Overview of x-ray techniques

Similar documents
Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Undulator Commissioning Spectrometer for the European XFEL

At-wavelength figure metrology of hard x-ray focusing mirrors

SUPPLEMENTARY INFORMATION

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

The MID instrument.

Two-Stage Chirped-Beam SASE-FEL for High Power Femtosecond X-Ray Pulse Generation

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

Undulator radiation from electrons randomly distributed in a bunch

CONCEPTUAL STUDY OF A SELF-SEEDING SCHEME AT FLASH2

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

MEASUREMENT OF TEMPORAL RESOLUTION AND DETECTION EFFICIENCY OF X-RAY STREAK CAMERA BY SINGLE PHOTON IMAGES

Generation and characterization of ultra-short electron and x-ray x pulses

PROBLEM OF X-RAY SYNCHROTRON BEAM COLLIMATION BY ZONE PLATE

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

The BESSY - FEL Collaboration

Introduction to electron and photon beam physics. Zhirong Huang SLAC and Stanford University

STATUS OF E-157: METER-LONG PLASMA WAKEFIELD EXPERIMENT. Presented by Patrick Muggli for the E-157 SLAC/USC/LBNL/UCLA Collaboration

Opportunities and Challenges for X

A facility for Femtosecond Soft X-Ray Imaging on the Nanoscale

PB I FEL Gas-Monitor Detectors for FEL Online Photon Beam Diagnostics BESSY

Performance Metrics of Future Light Sources. Robert Hettel, SLAC ICFA FLS 2010 March 1, 2010

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

Short Wavelength SASE FELs: Experiments vs. Theory. Jörg Rossbach University of Hamburg & DESY

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s

The European XFEL in Hamburg: Status and beamlines design

XRD endstation: condensed matter systems

Hong-Ou-Mandel effect with matter waves

Research with Synchrotron Radiation. Part I

Coherence properties of the radiation from SASE FEL

Basics of Synchrotron Radiation Beamlines and Detectors. Basics of synchrotron radiation X-ray optics as they apply to EXAFS experiments Detectors

Detection of Single Photon Emission by Hanbury-Brown Twiss Interferometry

Femtosecond time-delay holography Henry Chapman Centre for Free-Electron Laser Science - DESY Lawrence Livermore National Laboratory

Toward Fourier-limited X-ray Science

Free-electron laser SACLA and its basic. Yuji Otake, on behalf of the members of XFEL R&D division RIKEN SPring-8 Center

Imaging & Microscopy

Developments for the FEL user facility

X-Ray Diagnostics Commissioning at the LCLS

A Review of X-Ray Free Electron Laser Oscillator

Introduction to XAFS. Grant Bunker Associate Professor, Physics Illinois Institute of Technology. Revised 4/11/97

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

X-Ray Interaction with Matter: Absorption, Scattering and Refraction

Diffraction Imaging with Coherent X-rays

Inline Spectrometer as Permanent Optics at the X-ray Correlation Spectroscopy Instrument to Support Seeding Operation

Coherence. Tsuneaki Miyahara, Japan Women s Univ.

Pushing the limits of laser synchrotron light sources

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

SSRL XAS Beam Lines Soft X-ray

X-Ray Diffraction as a key to the Structure of Materials Interpretation of scattering patterns in real and reciprocal space

The X-ray FEL Oscillator: Parameters, Physics, and Performance

Laser-driven undulator source

Single Photon Generation & Application

EO single-shot temporal measurements of electron bunches

Synchrotron Methods in Nanomaterials Research

Energy Recovery Linac (ERL) Properties. Physics Dept. & Cornell High Energy Synchrotron Source (CHESS) Ithaca, NY Cornell University

Introduction to FT-IR Spectroscopy

Optical Spectroscopy of Advanced Materials

General theory of diffraction

Structure determination at high pressures: X-ray diffraction

Spatial coherence measurement

Highly Efficient and Anomalous Charge Transfer in van der Waals Trilayer Semiconductors

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Neutron Instruments I & II. Ken Andersen ESS Instruments Division

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

VARIABLE GAP UNDULATOR FOR KEV FREE ELECTRON LASER AT LINAC COHERENT LIGHT SOURCE

Methoden moderner Röntgenphysik I. Coherence based techniques II. Christian Gutt DESY, Hamburg

Development of Soft X-rayX using Laser Compton Scattering

Pump/Probe Experiments

X-ray Beamline Design Shunji Goto SPring-8/JASRI

Trends in X-ray Synchrotron Radiation Research

Enhanced Harmonic Up-Conversion Using a Single Laser, Hybrid HGHG-EEHG Scheme

The SCSS test accelerator Free-Electron Laser seeded by harmonics produced in gas

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

French-Ukrainian workshop Kevin Dupraz 1 ELI-NP-GBS. Extreme Light Infrastructure Nuclear Physics Gamma Beam Source

X-ray Free-electron Lasers

An Overview of the Activities of ICS Sources in China

Disordered Materials: Glass physics

AMO physics with LCLS

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

Polarimetry. POSIPOL 2011 Beijing Peter Schuler (DESY) - Polarimetry

SPARCLAB. Source For Plasma Accelerators and Radiation Compton. On behalf of SPARCLAB collaboration

X-Ray Spectroscopy at LCLS

Coherent X-ray Scattering and X-ray Photon Correlation Spectroscopy

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

with Intense X- ray Beams at SPring- 8 and WISPs

Novel method for ultrashort laser pulse-width measurement based on the self-diffraction effect

Single-photon NV sources. Pauli Kehayias March 16, 2011

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

X-Ray Scattering Studies of Thin Polymer Films

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

Emittance Limitation of a Conditioned Beam in a Strong Focusing FEL Undulator. Abstract

Measuring the temporal intensity of ultrashort laser pulses by triple correlation

Update on and the Issue of Circularly-Polarized On-Axis Harmonics

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

attosecond laser pulse

Structural Characterization of Giant Magnetoresistance Multilayers with New Grazing Incidence X-ray Fluorescence

H. Maesaka*, H. Ego, T. Hara, A. Higashiya, S. Inoue, S. Matsubara, T. Ohshima, K. Tamasaku, H. Tanaka, T. Tanikawa, T. Togashi, K. Togawa, H.

EUV and Soft X-Ray Optics

Transcription:

Overview of x-ray techniques Makina YABASHI SPring-8/JASRI ICFA Future Light Sources Subpanel Miniworkshop on XFEL Short Bunch Measurement and Timing Stanford Linear Accelerator Center July, 26 2004 1

XFEL X-beam Handling Short pulse Spatial Coherence Peak Brilliance X-beam Diagnostics 3rd gen. SR 2

XFEL X-beam Handling Short pulse Spatial Coherence Peak Brilliance X-beam Diagnostics 3rd gen. SR 3

X-ray handling Coherence preservation Temporal manipulation Polarization Thermal handling Nano-beam Monochromator Crystal Multilayer Mirror Window µ fabricated optics 4

Crystal: Diamond Diamond workshop @ ESRF, May 24-25, 2004 Tamasaku et al: "Characterization of synthetic IIa diamonds at SPring-8" Bragg Geometry Si 220(b=20.9)-C 111 @9.44 kev 5 mm 0.5x0.5 mm 2 Whole surface g 111 Theory 1 mm (Sumitomo IIa) 5

Mirror Can we use under coherent illumination? 6

Mirror: SP8 - Osaka Univ. collaboration ICFA Future Light Sources Subpanel amera istance: Mirror: Silicon (001) / Incident angle 1.2 mrad / Mirror length 100 mm Premachined surface CVM surface CVM+EEM surface 66 mm 66 mm 66 mm Mori et al, Proc. SPIE (2001) 7

Mirror: Nanobeam Summer in 2003 E=15 kev( =0.8 Å) 0.6 2.5 0.5 Beam profile imulated by using ideal shape Beam profile simulated by using measured shape Measured beam profile 2.0 Beam profile simulated by using ideal shape Beam profile simulated by using measured shape Measured beam profile Intensity (arb. unit) 0.4 0.3 0.2 Intensity (arb. unit) 1.5 180 nm 1.0 90 nm 0.1 0.5 0.0-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 Position [um] 0.0-1 -0.8-0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1 Position [um] July 2004: 40 nm focus was achieved! 8

Window: Be NGK, BR-3 Brush-Wellman, IF-1 200 µm Purity: 98.5 % Roughness: > 1 µm Ra Thickness: 200 µm Purity: 99.8 % Roughness: 0.1 µm Ra Thickness: 250 µm t Phase contrast imaging @ 1-km BL (0.5 µm res., L ~1.8 m, λ ~1 Å) S. Goto et al: Proc. SRI2003 9

XFEL X-beam Handling X-beam Diagnostics 3rd gen. SR 10

X-ray diagnostics Coherence Spatial profile Temporal profile Statistics Polarization Crystal Multilayer Mirror Window µ fabricated optics 11

Temporal profile Resolution Envelop Repeat Present ~ ps Simple Multi-shot (Gaussian) (average) Target ~ fs, as Complex Single-shot (arbitrary) 12

How to measure Temporal domain Laser & X-ray coincidence Fourier transform Frequency domain X-ray Spectral Interferometry 13

Spatial profile: Coherence Real-space domain e-beam size measurement Fourier transform Reciprocal-space domain X-ray Interferometry 14

Diagnostics Temporal domain Laser & X-ray coincidence Frequency domain X-ray Interferometry Fourier transform Real-space domain e-beam size measurement Reciprocal-space domain X-ray Interferometry 15

Interferometry Amplitude interferometry Intensity interferometry Thomas Young, 1807 Hanbury-Brown and Twiss, 1956 Photon Statistics 16

Photon statistics Aug. July 2004 2003! Chaotic light Coherent light Intensity interferometry (2nd-order interferometry) 17

Contents Introduction Principle Experiment at 3rd. gen SR Proposal for SPPS Proposal for XFEL 18

Instantaneous wave field Point / Coherent source Point / Chaotic source 2π ir i t Ert (,) Ne exp e ω λ Planer /Chaotic source N e 2π ir i Ert (,) exp + iφi () t e ω λ i t N e 2π ir si i t Ert (,) exp + iφi () t e ω i λ Loudon, 1983 Goodman, 1985 19

Wave packet temporal coherence length I = I + I +Γ +Γ Γ = * AB A B * A B AB A EE coherence cell spatial coherence length xt, ) = ( xt, ) 2 IAIB = IA IB + ΓAB 2 20

Variation Two pinholes d One pinhole + Beam splitter x 21

Mode number Spatial resolution M X ~ 3 M T ~ 2 Temporal resolution coherence cell Coincidence counter ode number M : Number of coherence cells n the resolution function (M = M X M Y M T ) I AIB = IA IB 1+ 1/ M IAIB 1 R 1 = I I M A B ( ) Small M Large R 100 10 M X 1 10 R 1 0.1 0.1 1 10 100 w X /σ X 22

Contents Introduction Principle Experiment at 3rd. gen SR Spatial domain Temporal domain Proposal for SPPS Proposal for XFEL 23

Difficulty in 3rd gen. SR M T s T = 1+ σ T 2 s T ~ 10-100 ps (pulse width of SR) σ T ~ sub-fs (N U λ/c) for raw undulator radiation M T ~ 10 5-10 6 R =1/ M T ~ 10-5 - 10 6 σ T = λ 2 / λ = λe/ E 1/ E Use of high-resolution monochromator (HRM) Optimized condition: σ ~ s T T (~ 10 ps) E ~ sub mev Y. Kunimune et al. JSR (1998) E. Gluskin et al. JSR (2000) 24

High-Resolution Mono 10 E (mev) 1 0.1 E/E = ω S cot θ B 1985 1990 1995 2000 Year E/E = ω S b 1/2 cot θ B Energy Resolutions at E=14.4 kev G. Faigel et al. 1987; T. Ishikawa et al. 1992; T. Toellner et al. 1992, 1997; A.I. Chumakov et al. 1996, 2000 10-7 10-8 E/E 25

Design E = 14.4 kev Si 11 5 3 Glancing angle = 2 b = b 1 = b 2 = 1/b 3 = 1/b 4 = 1/10.4 Crystal size: 30 15 12 mm 3 Spatial acceptance = 100 µm E = 100 µev 26

Dual co-axial goniometer #2 Dual co-axial goniometer #1 (12.2 nrad/pls) 27

Result Resonant intensity 500 400 300 200 100 Slit width: 100(v) x 22.5(h) µm 2 E= 114 µev 0-300 -200-100 0 100 200 300 Energy shift (µev) 28

Achieved Resolution 10 E (mev) 1 0.1 1985 1990 1995 2000 Year M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, Rev. Sci. Instrum. 72, 4080 (2001). 10-7 10-8 E/E 29

Setup 25 m/4.5 m Undulator DCM HRM Slit APD 1&2 0 58 67.8 Distance from the center of undulator (m) The rotation center of θ CCD camera APD 1 APD 2 Cage for the 2nd crystal exit beam α 1 30mm incident beam Y1 XX 1 φ 1 Z1 mechanical cam X1 Cage θ 1 θ itamura et al., NIM A, 2001 manual X manual Z Yabashi et al., SPIE 1999; Tamasaku et al., SPIE 2002, TM P BS APD 1 APD 2 30

σ y λz = 2π s y ε = 6 nm.rad Spatial domain ε = 3 nm.rad R 0.2 0.1 0 0 100 200 300 400 500 Vertical slit width ( µm) σ y = 124.3 ± 6.9 µm s y = 5.9 ± 0.3 µm ε y = 6.0 ± 0.7 pm.rad κ = 0.10 % R max. Yabashi, K. Tamasaku & T. Ishikawa, ys. Rev. Lett. 87, 140801 (2001); ys. Rev. A 69, 023813 (2004). R 0.2 0.1 0 0 100 200 300 400 500 Vertical slit width ( µm) σ y = 161.3 ± 5.0 µm s y = 4.6 ± 0.14 µm ε y = 3.6 ± 0.2 pm.rad, κ = 0.12 % 31

Pulse width R max 0.2 R 0.1 0 0 100 200 300 400 Vertical slit width (µm) R max = 1/ M T = (1+ σ T 2 /s T2 ) -1/2 (M X = M Y = 1) σ T = 4hln2/ E Measure pulse width s t 32

Result R 0.5 0.4 0.3 0.2 0.1 Vertical width = 30 µm E(keV) E(meV) 14.412 0.145 14.365 0.231 14.332 0.334 14.299 0.508 14.267 0.763 0 0 10 20 Horizontal slit width ( µm) 33

Mode number vs. bandwidth M t 10 5 Measured Calculated (s=32.7 ps) t M t = 1/ R max 4 ln2 = 1+ E s t 2 s T = 32.7 ±1.6 ps 1 0.1 0.5 1 E (mev) Streak camera: 32 ps M. Yabashi, K. Tamasaku, and T. Ishikawa, Phys. Rev. Lett. 88, 244801 (2002). 34

Contents Introduction Principle Experiment at 3rd. gen SR Proposal for SPPS Proposal for XFEL 35

SPPS Pulse Optimized width bandwidth 3rd gen. 30 ps 0.2 mev complicated SPPS 80 fs 70 mev simple 36

Pinhole Intensity monitor Proposed Setup Si hkl Ge detector MCA light det. t M 2 K = σ K 2 K 37

E (mev) Simulation M Mandel's formula Si 800 25 1.5 Si 440 80 3.9 Si 400 220 9.3 E = 9.3 kev, s t = 80 fs average counting number = 2.5 Probability 0.2 0.1 0 0.2 0.1 0 0.2 0.1 0 0 10 20 Photon counting number B-E Poisso 38

Key for success 1. Bose degeneracy S/N δ η (f T)1/2 SP8 25-m U SPPS Degeneracy δ : ~ 0.3 ~ 90 (B P ~ 6 10 23 (B P ~ 5 10 25 λ ~0.086 nm ) λ ~0.13 nm) Efficiency η: 10-2 10-1 Repetition rate f : 36 MHz 10 Hz δ η f 1/2 : 18 30 Time: ~ 10 min < 10 min?? 2. Normalization of intensity fluctuation unrelated to interference 39

Required time Estimated M c 10 5 Time (s) 10 100 1000 10000 δ c =1 δ c =0.1 0 100 1000 10000 100000 Total number of pulse, N δc # of pulses Time 1 200 20 sec 0.1 20000 2000 sec ~ 1 hour 0.01 2000000 200000 sec ~ 2 days 2 T δ c 40

Key for success 1. Bose degeneracy S/N δ η (f T)1/2 Degeneracy δ : ~ 0.3 ~ 90 (B P ~ 6 10 23 (B P ~ 5 10 25 λ ~0.086 nm ) λ ~0.13 nm) Efficiency η: 10-2 10-1 Repetition rate f : 36 MHz 10 Hz δ η f 1/2 : 18 30 Time: ~ 10 min < 10 min?? 2. Normalization of intensity fluctuation unrelated to interference 41

Average for repeated pulses I I I ω ω ω More intense beam 42

Single-shot Measurement ( E) 2 E 1 A ( t) 2 T 2 E 2 E FT ' Microstrucrure Envelop T 1 t T 1 h / E 1 J. Krzywinski, E. Saldin et al. NIM A (1997) 43

Simulation -200-100 0 100 200 Time (fs) -10 0 10 Photon energy (ev) T 1 : 100 fs E 1 : 10 mev -200-100 0 100 200 Photon energy (mev) 44

XFEL Thin target/ Divergent optics Setup Crystal (Si, Ge, C...) Nearly backscattering E E χ g Array Detector I( E) = A( E) 2 Si 555: E = 16 mev @ E 9.9 kev Pulse width estimation (a priori knowledge of pulse shape) OK 45

Detailed information FT A E A t 2 ( ) ( ) 2 FT A E A t Require phase information ( ) ( ) 46

Phase retrieval Oversampling method 2D: OK Miao et al. PRL 89 (2002) 088303. FT 2 Iteration SEM image of Ni pattern on SiN Coherent Scattering Pattern 2D Reconstructed Image (<10 nm resolution) 1D: generally impossible for complex object 47

Example: FROG Frequency Resolved Optical Gating Measure energy spectrum with changing delay time Optical Delay Spectrometer Non-linear material 2D Phase Retrieval R. Trebino and D. J. Kane, JOSA A (1993). XFROG? 48

Summary We can apply intensity interferometry to measure spatial and temporal profile of 3rd gen. SR source. For shorter pulse, much easier. For single-shot detection, extension of conventional spectroscopy technique will be useful. For determination of pulse shape, we have to retrieve phase information. Further considerations & discussions are required. 49

Acknowledgement T. Ishikawa, K. Tamasaku, S. Goto, D. Miwa, T. Ueda, A. Baron H. Kitamura, T. Shintake, T. Hara, H. Tanaka (SPring-8) K. Yamauchi, K. Yamamura, H. Mimura, T. Matsuyama, H. Yumoto, Y. Mori (Osaka Univ.) J. Hastings, J. Arthur (SLAC) 50