Properties of the Riemann Integral

Similar documents
Math 554 Integration

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

More Properties of the Riemann Integral

7.2 Riemann Integrable Functions

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

The Banach algebra of functions of bounded variation and the pointwise Helly selection theorem

Lecture 1: Introduction to integration theory and bounded variation

Riemann Sums and Riemann Integrals

Presentation Problems 5

The Regulated and Riemann Integrals

Riemann Sums and Riemann Integrals

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

Chapter 6. Riemann Integral

For a continuous function f : [a; b]! R we wish to define the Riemann integral

Principles of Real Analysis I Fall VI. Riemann Integration

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

38 Riemann sums and existence of the definite integral.

1 The Riemann Integral

Advanced Calculus: MATH 410 Uniform Convergence of Functions Professor David Levermore 11 December 2015

Lecture 1. Functional series. Pointwise and uniform convergence.

Riemann Integrals and the Fundamental Theorem of Calculus

Entrance Exam, Real Analysis September 1, 2009 Solve exactly 6 out of the 8 problems. Compute the following and justify your computation: lim

Riemann Stieltjes Integration - Definition and Existence of Integral

The Riemann Integral

Review of Riemann Integral

The Henstock-Kurzweil integral

IMPORTANT THEOREMS CHEAT SHEET

1 i n x i x i 1. Note that kqk kp k. In addition, if P and Q are partition of [a, b], P Q is finer than both P and Q.

STUDY GUIDE FOR BASIC EXAM

7.2 The Definition of the Riemann Integral. Outline

Math 61CM - Solutions to homework 9

Problem Set 4: Solutions Math 201A: Fall 2016

0.1 Properties of regulated functions and their Integrals.

Phil Wertheimer UMD Math Qualifying Exam Solutions Analysis - January, 2015

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

Riemann is the Mann! (But Lebesgue may besgue to differ.)

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.

MAT612-REAL ANALYSIS RIEMANN STIELTJES INTEGRAL

Math 120 Answers for Homework 13

Math 324 Course Notes: Brief description

Math 360: A primitive integral and elementary functions

A product convergence theorem for Henstock Kurzweil integrals

Sections 5.2: The Definite Integral

INTRODUCTION TO INTEGRATION

Week 7 Riemann Stieltjes Integration: Lectures 19-21

Section 6.1 Definite Integral

Convergence of Fourier Series and Fejer s Theorem. Lee Ricketson

Suppose we want to find the area under the parabola and above the x axis, between the lines x = 2 and x = -2.

Advanced Calculus I (Math 4209) Martin Bohner

Homework 11. Andrew Ma November 30, sin x (1+x) (1+x)

Definite integral. Mathematics FRDIS MENDELU

A BRIEF INTRODUCTION TO UNIFORM CONVERGENCE. In the study of Fourier series, several questions arise naturally, such as: c n e int

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set

Calculus in R. Chapter Di erentiation

Regulated functions and the regulated integral

Definite integral. Mathematics FRDIS MENDELU. Simona Fišnarová (Mendel University) Definite integral MENDELU 1 / 30

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

Prof. Girardi, Math 703, Fall 2012 Homework Solutions: 1 8. Homework 1. in R, prove that. c k. sup. k n. sup. c k R = inf

1. On some properties of definite integrals. We prove

FUNDAMENTALS OF REAL ANALYSIS by. III.1. Measurable functions. f 1 (

Analysis III. Ben Green. Mathematical Institute, Oxford address:

Fundamental Theorem of Calculus

Review. April 12, Definition 1.2 (Closed Set). A set S is closed if it contains all of its limit points. S := S S

MAA 4212 Improper Integrals

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

Homework 4. (1) If f R[a, b], show that f 3 R[a, b]. If f + (x) = max{f(x), 0}, is f + R[a, b]? Justify your answer.

Main topics for the First Midterm

Week 10: Riemann integral and its properties

ACM 105: Applied Real and Functional Analysis. Solutions to Homework # 2.

Math 1431 Section M TH 4:00 PM 6:00 PM Susan Wheeler Office Hours: Wed 6:00 7:00 PM Online ***NOTE LABS ARE MON AND WED

Math Advanced Calculus II

a n = 1 58 a n+1 1 = 57a n + 1 a n = 56(a n 1) 57 so 0 a n+1 1, and the required result is true, by induction.

Math Solutions to homework 1

II. Integration and Cauchy s Theorem

Math 4200: Homework Problems

Functions of bounded variation

1 The fundamental theorems of calculus.

Chapter 0. What is the Lebesgue integral about?

Chapter 4. Lebesgue Integration

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

A HELLY THEOREM FOR FUNCTIONS WITH VALUES IN METRIC SPACES. 1. Introduction

Appendix to Notes 8 (a)

MATH 409 Advanced Calculus I Lecture 18: Darboux sums. The Riemann integral.

Review of Calculus, cont d

AM1 Mathematical Analysis 1 Oct Feb Exercises Lecture 3. sin(x + h) sin x h cos(x + h) cos x h

RIEMANN INTEGRATION. Throughout our discussion of Riemann integration. B = B [a; b] = B ([a; b] ; R)

Rudin s Principles of Mathematical Analysis: Solutions to Selected Exercises. Sam Blinstein UCLA Department of Mathematics

THE EXISTENCE-UNIQUENESS THEOREM FOR FIRST-ORDER DIFFERENTIAL EQUATIONS.

arxiv: v1 [math.ca] 11 Jul 2011

Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled?

Calculus and linear algebra for biomedical engineering Week 11: The Riemann integral and its properties

Math 426: Probability Final Exam Practice

Lecture 3. Limits of Functions and Continuity

Analysis Comp Study Guide

Integration Techniques

Math 118: Honours Calculus II Winter, 2005 List of Theorems. L(P, f) U(Q, f). f exists for each ǫ > 0 there exists a partition P of [a, b] such that

Properties of the Riemann Stieltjes Integral

Chapter 6. Infinite series

Transcription:

Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University Februry 15, 2018

Outline 1 Some Infimum nd Supremum Properties 2 Riemnn Integrl Properties 3 Wht Functions Are Riemnn Integrble? 4 Homework

Some Infimum nd Supremum Properties Theorem If f is bounded function on the finite intervl [, b], then 1 sup x b f (x) = inf x b ( f (x)) nd sup x b ( f (x)) = inf x b (f (x)) 2 sup (f (x) f (y)) = sup sup (f (x) f (y)) x,y [,b] y [,b] x [,b] = sup sup (f (x) f (y)) = M m x [,b] y [,b] where M = sup x b f (x) nd m = inf x b f (x). 3 sup x,y [,b] f (x) f (y) = M m First let Q = sup x b ( f ) nd q = inf x b ( f ).

Some Infimum nd Supremum Properties (1): Let (f (x n ) be sequence which converges to M. Then since f (x n ) q for ll n, letting n, we find M q. Now let ( f (z n )) be sequence which converges to q. Then, we hve f (z n ) M for ll n nd letting n ]infty, we hve q M or q M. Combining, we see q = M which is the first prt of the sttement; i.e. sup x b f (x) = inf x b ( f (x)). Now just replce ll the f s by f s in this to get sup x b ( f (x)) = inf x b ( f (x)) or sup x b ( f (x)) = inf x b (f (x)) which is the other identity. (2): We know f (x) f (y) ( ) sup x b f (x) f (y) = M f (y) But f (y) inf y [,b] f (y) = m, so f (x) f (y) M f (y) M m

Some Infimum nd Supremum Properties Thus, sup (f (x) f (y)) M m x,y [,b] So one side of the inequlity is cler. Now let f (x n ) be sequence converging to M nd f (y n ) be sequence converging to m. Then, we hve Letting n, we see f (x n ) f (y n ) sup (f (x) f (y)) x,y [,b] M m sup (f (x) f (y)) x,y [,b] This is the other side of the inequlity. We hve thus shown tht the equlity is vlid.

Some Infimum nd Supremum Properties (3): Note f (x) f (y) = { f (x) f (y), f (x) f (y) f (y) f (x), f (x) < f (y) In either cse, we hve f (x) f (y) M m for ll x, y using Prt (2) implying tht sup x,y f (x) f (y) M m. To see the reverse inequlity holds, we first note tht if M = m, we see the reverse inequlity holds trivilly s sup x,y f (x) f (y) 0 = M m. Hence, we my ssume without loss of generlity tht the gp M m is positive. Then, using the STL nd ITL, given 0 < 1/j < 1/2(M m), there exist, s j, t j [, b] such tht M 1/(2j) < f (s j ) nd m + 1/(2j) > f (t j ), so tht f (s j ) f (t j ) > M m 1/j. By our choice of j, these terms re positive nd so we lso hve f (s j ) f (t j ) > M m 1/j.

Some Infimum nd Supremum Properties It follows tht sup f (x) f (y) f (s j ) f (t j ) > M m 1/j. x,y [,b] Since we cn mke 1/j rbitrrily smll, this implies tht sup f (x) f (y) M m. x,y [x j 1,x j ] This estblishes the reverse inequlity nd proves the clim. We re now redy to look t some of the properties of the Riemnn Integrl.

Riemnn Integrl Properties Theorem Let f, g RI [, b]. Then (1) f RI [, b]; (2) b f (x)dx b f dx; (3) f + = mx{f, 0} RI [, b]; (4) f = mx{ f, 0} RI [, b]; (5) b f (x)dx = b [f + (x) f (x)]dx = b f + (x)dx b f (x)dx b f (x) dx = b [f + (x) + f (x)]dx = b f + (x)dx + b f (x)dx; (6) f 2 RI [, b]; (7) fg RI [, b]; (8) If there exists m, M such tht 0 < m f M, then 1/f RI [, b].

Riemnn Integrl Properties (1) f RI [, b]: Note given prtition π = {x 0 =, x 1,..., x p = b}, for ech j = 1,..., p, using the result bove, we know sup (f (x) f (y)) = M j m j x,y [x j 1,x j ] Now, let m j nd M j be defined by m j = inf f (x), [x j 1,x j ] M j = sup f (x). [x j 1,x j ] Then, pplying the first Theorem to f, we hve ( ) M j m j = sup x,y [x j 1,x j ] f (x) f (y).

Riemnn Integrl Properties For ech j = 1,..., p, we hve M j m j = sup f (x) f (y). x,y [x j 1,x j ] So, since f (x) f (y) f (x) f (y) for ll x, y, it follows tht M j m j M j m j. This implies π (M j m j ) x j π (M j m j ) x j. This mens U( f, π) L( f, π) U(f, π) L(f, π) for the chosen π. Since f is integrble by hypothesis, we know the Riemnn criterion must lso hold for f. Thus, given ɛ > 0, there is prtition π 0 so tht U(f, π) L(f, π) < ɛ for ny refinement π of π 0. Therefore f lso stisfies the Riemnn Criterion nd so f is Riemnn integrble.

Riemnn Integrl Properties (2) b f (x)dx b f dx: We hve f f nd f f, so tht b b from which it follows tht f (x)dx b f (x)dx b f (x) dx f (x) dx, nd so b f (x) dx b f (x)dx b b f b f f (x) dx

Riemnn Integrl Properties (3) f + = mx{f, 0} RI [, b] nd (4) f = mx{ f, 0} RI [, b]: This follows from the fcts tht f + = 1 2 ( f +f ) nd f = 1 2 ( f f ) nd the Riemnn integrl is liner mpping. (5) b f (x)dx = b [f + (x) f (x)]dx = b f + (x)dx b f (x)dx b f (x) dx = b [f + (x) + f (x)]dx = b f + (x)dx + b f (x)dx: This follows from the fcts tht f = f + f nd f = f + + f nd the linerity of the integrl. (6): f 2 RI [, b] Note tht, since f is bounded, there exists K > 0 such tht f (x) K for ll x [, b]. Applying our infimum/ supremum properties theorem to f 2, we hve sup (f 2 (x) f 2 (y)) = M j (f 2 ) m j (f 2 ) x,y [x j 1,x j ]

Riemnn Integrl Properties where [x j 1, x j ] is subintervl of given prtition π nd M j (f 2 ) = sup x [xj 1,x j ] f 2 (x) nd m j (f 2 ) = inf x [xj 1,x j ] f 2 (x). Thus, for this prtition, we hve U(f 2, π) L(f 2, π) = π (M j (f 2 ) m j (f 2 )) x j But we lso know sup (f 2 (x) f 2 (y)) = sup (f (x) + f (y))(f (x) f (y)) x,y [x j 1,x j ] x,y [x j 1,x j ] 2K sup ((f (x) f (y)) x,y [x j 1,x j ] = 2K (M j m j ).

Riemnn Integrl Properties Thus, U(f 2, π) L(f 2, π) = π (M j (f 2 ) m j (f 2 )) x j 2K π (M j m j ) x j = 2K (U(f, π) L(f π)). Now since f is Riemnn Integrble, it stisfies the Riemnn Criterion nd so given ɛ > 0, there is prtition π 0 so tht U(f, π) L(f π) < ɛ/(2k) for ny refinement π of π 0. Thus, f 2 stisfies the Riemnn Criterion too nd so it is integrble.

Riemnn Integrl Properties (7): fg RI [, b] To prove tht fg is integrble when f nd g re, simply note tht ) fg = (1/2) ((f + g) 2 f 2 g 2. Property (6) nd the linerity of the integrl then imply fg is integrble. (8) If there exists m, M such tht 0 < m f M, then 1/f RI [, b]: Suppose f RI [, b] nd there exist M, m > 0 such tht m f (x) M for ll x [, b]. Note tht 1 f (x) 1 f (y) f (x) = f (y) f (x)f (y).

Riemnn Integrl Properties Let π = {x 0 =, x 1,..., x p = b} be prtition of [, b], nd define Then we hve M j = sup [x j 1,x j ] 1 f (x), m j = inf [x j 1,x j ] M j m j f (y) f (x) = sup x,y [x j 1,x j ] f (x)f (y) f (y) f (x) sup x,y [x j 1,x j ] f (x) f (y) 1 f (x). 1 m 2 sup f (y) f (x) x,y [x j 1,x j ] M j m j m 2.

Riemnn Integrl Properties Since f RI [, b], given ɛ > 0 there is prtition π 0 such tht U(f, π) L(f, π) < m 2 ɛ for ny refinement, π, of π 0. Hence, the previous inequlity implies tht, for ny such refinement, we hve ( 1 ) ( 1 ) U f, π L f, π = π (M j m j) x j 1 m 2 (M j m j ) x j π 1 ) (U(f m 2, π) L(f, π) < m2 ɛ m 2 = ɛ. Thus 1/f stisfies the Riemnn Criterion nd hence it is integrble.

Wht Functions Are Riemnn Integrble? Now we need to show tht the set RI [, b] is nonempty. We begin by showing tht ll continuous functions on [, b] will be Riemnn Integrble. Theorem If f C[, b], then f RI [, b]. Since f is continuous on compct set, it is uniformly continuous. Hence, given ɛ > 0, there is δ > 0 such tht x, y [, b], x y < δ f (x) f (y) < ɛ/(b ). Let π 0 be prtition such tht π 0 < δ, nd let π = {x 0 =, x 1,..., x p = b} be ny refinement of π 0. Then π lso stisfies π < δ. Since f is continuous on ech subintervl [x j 1, x j ], f ttins its supremum, M j, nd infimum, m j, t points s j nd t j, respectively. Tht is, f (s j ) = M j nd f (t j ) = m j for ech j = 1,..., p.

Wht Functions Are Riemnn Integrble? Thus, the uniform continuity of f on ech subintervl implies tht, for ech j, M j m j = f (s j ) f (t j ) < ɛ b. Thus, we hve U(f, π) L(f, π) = π (M j m j ) x j < ɛ b x j = ɛ. Since π ws n rbitrry refinement of π 0, it follows tht f stisfies Riemnn s criterion. Hence, f RI [, b]. π Theorem If f : [, b] R is constnt function, f (t) = c for ll t in [, b], then f is Riemnn Integrble on [, b] nd b f (t)dt = c(b ).

Wht Functions Are Riemnn Integrble? For ny prtition π of [, b], since f is constnt, ll the individul m j s nd M j s ssocited with π tke on the vlue c. Hence, U(f, π) U(f, π) = 0 lwys. It follows immeditely tht f stisfies the Riemnn Criterion nd hence is Riemnn Integrble. Finlly, since f is integrble, by our fundmentl integrl estimtes, we hve Thus, b f (t)dt = c(b ). c(b ) RI (f ;, b) c(b ). Theorem If f is monotone on [, b], then f RI [, b].

Wht Functions Are Riemnn Integrble? As usul, for concreteness, we ssume tht f is monotone incresing. We lso ssume f (b) > f (), for if not, then f is constnt nd must be integrble by the previous theorem. Let ɛ > 0 be given, nd let π 0 be prtition of [, b] such tht π 0 < ɛ/(f (b) f ()). Let π = {x 0 =, x 1,..., x p = b} be ny refinement of π 0. Then π lso stisfies π < ɛ/(f (b) f ()). Thus, for ech j = 1,..., p, we hve x j < ɛ f (b) f (). Since f is incresing, we lso know tht M j = f (x j ) nd m j = f (x j 1 ) for ech j. Hence, U(f, π) L(f, π) = (M j m j ) x j = [f (x j ) f (x j 1 )] x j π π ɛ < [f (x j ) f (x j 1 )]. f (b) f () π

Wht Functions Are Riemnn Integrble? But this lst sum is telescoping nd sums to f (b) f (). So, we hve U(f, π) L(f, π) < Thus, f stisfies Riemnn s criterion. ɛ (f (b) f ()) = ɛ. f (b) f ()

Wht Functions Are Riemnn Integrble? Let f n, for n 2 be defined by f n (x) = { 1, x = 1 1/(k + 1), 1/(k + 1) x < 1/k, 1 k < n 0, 0 x < 1/n We know f n is RI [0, 1] becuse it is monotonic lthough we do not know wht the vlue of the integrl is. Define f by f (x) = lim n f n (x). Then given x, we cn find n integer N so tht 1/(N + 1) x < 1/N telling us f (x) = 1/(N + 1). Moreover f (x) = f N+1 (x). So if x < y, y is either in the intervl [1/(N + 1), 1/N) or y [1/N, 1] implying f (x) f (y). Hence f is monotonic. At ech 1/N, the right nd left hnd limits do not mtch nd so f is not continuous t countble number of points yet it is still Riemnn Integrble.

Homework 12.1 If you didn t know f (x) = x ws continuous, why would you know f is RI [, b] for ny [, b]? 12.2 Use induction to prove f (x) = x n is RI [, b] for ny [, b] without ssuming continuity. 12.3 Use induction to prove f (x) = 1/x n is RI [, b] on ny [, b] tht does not contin 0 without ssuming continuity. 12.4 For f (x) = sin(2x) on [ 2π, 2π], drw f + nd f. 12.5 Prove f is RI [0, 1] where f is defined by { x sin(1/x), x (0, 1] f (x) = 0, x = 0 12.6 Let f n (x) = { 1, x = 1 1/(k + 1), 1/(k + 1) x < 1/k, 1 k < n 0, 0 x < 1/n Grph f 5 nd f 8 nd determine where the set of cluster points S(p) contin two vlues.