Chapter 4 Reactions in Aqueous Solutions. Copyright McGraw-Hill

Similar documents
Chapter 4. Reactions in Aqueous Solution

9/24/12. Chemistry Second Edition Julia Burdge. Reactions in Aqueous Solutions

Chapter 4 Electrolytes and Aqueous Reactions. Dr. Sapna Gupta

Reactions in Aqueous Solution

Reactions in Aqueous Solutions

ed. Brad Collins Aqueous Chemistry Chapter 5 Some images copyright The McGraw-Hill Companies, Inc. Sunday, August 18, 13

Chapter 4. Reactions in Aqueous Solution

Chapter 4 Electrolytes and Precipitation Reactions. Dr. Sapna Gupta

Chapter 6. Types of Chemical Reactions and Solution Stoichiometry

Chapter 4. Reactions in Aqueous Solutions. Aqueous solutions and their chemistry. Various types of reactions.

Reactions in Aqueous Solution

Chapter 4 Types of Chemical Reaction and Solution Stoichiometry

Chapter 4 Electrolytes Acid-Base (Neutralization) Oxidation-Reduction (Redox) Reactions. Dr. Sapna Gupta

Chapter 4. Reactions in Aqueous Solution. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Chapter 4. Types of Chemical Reactions and Solution Stoichiometry

7/16/2012. Chapter Four: Like Dissolve Like. The Water Molecule. Ionic Compounds in Water. General Properties of Aqueous Solutions

Reactions in Aqueous Solutions

Reactions in Aqueous Solution

Chapter 4; Reactions in Aqueous Solutions. Chapter 4; Reactions in Aqueous Solutions. V. Molarity VI. Acid-Base Titrations VII. Dilution of Solutions

Chapter Four: Reactions in Aqueous Solution

Chemical Reactions: An Introduction

Chapter 4: Types of Chemical reactions and Solution Stoichiometry

The solvent is the dissolving agent -- i.e., the most abundant component of the solution

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual

Chapter 4. Reactions In Aqueous Solution

Chapter 4. The Major Classes of Chemical Reactions 4-1

Reaction Classes. Precipitation Reactions


Chapter 4 - Types of Chemical Reactions and Solution Chemistry

CHEM 200/202. Professor Jing Gu Office: EIS-210. All s are to be sent to:

Chapter 4 Three Major Classes of Chemical Reactions

TYPES OF CHEMICAL REACTIONS

Chapter 4 Reactions in Aqueous Solution

CH 4 AP. Reactions in Aqueous Solutions

During photosynthesis, plants convert carbon dioxide and water into glucose (C 6 H 12 O 6 ) according to the reaction:

Chemistry 101 Chapter 4 STOICHIOMETRY

CHAPTER 4 TYPES OF CHEMICAL EQUATIONS AND SOLUTION STOICHIOMETRY

Chapter 4: Reactions in Aqueous Solutions

Chapter 4: Phenomena. (aq)+ 4H + (aq)+ 2e - Chapter 4: Types of Chemical Reactions and Solution Stoichiometry

Part One: Ions in Aqueous Solution

4. Aqueous Solutions. Solution homogeneous mixture of two components

Unit 1 - Foundations of Chemistry

CH 221 Chapter Four Part II Concept Guide

Chapter 4: Phenomena. Electrolytes. Electrolytes. Electrolytes. Chapter 4 Types of Chemical Reactions and Solution Stoichiometry.

Chapter 4: Phenomena. Electrolytes. Electrolytes. Electrolytes. Chapter 4 Types of Chemical Reactions and Solution Stoichiometry

Chemistry 1A. Chapter 5

Chem 110 General Principles of Chemistry

Electrolytes do conduct electricity, in proportion to the concentrations of their ions in solution.

Chapter 4 Notes Types of Chemical Reactions and Solutions Stoichiometry A Summary

Equation Writing for a Neutralization Reaction

Concentration of Solutions

SCHOOL YEAR CH- 13 IONS IN AQUEOUS SOLUTIONS AND COLLIGATIVE PROPERTIES SUBJECT: CHEMISTRY GRADE : 11 TEST A

A reaction in which a solid forms is called a precipitation reaction. Solid = precipitate

Chemical Equations. Chemical Reactions. The Hindenburg Reaction 5/25/11

Unit 4a: Solution Stoichiometry Last revised: October 19, 2011 If you are not part of the solution you are the precipitate.

Chapter 4. Chemical Quantities and Aqueous Reactions

Chem II - Wed, 9/14/16

1. Hydrochloric acid is mixed with aqueous sodium bicarbonate Molecular Equation

4.6 Describing Reactions in Solution

Chapter 04. Reactions in Aqueous Solution

Types of chemical reactions

Solution Chemistry. Chapter 4

Reactions in aqueous solutions Precipitation Reactions

AP Chemistry. Reactions in Solution

Chapter 4. Reactions in Aqueous Solution. Solutions. 4.1 General Properties of Aqueous Solutions

General Chemistry 1 CHM201 Unit 2 Practice Test

Ions in Solution. Solvent and Solute

CHEM 200/202. Professor Jing Gu Office: EIS-210. All s are to be sent to:

CHAPTER 4 AQUEOUS REACTIONS AND SOLUTION STOICHIOMETRY: Electrolyte-a compound that conducts electricity in the melt or in solution (water)

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Unit 4: Reactions and Stoichiometry

Chapter 4 Solution Stoichiometry. Dr. Sapna Gupta

1) What is the volume of a tank that can hold Kg of methanol whose density is 0.788g/cm 3?

Chapter 4: Stoichiometry of Chemical Reactions. 4.1 Writing and Balancing Chemical Equations

UNIT (4) CALCULATIONS AND CHEMICAL REACTIONS

Solubility Rules for Ionic Compounds Arrhenius Acid Base Theory

Chapter 4 Reactions in Aqueous Solutions

Page 1. Exam 2 Review Summer A 2002 MULTIPLE CHOICE. 1. Consider the following reaction: CaCO (s) + HCl(aq) CaCl (aq) + CO (g) + H O(l)

Chapter 4 Outline. Electrolytic Properties

1 L = L = 434 ml

Chapter 4. Concentration of Solutions. Given the molarity and the volume, the moles of solute can be determined.

Solubility & Net Ionic review

Reactions in Aqueous Solutions

Chemical Reaction Defn: Chemical Reaction: when starting chemical species form different chemicals.

Chemistry deals with matter and its changes CHEMICAL REACTIONS

Chap. 4 AQUEOUS RXNS. O H δ+ 4.1 WATER AS A SOLVENT 4.2 AQUEOUS IONIC REACTIONS. Page 4-1. NaOH(aq) + HCl(g) NaCl(aq) +H 2 O

Chapter 4. Aqueous Reactions and Solution Stoichiometry

Chapter 3: Solution Chemistry (For best results when printing these notes, use the pdf version of this file)

Chapter 8 Chemical Reactions

CHAPTER 4 TYPES OF CHEMICAL REACTIONS & SOLUTION STOICHIOMETRY

AP Chemistry Unit #4. Types of Chemical Reactions & Solution Stoichiometry

What is one of the spectator ions (with correct coefficient)? A)

Chem 115 POGIL Worksheet - Week #6 Oxidation Numbers, Redox Reactions, Solution Concentration, and Titrations

Chapter 5. Chemical reactions

Concentration Units. Solute CONCENTRATION. Solvent. g L -1. (M, molarity) concentration in. mol / litre of solution. mol L -1. molality. molality.

Ch 7 Chemical Reactions Study Guide Accelerated Chemistry SCANTRON

Chapter 3 Chemical Reactions

Aqueous Reactions. The products are just the cation-anion pairs reversed, or the outies (A and Y joined) and the innies (B and X joined).

Section 4: Aqueous Reactions

Solutions. Heterogenous Mixture (Not a Solution) Ice Water (w/ Ice Cubes) Smog Oil and Water

Transcription:

Chapter 4 Reactions in Aqueous Solutions Copyright McGraw-Hill 2009 1

4.1 General Properties of Aqueous Solutions Solution - a homogeneous mixture Solute: the component that is dissolved Solvent: the component that does the dissolving Generally, the component present in the greatest quantity is considered to be the solvent. Aqueous solutions are those in which water is the solvent. Copyright McGraw-Hill 2009 2

Electrolytes and Nonelectrolytes Electrolyte: substance that dissolved in water produces a solution that conducts electricity Contains ions Nonelectrolyte: substance that dissolved in water produces a solution that does not conduct electricity Does not contain ions Copyright McGraw-Hill 2009 3

Dissociation - ionic compounds separate into constituent ions when dissolved in solution Ionization - formation of ions by molecular compounds when dissolved Copyright McGraw-Hill 2009 4

Strong and weak electrolytes Strong Electrolyte: 100% dissociation All water soluble ionic compounds, strong acids and strong bases Weak electrolytes Partially ionized in solution Exist mostly as the molecular form in solution Weak acids and weak bases Copyright McGraw-Hill 2009 5

Copyright McGraw-Hill 2009 6

Examples of weak electrolytes Weak acids HC 2 H 3 O 2(aq) Weak bases NH 3 (aq) + H 2 O (l) C 2 H 3 O 2 ( aq ) (aq) + H + NH 4 + (aq) + OH (aq) (Note: double arrows indicate a reaction that occurs in both directions - a state of dynamic equilibrium exists) Copyright McGraw-Hill 2009 7

Method to Distinguish Types of Electrolytes nonelectrolyte weak electrolyte strong electrolyte Copyright McGraw-Hill 2009 8

H 2 CO 3 weak electrolyte Classify the following as nonelectrolyte, weak electrolyte or strong electrolyte NaOH strong electrolyte CH 3 OH nonelectrolyte Copyright McGraw-Hill 2009 9

4.2 Precipitation Reactions Precipitation (formation of a solid from two aqueous solutions) occurs when product is insoluble Produce insoluble ionic compounds Solubility is the maximum amount of a solid that can dissolve in a given amount of solvent at a specified temperature Prediction based on solubility rules Copyright McGraw-Hill 2009 10

Copyright McGraw-Hill 2009 11

Hydration: process by which water molecules remove and surround individual ions from the solid. Copyright McGraw-Hill 2009 12

Identify the Precipitate Pb(NO 3 ) 2 (aq) + 2NaI(aq) 2NaNO 3 + PbI 2 (s) (aq) (?) (?) Copyright McGraw-Hill 2009 13

Mixing Solutions of Pb(NO 3 ) 2 and NaCl Copyright McGraw-Hill 2009 14

Ba(NO 3 ) 2 soluble Mg(OH) 2 insoluble Classify the following as soluble or insoluble in water AgI insoluble Copyright McGraw-Hill 2009 15

Molecular equation: shows all compounds represented by their chemical formulas Ionic equation: shows all strong electrolytes as ions and all other substances (nonelectrolytes, weak electrolytes, gases) by their chemical formulas Copyright McGraw-Hill 2009 16

Molecular equation: Ionic equation: Net Ionic equation: shows only the reacting species in the chemical equation Eliminates spectator ions Net ionic equation: Copyright McGraw-Hill 2009 17

Steps in writing a net ionic equation Write the balanced molecular equation. Predict products by exchanging cations and anions in reactants. Separate strong electrolytes into ions. Cancel spectator ions. Use the remaining species to write the net ionic equation. Copyright McGraw-Hill 2009 18

Aqueous solutions of silver nitrate and sodium sulfate are mixed. Write the net ionic reaction. Step 1: 2AgNO 3 (aq)+na 2 SO 4 (aq) 2NaNO 3 (?)+Ag 2 SO 4 (?) Copyright McGraw-Hill 2009 19

Step 2: Use solubility table; all nitrates are soluble but silver sulfate is insoluble 2Ag + (aq) + 2NO 3 (aq) + 2Na + (aq) + SO 4 2 (aq) 2Na + (aq) + 2NO 3 (aq) + Ag 2 SO 4 (s) Copyright McGraw-Hill 2009 20

Step 3: Cancel spectators 2Ag + (aq) + 2NO 3 (aq) + 2Na + (aq) + SO 4 2 (aq) 2Na + (aq) + 2NO 3 (aq) + Ag 2 SO 4 (s) Step 4: Write the net ionic reaction 2Ag + (aq) + SO 4 2 (aq) Ag 2 SO 4 (s) Copyright McGraw-Hill 2009 21

4.3 Acid-Base Reactions Termed neutralization reactions. Involve an acid and a base. A molecular compound (water) is a common product along with a salt (ionic compound). Copyright McGraw-Hill 2009 22

Common Acids and Bases Copyright McGraw-Hill 2009 23

All the other acids and bases are weak electrolytes (important for net ionic equations). Copyright McGraw-Hill 2009 24

Definitions of acids and bases Arrhenius acid - produces H + in solution Arrhenius base - produces OH in solution More inclusive definitions: Brønsted acid - proton donor Brønsted base - proton acceptor Copyright McGraw-Hill 2009 25

Examples of a weak base and weak acid Ammonia with water: Hydrofluoric acid with water: Copyright McGraw-Hill 2009 26

Types of acids Monoprotic: one ionizable hydrogen HCl + H 2 O H 3 O + + Cl Diprotic: two ionizable hydrogens H 2 SO 4 + H 2 O H 3 O + HSO 4 + H 2 O H 3 O + + HSO 4 + SO 4 2 Copyright McGraw-Hill 2009 27

Triprotic: three ionizable hydrogens H 3 PO 4 + H 2 O H 3 O + + H 2 PO 4 H 2 PO 4 + H 2 O H 3 O + + HPO 2 4 HPO 2 4 + H 2 O H 3 O + + PO 3 4 Polyprotic: generic term meaning more than one ionizable hydrogen Copyright McGraw-Hill 2009 28

Types of bases Monobasic: One OH group KOH K + + OH Dibasic: Two OH groups Ba(OH) 2 Ba 2+ + 2OH Copyright McGraw-Hill 2009 29

Acid-Base Neutralization Neutralization: Reaction between an acid and a base Acid + Base Salt + Water Molecular equation: O(l) HCl(aq) + NaOH(aq) NaCl(aq) + H 2 Ionic equation: H + (aq)+ Cl (aq) + Na + (aq) + OH (aq) O(l) Na + (aq) + Cl (aq) + H 2 Net ionic equation: ( O(l H + (aq) + OH (aq) H 2 Copyright McGraw-Hill 2009 30

Solutions of acetic acid and lithium hydroxide are mixed. Write the net ionic reaction. HC 2 H 3 O 2 (aq) + OH (aq) C 2 H 3 O 2 (aq) + H 2 O(l) Copyright McGraw-Hill 2009 31

4.4 Oxidation-Reduction Reactions reactions redox calledoften Electrons are transferred between the reactants One substance is oxidized, loses electrons Reducing agent Another substance is reduced, gains electrons Oxidizing agent Oxidation numbers change during the reaction Copyright McGraw-Hill 2009 32

Example Zn(s) + CuSO 4 (aq) ZnSO 4 (aq) + Cu(s) Zn(s) + Cu 2+ (aq) Zn 2+ (aq) + Cu(s) Zinc is losing 2 electrons and oxidized. Reducing agent Zn(s) Zn 2+ (aq) + 2e Copper ions are gaining the 2 electrons. Oxidizing agent Cu 2+ (aq) + 2e Cu(s) Copyright McGraw-Hill 2009 33

Reaction of Cu and Zn 2+ ions Copyright McGraw-Hill 2009 34

Rules for assigning oxidation numbers 1. Elements (uncombined) are 0. Al, N 2, He, Zn, Ag, Br 2, O 2, O 3 2. Oxidation numbers must sum to the overall charge of the species. SO 4 2 (. so = 2 (O is usually 2? + 4( 2) = 2 Solve:? 8 = 2? = + 6 (S) Copyright McGraw-Hill 2009 35

Guidelines for Assigning Oxidation Numbers is 1 and for KO 2 is ½. Copyright McGraw-Hill 2009 36

Assign oxidation numbers for all elements in each species MgBr 2 ClO 2 Mg +2, Br 1 Cl +1, O 2 Copyright McGraw-Hill 2009 37

Displacement reactions A common reaction: active metal replaces (displaces) a metal ion from a solution Mg(s) + CuCl 2 (aq) Cu(s) + MgCl 2 (aq) The activity series of metals is useful in order to predict the outcome of the reaction. Copyright McGraw-Hill 2009 38

Copyright McGraw-Hill 2009 39

Balancing redox reactions Electrons (charge) must be balanced as well as number and types of atoms Consider this net ionic reaction: Al(s) + Ni 2+ (aq) Al 3+ (aq) + Ni(s) The reaction appears balanced as far as number and type of atoms are concerned, but look closely at the charge on each side. Copyright McGraw-Hill 2009 40

Al(s) + Ni 2+ (aq) Al 3+ (aq) + Ni(s) Divide reaction into two half-reactions Al(s) Al 3+ (aq) + 3e Ni 2+ (aq) + 2e Ni(s) Multiply by a common factor to equalize electrons (the number of electrons lost ( gained must equal number of electrons 2 [Al(s) Al 3+ (aq) + 3e ] 3 [Ni 2+ (aq) + 2e Ni(s) ] Copyright McGraw-Hill 2009 41

Cancel electrons and write balanced net ionic reaction 2Al(s) 2Al 3+ (aq) + 6e 3Ni 2+ (aq) + 6e 3Ni(s) 2Al(s) + 3Ni 2+ (aq) 2Al 3+ (aq) + 3Ni(s) Copyright McGraw-Hill 2009 42

Predict whether each of the following will occur. For the reactions that do occur, write a balanced net ionic reaction for each. - Copper metal is placed into a solution of silver nitrate Cu (s) + 2 Ag (aq) Cu 2+ (aq) + 2 Ag(s) - A gold ring is accidentally dropped into a solution of hydrochloric acid No reaction occurs, gold is below hydrogen on the activity series. Copyright McGraw-Hill 2009 43

Combination Reactions Many combination reactions may also be classified as redox reactions Consider: Hydrogen gas reacts with oxygen gas 2H 2 (g) + O 2 (g) 2H 2 O(l) Identify the substance oxidized and the substance reduced. Copyright McGraw-Hill 2009 44

Decomposition reactions Many decomposition reactions may also be classified as redox reactions Consider: Potassium chlorate is strongly heated 2KClO 3 (s) 2KCl(s) + 3O 2 (g) Identify substances oxidized and reduced. Copyright McGraw-Hill 2009 45

Disproportionation reactions One element undergoes both oxidation and reduction Consider: Copyright McGraw-Hill 2009 46

Combustion reactions Common example, hydrocarbon fuel reacts with oxygen to produce carbon dioxide and water Consider: Copyright McGraw-Hill 2009 47

Oxidation Numbers on the Periodic Table (most common in red) Copyright McGraw-Hill 2009 48

4.5 Concentration of Solutions Concentration is the amount of solute dissolved in a given amount of solvent. Qualitative expressions of concentration Concentrated higher ratio of solute to solvent Dilute - smaller ratio of solute to solvent Copyright McGraw-Hill 2009 49

Comparison of a Concentrated and Dilute Solution Copyright McGraw-Hill 2009 50

Quantitative concentration term Molarity is the ratio of moles solute per liter of solution Symbols: M or [ ] Different forms of molarity equation M mol L L mol M mol M L Copyright McGraw-Hill 2009 51

Calculate the molarity of a solution prepared by dissolving 45.00 grams of KI into a total volume of 500.0 ml. Copyright McGraw-Hill 2009 52

Calculate the molarity of a solution prepared by dissolving 45.00 grams of KI into a total volume of 500.0 ml. 45.00 g KI 500.0 ml 1mol KI 166.0 g KI 1000 ml 1L 0.5422 M Copyright McGraw-Hill 2009 53

How many milliliters of 3.50 M NaOH can be prepared from 75.00 grams of the solid? Copyright McGraw-Hill 2009 54

How many milliliters of 3.50 M NaOH can be prepared from 75.00 grams of the solid? 1mol NaOH 1L 1000 ml 75.00 g NaOH 40.00 g NaOH 3.50 mol NaOH 1L 536 ml Copyright McGraw-Hill 2009 55

Dilution Process of preparing a less concentrated solution from a more concentrated one. Copyright McGraw-Hill 2009 56

For the next experiment the class will need 250. ml of 0.10 M CuCl 2. There is a bottle of 2.0 M CuCl 2. Describe how to prepare this solution. How much of the 2.0 M solution do we need? Copyright McGraw-Hill 2009 57

Concentrated: 2.0 M use? ml (L d ) Dilute: 250. ml of 0.10 M M c L c = M d L d (2.0 M) (L c ) = (0.10 M) (250.mL) L c = 12.5 ml 12.5 ml of the concentrated solution are needed; add enough distilled water to prepare 250. ml of the solution. Copyright McGraw-Hill 2009 58

Solution Stoichiometry Soluble ionic compounds dissociate completely in solution. Using mole ratios we can calculate the concentration of all species in solution. NaCl dissociates into Na + and Cl Na 2 SO 4 dissociates into 2Na + and SO 4 2 AlCl 3 dissociates into Al 3+ and 3Cl Copyright McGraw-Hill 2009 59

Find the concentration of all species in a 0.25 M solution of MgCl 2 MgCl 2 Mg 2+ + 2Cl Given: MgCl 2 = 0.25 M [Mg 2+ ] = 0.25 M (1:1 ratio) [Cl ] = 0.50 M (1:2 ratio) Copyright McGraw-Hill 2009 60

Using the square bracket notation, express the molar concentration for all species in the following solutions 0.42 M Ba(OH) 2 [Ba 2+ ] = 0.42 M (1:1 ratio) [OH ] = 0.84 M (2:1 ratio) 1.2 M NH 4 Cl [NH 4+ ] = 1.2 M (1:1 ratio) [Cl ] = 1.2 M (1:1 ratio) Copyright McGraw-Hill 2009 61

4.6 Aqueous Reactions and Chemical Analysis Types of quantitative analysis Gravimetric analysis (mass analysis) Example: precipitation reaction Volumetric analysis (volume analysis) Example: titration Copyright McGraw-Hill 2009 62

Gravimetric Analysis One form: isolation of a precipitate Typical steps: Determine mass of unknown solid Dissolve unknown in water Combine with excess amount of known substance to form a precipitate (excess drives reaction to completion) Filter, dry and weigh the precipitate Use formula and mass of ppt to find % of ion in unknown solid Copyright McGraw-Hill 2009 63

A 0.825 g sample of an ionic compound containing chloride ions and an unknown metal is dissolved in water and treated with excess silver nitrate. If 1.725 g of AgCl precipitate forms, what is the percent by mass of Cl in the original sample? Copyright McGraw-Hill 2009 64

Steps in solution: Find the % of Cl in AgCl Multiply the % of Cl by the mass of the precipitate to obtain the Cl in the sample Divide the mass of Cl in sample by total mass of sample (multiply by 100 for %) Copyright McGraw-Hill 2009 65

%Cl= 35.45gCl 143.35gAgCl 10=24.7% 0.247 1.725gAgClpt=0.427gClinsample %Clinunknown= 0.427gCl 0.825gsample 10=51.7%Cl Copyright McGraw-Hill 2009 66

Volumetric analysis Commonly accomplished by titration Addition of a solution of known concentration (standard solution) to another solution of unknown concentration. Standardization is the determination of the exact concentration of a solution. Equivalence point represents completion of the reaction. Endpoint is where the titration is stopped. An indicator is used to signal the endpoint. Copyright McGraw-Hill 2009 67

Apparatus for a Titration Copyright McGraw-Hill 2009 68

A student measured exactly 15.0 ml of an unknown monoprotic acidic solution and placed in an Erlenmeyer flask. An indicator was added to the flask. At the end of the titration the student had used 35.0 ml of 0.12 M NaOH to neutralize the acid. Calculate the molarity of the acid. 0.035LNaOH 0.12molNaOH 1L 1molacid 1molbase =0.042molacid M= 0.042mol 0.015L =0.28Macid Copyright McGraw-Hill 2009 69

Calculate the molarity of 25.0 ml of a monoprotic acid if it took 45.50 ml of 0.25 M KOH to neutralize the acid. 0.25 mol L KOH 0.04550 L 1mol acid 1mol KOH 0.01338 mol acid 0.01338 mol acid 0.0250 L 0.455 M Copyright McGraw-Hill 2009 70

Key Points Electrolytes (strong, weak, and non) Precipitation reactions Solubility rules Molecular, ionic, and net ionic reactions Acid-base neutralization reactions Oxidation-reduction reactions Copyright McGraw-Hill 2009 71

Key Points Balancing redox reactions by the half reaction method Various types: decomposition, combination Molarity Solution stoichiometry Gravimetric analysis Volumetric analysis Copyright McGraw-Hill 2009 72