.12) and the above several theorems and corollaries, we are now able to establish the following theorem, see also our Theorem 2.7 above.

108 Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 Theorem 2.11. Let P,Q C m m be any two idempotent matrices. Then the sum PQ+ QP satisfies the four rank equalities r(pq + QP )=r(p + Q) + r(i m P Q) m =r(p + Q) + r(pq) + r(qp) r(p) r(q) =r(p PQ QP + QP Q) + r(pq) + r(qp) r(p) =r(q PQ QP + PQP)+ r(pq) + r(qp) r(q). Proof. Applying (2.12) to (P + Q) 2 (P + Q), we obtain the first equality. Then using (2.4), yields the second equality. The other equalities follow from Theorem 2.4. Combining the first rank equality for r(pq + QP ) in Theorem 2.11 with the first rank equality for r(pq QP ) in Theorem 2.7 yields the following interesting rank formula: r(p + Q) + r(pq QP ) = r(p Q) + r(pq + QP ). (2.13) Corollary 2.12. Let P,Q C m m be any two idempotent matrices. Then the following four statements are equivalent: (a) r(pq + QP ) = r(p + Q). (b) r(i m P Q) = m. (c) r(pq) = r(qp) = r(p) = r(q). (d) r(pq QP ) = r(p Q). Proof. It is easy to see that (a) (b) follows from Theorem 2.11 and (b) (c) (d) from Corollary 2.9. Corollary 2.13. Let P,Q C m m be any two idempotent matrices. Then the following two statements are equivalent: (a) PQ+ QP is nonsingular. (b) P + Q and I m P Q are nonsingular. Proof. Corollary 2.13 follows directly from Theorem 2.11. Corollary 2.14. Let P,Q C m m be any two idempotent matrices. Then r[(p Q) 2 (P Q)]=r(I m P + Q) + r(p Q) m =r(pqp) r(p) + r(p Q). Proof. The first equality follows at once from (2.12) and the second, from Corollary 2.6(a).

Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 109 These results easily lead to the following corollary, due to Hartwig and Styan [11]. Corollary 2.15. Let P,Q C m m be any two idempotent matrices. Then the following four statements are equivalent: (a) P Q is idempotent. (b) r(i m P + Q) = m r(p Q). (c) PQP = Q. (d) r(p Q) = r(p) r(q). (e) R(Q) R(P) and R(Q ) R(P ). We now present rank equalities for I m PQand for PQ (P Q) 2 and then use these to characterize the idempotency of PQ. Theorem 2.16. Let P,Q C m m be any two idempotent matrices. Then I m PQ satisfies the rank equality r(i m PQ) = r(2i m P Q). Proof. Since rank is additive on the Schur complement, see, e.g., [12], Im I r m PQ = m + r(q QP Q); (2.14) Q 0 using elementary row and column (block) operations we see that Im I r m PQ Im PQ I = r m PQ = r(q) + r(i Q 0 Q 0 m PQ). Thus r(i m PQ) = r(q QP Q) r(q) + m. (2.15) Substituting (b) from Theorem 2.6 into (2.15) yields (2.16). Replacing P and Q in (2.14) by I m P and I m Q gives the following equality: r(p + Q) = r(p + Q PQ) = r(p + Q QP ). Corollary 2.17. Let P,Q C m m be any two idempotent matrices. Then r[pq (P Q) 2 ]=r(2i m P Q) + r(pq) m. (2.16) Proof. Applying (2.12) to PQ (P Q) 2 gives r[pq (P Q) 2 ]=r(i m PQ)+ r(pq) m. (2.17) Substituting (2.14) in (2.17) yields (2.16). Corollary 2.17 implies that the product PQof two idempotent matrices is idempotent if and only if r(2i m P Q) = m r(pq). Of course, there are several

110 Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 other known equivalent conditions for the product PQ to be idempotent, see, e.g., [7,16]. We note that when the matrix P is idempotent then so is its conjugate transpose P. Therefore: Corollary 2.18. Let P C m m be an idempotent matrix. Then: (a) r(p P ) = 2r[P,P ] 2r(P). (b) r(i m P P ) = r(i m + P P ) = m. (c) r(p + P ) = r(pp + P P) = r[p,p ]. (d) R(P) R(P + P ) and R(P ) R(P + P ). (e) r(pp P P) = r(p P ). (f) r(i m PP ) = r(2i m P P ). Proof. Part (a) follows from (2.1), (b) from (2.4) and Corollary 2.6(a), and (c) and (d) from (2.13); to prove (e) we use (a) from Corollary 2.9 and (b) here. Finally, (f) here follows from Theorem 2.16. The results in the above theorems and corollaries can easily be extended to scalar-potent matrices, i.e., matrices with the property P 2 = λp and Q 2 = µq, where λ/= 0andµ/= 0. In fact ( ) 1 2 λ P = 1 λ 2 P 2 = 1 ( 1 ) 2 λ P and µ Q 1 = µ 2 Q2 = 1 µ Q and so P/λ and Q/µ are idempotent. We obtain, e.g., the following rank equalities for scalar-potent matrices: [ P r(µp λq) = r + r[p, r(p) r(q), r(µp + λq) = r P Q r(q) = r Q 0 Q P r(p), P 0 r(λµi m µp λq) = r(pq) + r(qp) r(p) r(q) + m, r(pq QP ) = r(µp λq) + r(λµi m µp λq) m, r(pq + QP ) = r(µp + λq) + r(λµi m µp λq) m, r(λµi m PQ) = r(2λµi m µp λq). We end this section with some rank equalities for the matrix difference PA AQ, with both P and Q idempotent. These equalities allow us to study the commutativity of an idempotent matrix P with an arbitrary matrix A.

Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 111 Theorem 2.19. Let A C m n be given and let P C m m and Q C n n be idempotent. Then the matrix difference PA AQ satisfies the two rank equalities PA r(pa AQ)=r + r[aq, P ] r(p) r(q) (2.18) Q =r(pa PAQ)+ r(paq AQ). (2.19) Furthermore, (a) If PAQ = 0, then r(pa AQ) = r(pa) + r(aq). (b) PA = AQ R(AQ) R(P) and R[(P A) ] R(Q ). (c) If A C m m, then PA = AP R(AP ) R(P) and R[(P A) ] R(P ). Proof. It is easy to see by block Gaussian elimination that P 0 PA r 0 Q Q = r(p) + r(q) + r(pa AQ) (2.20) P AQ 0 and P 0 PA 0 PAQ PA r 0 Q Q =r 0 Q Q P AQ 0 P AQ 0 0 0 PA =r 0 0 Q P AQ 0 PA =r + r[aq, P ]. (2.21) Q Combining (2.20) and (2.21) yields (2.18). Applying (1.1) and (1.2) to [AQ, P ] and [ PA] Q in (2.18), respectively, yields (2.19). The results in (b) and (c) are natural consequences of (2.18) and (2.19). Applying Theorem 2.19 to PQ QP, with both P and Q idempotent, leads to some new formulas for the rank of PQ QP ; we notice that P and Q are again interchangeable. Corollary 2.20. Let P,Q C m m be two idempotent matrices. Then PQ r(pq QP )=r + r[qp, P ] 2r(P) P QP =r + r[pq, 2r(Q) Q =r(pq PQP)+ r(pqp QP ) =r(qp QP Q) + r(qpq PQ) = r(qp PQ).

112 Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 When both P and Q are Hermitian idempotent, then r(pq QP ) = 2r(PQ PQP) = 2r(QP QP Q) as established by Bérubé et al. [6]; Puntanen [14, p. 12], see also [15, Theorem 3.4.1, p. 34], showed that with both P and Q Hermitian idempotent r(pq PQP)=r(PQ) + r[p, r(p) r(q) =r(pq) + r(q PQ) r(q) =r(qp) + r(p PQ) r(p). (2.22) The rank equality (2.22) is of interest in the analysis of the Gauß Markov linear statistical model {y,xβ,v}; there r(pq PQP)gives the number of unit canonical correlations between the ordinary least-squares fitted values and the residuals, with P = XX and Q = VV ; here the superscript denotes the Moore Penrose inverse and so P and Q are the orthogonal projectors onto the range spaces R(X) and R(V ), respectively. For further details see [14,15], as well as [4,6]. Corollary 2.21. Let P,Q C m m be two idempotent matrices. Then r(p Q)=r[(P PQ)+ α(pq Q)] (2.23) =r[(q QP ) + α(qp P)] (2.24) holds for all α C with α/= 0. In particular, r(p Q) = r(p + Q 2PQ) = r(p + Q 2QP ). (2.25) Proof. We note that for all α C P PQ+ α(pq Q) = P(P + αq) (P + αq)q. Then, using (2.18), it follows that P(P + αq) r[p PQ+ α(pq Q)]=r Q +r[(p + αq)q, P] r(p) r(q) [ P =r + r[αq, P] r(p) r(q) [ P =r + r[p, r(p) r(q) provided α/= 0. Combining this last equality with (2.1) yields (2.23); reversing P and Q yields (2.24). Putting α = 1in (2.23) and (2.24) yields (2.25).

Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 113 Replacing P by I m P in (2.23), we obtain the following corollary. Corollary 2.22. Let P,Q C m m be two idempotent matrices. Then r(i m P Q + αpq) = r(i m P Q) holds for all α C with α/= 1. 3. Rank equalities for involutory matrices A matrix A C m m is said to be involutory if its square is the identity matrix, i.e., A 2 = I m, see, e.g., [13, pp. 113, 325, 339, 485] and [19, Section 4.1]. In fact an involutory matrix is a nonsingular tripotent matrix. It is well known that involutory matrices and idempotent matrices are closely linked. Indeed, for any involutory matrix A, the two matrices 1 2 (I m + A) and 1 2 (I m A) are idempotent. On the other hand, for any idempotent matrix P, the two matrices ±(I m 2P) are involutory. We may, therefore, extend all our results in Section 2 on idempotent matrices to involutory matrices. For example, we have the following theorem. Theorem 3.1. Let A, B C m m be two involutory matrices. Then the rank of A + B satisfies the two equalities Im + A r(a + B)=r + r[i I m B m + A, I m B] r(i m + A) r(i m B), (3.1) r(a + B)=r[(I m + A)(I m + B)]+r[(I m A)(I m B)]. (3.2) Proof. Since both P = 1 2 (I m + A) and Q = 1 2 (I m B) are idempotent when A and B are involutory, we have r(p Q) = r[ 1 2 (I m + A) 1 2 (I m B)]=r(A + B), and [ P Im + A r + r[p, r(p) r(q)=r + r[i I m B m + A, I m B] r(i m + A) r(i m B). Substituting these equalities in (2.1) gives (3.1). Furthermore we have r(p PQ) = r[(i m + A)(I m 1 2 (I m B))]=r[(I m + A)(I m + B)], r(pq Q) = r[( 1 2 (I m + A) I m )(I m B)]=r[(I m A)(I m B)]. Substituting these equalities in (3.1) yields (3.2).

114 Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 We note that when B is involutory, then B is also involutory. Thus replacing B by B in (3.1) and (3.2) yields two rank equalities for the difference A B of two involutory matrices. Theorem 3.2. Let A, B C m m be two involutory matrices. Then A + B and A B satisfy the rank equalities r(a + B)=r[(I m + A)(I m + B)]+r[(I m + B)(I m + A)] r(i m + A) r(i m + B) + m, (3.3) r(a B)=r[(I m + A)(I m B)]+r[(I m B)(I m + A)] r(i m + A) r(i m B) + m. (3.4) Proof. Putting P = 1 2 (I m + A) and Q = 1 2 (I m + B) in (2.4) and simplifying yields (3.3). Replacing B by B in (3.3) yields (3.4). Combining (3.2) with (3.3) yields this interesting rank equality for involutory matrices A and B: r[(i m + B)(I m + A)]=r(I m + B) + r(i m + A) m +r[(i m A)(I m B)]. Theorem 3.3. Let A, B C m m be two involutory matrices. Then and so r(ab BA) = r(a + B) + r(a B) m, (3.5) AB = BA r(a + B) + r(a B) = m. (3.6) Proof. Putting P = 1 2 (I m + A) and Q = 1 2 (I m B)in the first equality of Theorem 2.7 and simplifying yields (3.5). Substituting (3.1) (3.4) into (3.5) may yield some further rank equalities for AB BA. We plan to explore this in our future research. Theorem 3.4. Let A C m m be an involutory matrix. Then r(a A )=2r[I m + A, I m + A ] 2r(I m + A) (3.7) =2r[I m A, I m A ] 2r(I m A), (3.8) r(a + A )=m, (3.9) r(aa A A) = r(a A ). (3.10)

Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 115 Proof. Putting P = 1 2 (I m ± A) and P = 1 2 (I m ± A ) in Corollary 2.18 and simplifying yields (3.7) (3.10). Theorem 3.5. Let A C m m and B C n n be two involutory matrices and X C m n.thenax XB satisfies the rank equalities (Im + A)X r(ax XB)=r + r[x(i I n + B n + B),I m + A] r(i m + A) r(i n + B), (3.11) =r[(i m + A)X(I n B)]+r[(I m A)X(I n + B)]. (3.12) In particular, AX = XB (I m + A)X(I n B) = 0 and (I m A)X(I n + B) = 0. Proof. Putting P = 1 2 (I m + A) and Q = 1 2 (I n + B) in (2.18) and (2.19) yields (3.11) and (3.12). 4. Conclusions and further extensions In this paper we have established a variety of rank equalities for idempotent matrices. From these rank equalities we have obtained many new properties for sums, differences and products of two idempotent matrices. The product of two real symmetric idempotent matrices (orthogonal projectors) has been studied in multivariate statistical analysis since its eigenvalues are the squares of canonical correlations, see, e.g., [14,15]. We have applied our rank equalities to involutory matrices. There are also other applications in matrix theory. For example, from (2.1), we have for A C m m r(aa A A) = 2r[A, A ] 2r(A), (4.1) where A is the Moore Penrose inverse. We may use (4.1) to characterize the commutativity of A and A. Using (2.18), we see that r(a k A A A k A k ) = r + r[a k,a ] 2r(A), A which may be used to characterize the commutativity of A k and A. Other rank equalities for a matrix and its Moore Penrose inverse can also be derived in this way; these results appear in the first author s paper [18].

116 Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 Again from (2.1), we also find that max r(aa A A) = min{2m 2r(A), 2r(A)} A and min A r(aa A A) = 2r(A) 2r(A 2 ). These rank equalities help characterize the nonsingularity and the rank invariance of the commutator AA A A, as well as the commutativity of A and A.In addition, we can also determine from (2.1) and (2.18) the maximal and minimal ranks of A k A A A k, AA B B, and so on. We will present these results in a further paper. Acknowledgements An early version of this paper was based on Chapter 4 of the M.Sc. Thesis [17] by the first author. This paper was completed while the second author was on sabbatical leave in the Department of Mathematics, Statistics and Philosophy, University of Tampere, Tampere, Finland; he is most grateful to Simo Puntanen for wonderful hospitality and excellent provision of facilities. The research of both authors was supported in part by the Natural Sciences and Engineering Research Council of Canada, and that of the second author in part by the Academy of Finland. References [1] T.W. Anderson, G.P.H. Styan, Cochran s theorem, rank additivity and tripotent matrices, in: G. Kallianpur, P.R. Krishnaiah, J.K. Ghosh (Eds.), Statistics and Probability: Essays in Honor of C.R. Rao, North-Holland, Amsterdam, 1982, pp. 1 23. [Reprinted in: G.P.H. Styan (Ed.), The Collected Papers of T.W. Anderson: 1943 1985, vol. 2, Wiley, New York, 1990, pp. 1307 1329.] [2] J.K. Baksalary, Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors, in: T. Pukkila, S. Puntanen (Eds.), Proceedings of the Second International Tampere Conference in Statistics: University of Tampere, Tampere, Finland, 1 4 June 1987, Dept. of Mathematical Sciences/Statistics, University of Tampere, Tampere, Finland, 1987, pp. 113 142. [3] J.K. Baksalary, O.M. Baksalary, Idempotency of linear combinations of two idempotent matrices, Linear Algebra Appl. 321 (2000) 3 7. [4] J.K. Baksalary, G.P.H. Styan, Around a formula for the rank for a matrix product with some statistical applications, in: R.S. Rees (Ed.), Graphs, Matrices, and Designs: Festschrift in Honor of Norman J. Pullman on his 60th Birthday, Marcel Dekker, New York, 1993, pp. 1 18. [5] R.B. Bapat, S.K. Jain, L.E. Snyder, Nonnegative idempotent matrices and the minus partial order, Linear Algebra Appl. 261 (1997) 143 154. [6] J. Bérubé, R.E. Hartwig, G.P.H. Styan, On canonical correlations and the degrees of non-orthogonality in the three-way layout, in: K. Matusita, M.L. Puri, T. Hayakawa (Eds.), Statistical Sciences and Data Analysis: Proceedings of the Third Pacific Area Statistical Conference, Makuhari (Chiba, Tokyo), Japan, 11 13 December 1991, VSP International Science Publishers, Utrecht, Netherlands, 1993, pp. 247 252.

Y. Tian, G.P.H. Styan / Linear Algebra and its Applications 335 (2001) 101 117 117 [7] J. Groß, On the product of orthogonal projectors, Linear Algebra Appl. 289 (1999) 141 150. [8] J. Groß, G. Trenkler, On the product of oblique projectors, Linear and Multilinear Algebra 44 (1998) 247 259. [9] J. Groß, G. Trenkler, Nonsingularity of the difference of two oblique projectors, SIAM J. Matrix Anal. Appl. 21 (1999) 390 395. [10] R.E. Hartwig, G.P.H. Styan, On some characterizations of the star partial ordering for matrices and rank subtractivity, Linear Algebra Appl. 82 (1986) 145 161. [11] R.E. Hartwig, G.P.H. Styan, Partially ordered idempotent matrices, in: T. Pukkila, S. Puntanen (Eds.), Proceedings of the Second International Tampere Conference in Statistics: University of Tampere, Tampere, Finland, 1 4 June 1987, Department of Mathematical Sciences/Statistics, University of Tampere, Tampere, Finland, 1987, pp. 361 383. [12] G. Marsaglia, G.P.H. Styan, Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra 2 (1974) 269 292. [13] C.D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia, 2000. [14] S. Puntanen, Properties of the canonical correlations between the least squares fitted values and the residuals, in: T. Pukkila, S. Puntanen (Eds.), Proceedings of the First International Tampere Seminar on Linear Statistical Models and their Applications: University of Tampere, Tampere, Finland, 30 August to 2 September, 1983, Dept. of Mathematical Sciences/Statistics, University of Tampere, Tampere, Finland, 1985, pp. 269 284. [15] S. Puntanen, On the relative goodness of ordinary least squares and on some associated canonical correlations, in: On the relative goodness of ordinary least squares estimation in the general linear model by Simo Puntanen [Ph.D. Thesis, Department of Mathematical Sciences, Acta Universitatis Tamperensis Series A, University of Tampere, Tampere, Finland, 1987, vol. 216, Paper [1], 77 pp. [16] Y. Takane, H. Yanai, On oblique projectors, Linear Algebra Appl. 289 (1999) 297 310. [17] Y. Tian, Rank equalities related to generalized inverses and their applications, M.Sc. Thesis, Department of Mathematics and Statistics, Concordia University, Montréal, April 1999. [18] Y. Tian, How to characterize equalities for the Moore Penrose inverse of a matrix, Kyungpook Math. J. (2001), in press. [19] F. Zhang, Matrix Theory: Basic Results and Techniques, Springer, New York, 1999.