? Physics with many Positrons

Similar documents
The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS)

Outlook: Application of Positron Annihilation for defects investigations in thin films. Introduction to Positron Annihilation Methods

Research Center Dresden Rossendorf

Department of Physics, Techno India Batanagar (Techno India Group), Kolkata , West Bengal, India.

Positron Annihilation Lifetime Spectroscopy (PALS)

Material Science using Positron Annihilation

positron source EPOS - general concept - timing system - digital lifetime measurement

Plans for a laboratory electron-positron plasma experiment

Units and Definition

Positron Annihilation Spectroscopy - A non-destructive method for material testing -

EPOS an intense positron beam project at the Research Center Rossendorf

POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER. Paul Coleman University of Bath

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf

Introduction into Positron Annihilation

The intense positron source EPOS at Research Center Rossendorf

ASPECTS OF THE MCMASTER INTENSE POSITRON BEAM FACILITY

in Si by means of Positron Annihilation

Basics and Means of Positron Annihilation

Positron Annihilation in Material Research

Status of A Positron-Electron Experiment (APEX) towards the formation of pair plasmas

M. Werner, E. Altstadt, M. Jungmann, G. Brauer, K. Noack, A. Rogov, R. Krause-Rehberg. Thermal Analysis of EPOS components

Slow-Positron-Beam Techniques

Identification of Getter Defects in high-energy self-implanted Silicon at Rp/2

Alpha Decay. Decay alpha particles are monoenergetic. Nuclides with A>150 are unstable against alpha decay. E α = Q (1-4/A)

Review of ISOL-type Radioactive Beam Facilities

Intense Slow Positron Source

Application of positrons in materials research

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Plans for the creation of the first matter-antimatter (electron-positron) plasmas on Earth

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN

Positron Annihilation Spectroscopy on Defects in Semiconductors

CHARGED PARTICLE INTERACTIONS

Positron Annihilation techniques for material defect studies

Nuclear Decays. Alpha Decay

Intense Slow Positron Source

Emphasis on what happens to emitted particle (if no nuclear reaction and MEDIUM (i.e., atomic effects)

Study of semiconductors with positrons. Outlook:

The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers

Reactor & Spallation Neutron Sources

Interaction of Ionizing Radiation with Matter

Introduction to Radiological Sciences Neutron Detectors. Theory of operation. Types of detectors Source calibration Survey for Dose

Positron Annihilation in Materials Science

Positron Probe Microanalyzer (PPMA) facilities at AIST

Synchrotron Methods in Nanomaterials Research

RFSS: Lecture 2 Nuclear Properties

Principles of neutron TOF cross section measurements

Positron program at the Idaho Accelerator Center. Giulio Stancari Idaho State University and Jefferson Lab

Laser Spectroscopy on Bunched Radioactive Ion Beams

Radiochemistry and Nuclear Methods of Analysis

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

RDCH 702 Lecture 8: Accelerators and Isotope Production

Prompt γ-rays from Neutron Inelastic

SOURCES of RADIOACTIVITY

CHEM 312 Lecture 7: Fission

Pushing the limits of laser synchrotron light sources

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

GBAR Project Gravitational Behavior of Antihydrogen at Rest

DIPOLE-STRENGTH IN N=50 NUCLEI STUDIED IN PHOTON-SCATTERING EXPERIMENTS AT ELBE

LECTURE 6: INTERACTION OF RADIATION WITH MATTER

Introduction to Nuclear Engineering

Lecture 1. Introduction to Nuclear Science


Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Some nuclei are unstable Become stable by ejecting excess energy and often a particle in the process Types of radiation particle - particle

Chapter Four (Interaction of Radiation with Matter)

Karlsruhe Nuclide Chart

Nuclear Fission Fission discovered by Otto Hahn and Fritz Strassman, Lisa Meitner in 1938

Analysis of design, verification and optimization of High intensity positron source (HIPOS) at HFR Petten

Actinide Target Station & 238

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building.

R. Krause-Rehberg. Martin-Luther-Universität Halle-Wittenberg. Positron Lifetime / Doppler Broadening / Angular Correlation / AMOC

Nuclear cross-section measurements at the Manuel Lujan Jr. Neutron Scattering Center. Michal Mocko

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei

Development status of the positron lifetime beam MePS and the first lifetime measurements of porous ultra-low-k dielectrics with MePS

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 1. Title: Neutron Life Cycle

The GBAR experiment. Dirk van der Werf

Mass Yield Distribution in the Photon-induced Fission of 232 Th, 238 U, nat Pb, and 209 Bi

POSITRON ACCUMULATOR SCHEME for AEGIS

Why Make Rare Isotopes?

Photofission of 238-U Nuclei

6 Neutrons and Neutron Interactions

Improvement of depth resolution of VEPAS by a sputtering technique

Delft in Europe. Neutron & Positrons Oyster & the World

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Investigation of SiC by Positrons

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

KIVI 9 Oct 2015 Fysische Beeldtechnieken 18 feb

When a body is accelerating, the resultant force acting on it is equal to its

Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

Lewis 2.1, 2.2 and 2.3

Experimental neutron capture data of 58 Ni from the CERN n TOF facility

EEE4101F / EEE4103F Radiation Interactions & Detection

Laser-based proton sources for medical applications

Neutron transmission and capture measurements for 241 Am at GELINA

Chapter V: Interactions of neutrons with matter

Nuclear and Radiation Physics

EEE4106Z Radiation Interactions & Detection

Transcription:

Varenna Summer School July 2009? Physics with many Positrons Positron Sources & Positron Beams Christoph Hugenschmidt Technische Universität München

What is many? Galaxy: 1.5 10 43 e + /s! = 1 lake + 1 anti-lake Como per second! NEPOMUC: 9 10 8 e + /s = 3.6 kj per year Christoph Hugenschmidt 2

Outline Positron Sources β + Sources Pair Production Positron Beams Positron Moderation Positron Beam Facilities NEPOMUC Beam Facility Summary Christoph Hugenschmidt 3

Outline Positron Sources β + Sources Pair Production Positron Beams Positron Moderation Positron Beam Facilities NEPOMUC Beam Facility Summary Christoph Hugenschmidt 4

Beta Decay: Nuclide Chart red: β +,EC proton no. 1, neutron no. +1 blue: β proton no. +1, neutron no. -1 black: stable p n e + υ e Christoph Hugenschmidt 5

β + - Looking for the Right Nuclide Characteristics of β + sources: positron yield half life source production set-up endpoint energy intensity source replacement reactor, cyclotron in-situ, ex-situ implantation depth spin polarization Christoph Hugenschmidt 6

β + Sources Nuclide Half-life E max [MeV] E m [MeV] v/c f [%] E γ [MeV] Appl. Prod. 11C 20.4 min 0.96 0.37 0.81 100 - PET Zyc 13N 9.96 min 1.20 0.50 0.86 100 - PET Zyc 15O 122 s 1.73 0.65 0.90 100 - PET Zyc 18F 110 min 0.633 0.21 0.71 97 - PET Zyc 22Na 2.6 y 0.546 0.20 0.70 90 1.275 t, S, Beam Zyc 26Al 7.4 105 y 1.17 82 1.809 27Si 4.2 s 3.79 100-44Ti/44Sc 49 y 1.47 0.45 0.85 95 1.157 48V 16 d 0.695 0.30 0.78 50 1.312, 0.984 57Ni 36 h 0.864 34 1.378 58Co 70.8 d 0.475 0.19 0.68 15 0.811 S, Beam Reac 64Cu 12.7 h 0.653 0.27 0.76 19 - S, Beam Reac 68Ge/68Ga 271 d 1.90 0.99 0.94 90 - t, S Zyc 72Se/72As 8.4 d 2.5 52 0.834 3.34 1.36 0.96 13-89Zr 78.4 h 0.90 22 - µ+ 2.20 s 52.3 1.00 100 - Christoph Hugenschmidt 7

Source Production Reactor: n-activation of isotopes thermal neutrons: fast neutrons: 63 Cu(n th,γ) 64 Cu 58 Ni(n f,p) 58 Co Accelerator: 45 MeV protons 27 Al(p,x) 22 Na (e.g. x=α,d) http://www-nds.iaea.org/medical/index.html Christoph Hugenschmidt 8

The Standard: 22 Na 22 11 22 + Na Ne + β + ν + 10 Energy Spectrum and term scheme Christoph Hugenschmidt 9

β + Sources for Lab Experiments Handling of β + sources: Examples: evaporation 64 Cu drying of solution 22 NaCl or 22 NaCO 3 thin foils activation of thin Cu-foil chemical separation intrinsic source 58 Co activation of 58 Co in a sample geometrical/intensity limit: self absorption of positrons: e.g. 22 Na ~100mCi Christoph Hugenschmidt 10

Outline Positron Sources β + Sources Pair Production Positron Beams Positron Moderation Positron Beam Facilities NEPOMUC Beam Facility Summary Christoph Hugenschmidt 11

Intense Positron Sources Pair Production: γ e + e E γ > 2 m e c 2 bright γ-sources High Intensity: I>10 7 e + mod/s high Z σ PB ~ Z 2 lne Ł Bremsstrahlung Accelerators Synchrotron Ł Decay of excited nuclear states Reactor: Fission γ s Reactor: (n,γ)-reactions Christoph Hugenschmidt 12

Principle: Bremsstrahlung Target Former e+ source at LLNL: e - beam: 100 MeV, 300 µa Christoph Hugenschmidt 13

Pairproduction at a Synchrotron? E > 2 m e c 2 Christoph Hugenschmidt 14

Undulator Driven Pair Production M. Kuriki, Japan Christoph Hugenschmidt 15

Gamma s at Reactors Fission: Available energy: 201 MeV / fission 180 MeV prompt 7 MeV γ 21 MeV fission fragments 6 MeV γ absorption in W pair production POSH at Delft reactor Christoph Hugenschmidt 16

POSH IRI Delft Former source: In-situ activation of 64 Cu and pair production Now: pair production in W Christoph Hugenschmidt 17

(n, γ) Reactions: 113 Cd 113 Cd (n, γ) 114 Cd 26000 barn! 2.3 γ / n E γ > 1.5 MeV 0.66 e + / n Positron spectrum: E m 800 kev! B. Krusche and K. Schreckenbach, NIM A 295 (1990) 155 Christoph Hugenschmidt 18

Positron Yield e+ production Cd W converter optimum γ e+ e+ d NEPOMUC: Cd/Pt B. Krusche and K. Schreckenbach, NIM A 295 (1990) 155 Christoph Hugenschmidt 19

Outline Positron Sources β + Sources Pair Production Positron Beams Positron Moderation Positron Beam Facilities NEPOMUC Beam Facility Summary Christoph Hugenschmidt 20

Aim: Monoenergetic Positron Beams Main beam characteristics: Positron Moderation kinetic energy E 0 band width E beam intensity I And: size, shape, divergence... brilliance B I d = 2 2 Θ E from R. Krause-Rehberg Typical moderation efficiency: 10-4.. 5 10-3 Christoph Hugenschmidt 21

Modertor-Material Requirements: negative positron work function: F + < 0 e+ leave the solid, sharp longitudinal energy and low angular spread high stopping power annealed crystal less defect trapping large diffusion length recrystallisation of polycrystal grainsize > diffusion length single crystal, F + depends on crystal orientation clean and plane surface lower energy spread less surface trapping Some materials and their F + : W: -3 ev, Cu: -0.25 ev, Pt: -2 ev, Ni: -0.8 ev,... solid rare gases SiC: 2.1 ev Christoph Hugenschmidt 22

Moderator-Geometries reflection venetian blinds transmission wires frozen rare gas intrinsic (Cu, Pt) combination (trans. & refl.) see e.g. P. Coleman, Positron Beams Christoph Hugenschmidt 23

Bandwidth Maxwell-distribution Gullikson et al. PR B 32, 1985, 5484 Christoph Hugenschmidt 24

Angular Spread W(110)+O2 @ RT Cu(111) @ 23K and 300K D. A. Fischer et al.; PR B 33,1986, 4479 Christoph Hugenschmidt 25

Monoenergetic Positron Beam From MeV positrons to a mono-energetic beam: E e+ ~kev E < 2 ev 1 ev NEPOMUC: Pt as converter AND moderator: φ + Pt = -1.95(5) ev C. Hugenschmidt et al. NIM B 198 (2002) 220 Christoph Hugenschmidt 26

Degradation and Recovery C. Hugenschmidt et al., 2002 Christoph Hugenschmidt 27

Designing a Re-Moderator Solid state moderator: transmission + simple beam guidance - thin foils (~100nm), surface flatness - lower moderation efficiency reflexion - sophisticated beam guidance + higher moderation efficiency + easier to handle Think about: phase space beam optics see following lecture Gas moderator: transmission, inelastic scattering, drift field + high efficiency - beam injection / extraction, differential pumping... Christoph Hugenschmidt 28

Ni in Transmission Energy > 5 kev: Primary beam diameter: 10 mm Remoderated beam diameter: 90 µm Remoderation efficiency: 5 % Oshima et al. J. Appl. Phys. 103, 094916 2008 Christoph Hugenschmidt 29

W(100) in Reflexion Positron thermalization and diffusion to the surface Emission due to negative Φ + Extraction by electrical and magnetic fields Parameters: E in = 1 kev E out = 10-200 ev 20 ev E T 40 mev ε mod = 20 % ε tot = 7 % d out < 2 mm d FWHM = 2 mm Reflexion geometry C. Piochacz et al. (2007) Christoph Hugenschmidt 30

Experimental Setup at NEPOMUC Gas Moderator Electrodes Decelerating potential Focusing electrodes and gas inlets e + beam 300 mm Retarding potential and annihilation target B. Löwe, E21 NEPOMUC TUM, 2007 Christoph Hugenschmidt 31

Outline Positron Sources β + Sources Pair Production Positron Beams Positron Moderation Positron Beam Facilities NEPOMUC Beam Facility Summary Christoph Hugenschmidt 32

Positron Beams Typical features of positron beam facilities: source: moderator: intensity (e+ mod /s): lab large scale facility 22 Na ( 68 Ge, 64 Cu ) W (Ni, Ne, Kr ) 10 4 10 6 Bremsstrahlung, linac W ~10 8 Tsukuba fission γ s, reactor W 8 10 7-2 10 8 Delft n capture γ s, reactor Pt 9 10 8 NEPOMUC Christoph Hugenschmidt 33

Overview: Positron Beam Facilities 1. Lab-beams: W-moderators (mainly used) ~40 running Solid rare gas moderator 2. Micro-beams Two Schools : Small-source Remoderation 3. Large scale facilities: LINAC-based 3 running, ~6 planned Reactor-based fission n-γ 4. Polarized beams remoderated beams 5. Trap-based beams pulsed beams Christoph Hugenschmidt 34

Lab I: W-Moderated Beam University Halle Christoph Hugenschmidt 35

Lab II: Kr-Moderated Beam H. Heußer, C. Hugenschmidt et al. Appl. Surf. Sci. 149(1999)49 Christoph Hugenschmidt 36

LINAC I: KEK KEK: 1.5 GeV 0.75 kw 10nC/pulse pulse width: 10 ps repetition rate: 50 Hz >10 7 e+/s Christoph Hugenschmidt 37

LINAC II: FZ Rossendorf EPOS facility in FZR (under construction) Christoph Hugenschmidt 38

Trap-Based Positron Beam Principle: Buffer gas cooling instead of solid moderator Positron accumulation in a magnetic and electrostatic trap Pulsed release of trapped positrons further lecture UCSD, Surko et al. Christoph Hugenschmidt 39

Outline Positron Sources β + Sources Pair Production Positron Beams Positron Moderation Positron Beam Facilities NEPOMUC Beam Facility Summary Christoph Hugenschmidt 40

NEPOMUC NEutron induced POsitron Source MUniCh Principle: n therm Cd Pt γ fast e + slow e + Neutron Source FRM II Positron Beam NEPOMUC n capture γ emission γ e + e - conversion e + moderation e + emission Christoph Hugenschmidt 41

NEPOMUC NEutron induced POsitron Source MUniCh Mono-energetic positron beam of highest intensity Since March 2008 new in-pile positron source: 9 10 8 e+/s C. Hugenschmidt et al. NIM B 192 (2002) 97, Appl. Phys. A 74 (2002) S295, NIM B 221 (2004) 160, NIM A 554 (2005) 384 C. Hugenschmidt et al. Appl. Surf. Sci. 252 (2006) 3098 C. Hugenschmidt et al. NIM A 593 (2008) 616 Christoph Hugenschmidt 42

NEPOMUC at FRM II SR 11 Remoderator PLEPS Switch SPM interface PAES CDBS Open Beamport: Ps - Christoph Hugenschmidt 43

NEPOMUC NEutron induced POsitron Source MUniCh Christoph Hugenschmidt 44

Application with Many Positrons Christoph Hugenschmidt 45

Summary Positron sources β + emitter & pair production High intensity beams of moderated positrons Positron beam facilities Linac & reactor NEPOMUC: experiments with high positron beam intensity 9 10 8 e + /s, 1 kev Bright future of exciting experiments with many positrons! Christoph Hugenschmidt 46