ADVANCED. 16M (2-Bank x 524,288-Word x 16-Bit) Synchronous DRAM FEATURES OPTIONS GENERAL DESCRIPTION. APR (Rev.2.9)

Similar documents
EM48AM3284LBB. Revision History. Revision 0.1 (May. 2010) - First release.

eorex EM48AM3284LBA Revision History Revision 0.1 (Jul. 2006) - First release. Revision 0.2 (Aug. 2007).. - Add IDD6 PASR Spec.

3.3 V 256 K 16 CMOS SRAM

HYB39SC128800FE HYB39SC128160FE HYI39SC128800FE HYI39SC128160FE

5 V 64K X 16 CMOS SRAM

April 2004 AS7C3256A

5.0 V 256 K 16 CMOS SRAM

3.3 V 64K X 16 CMOS SRAM

64Mb Synchronous DRAM Specification


5V 1M 16 CMOS DRAM (fast-page mode) DQ16 DQ15 DQ14 DQ13 RAS DQ12 DQ11 DQ10 DQ9 OE WE UCAS LCAS LCAS UCAS OE A9 A8 A7 A6 A5 A4

onlinecomponents.com

512K x 32 Bit x 4 Banks Synchronous DRAM

74ACT825 8-Bit D-Type Flip-Flop

BALL CONFIGURATION (TOP VIEW) (BGA 90, 8mmX13mmX1.0mm Body, 0.8mm Ball Pitch) A DQ26 DQ24 VSS VDD DQ23 DQ21 B DQ28 VDDQ VSSQ VDDQ VSSQ DQ19

54AC174/54ACT174 Hex D Flip-Flop with Master Reset

DM74S373 DM74S374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

BS4M16A. 4M x 16 Bit SDRAM ORDERING INFORMATION GENERAL DESCRIPTION FEATURES. Revision: 5.0 1/46

CD4723BM CD4723BC Dual 4-Bit Addressable Latch CD4724BM CD4724BC 8-Bit Addressable Latch

MM54HC173 MM74HC173 TRI-STATE Quad D Flip-Flop

1M x 16 Bit x 4 Banks

256M (16Mx16bit) Hynix SDRAM Memory

NTE74HC299 Integrated Circuit TTL High Speed CMOS, 8 Bit Universal Shift Register with 3 State Output

74F393 Dual 4-bit binary ripple counter

MM74HC164 8-Bit Serial-in/Parallel-out Shift Register

INTEGRATED CIRCUITS. 74F521 8-bit identity comparator. Product specification May 15. IC15 Data Handbook

CD4514BC CD4515BC 4-Bit Latched/4-to-16 Line Decoders

MM74HC259 8-Bit Addressable Latch/3-to-8 Line Decoder

256M (16Mx16bit) Hynix SDRAM Memory

74ACT Bit D-Type Flip-Flop with 3-STATE Outputs

HN58C66 Series word 8-bit CMOS Electrically Erasable and Programmable CMOS ROM. ADE F (Z) Rev. 6.0 Apr. 12, Description.

NTE74HC173 Integrated Circuit TTL High Speed CMOS, 4 Bit D Type Flip Flop with 3 State Outputs

DS34C87T CMOS Quad TRI-STATE Differential Line Driver

IBM B IBM P 8M x 8 12/11 EDO DRAM

MM74HCT573 MM74HCT574 Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop

54173 DM54173 DM74173 TRI-STATE Quad D Registers

NLSV2T Bit Dual-Supply Inverting Level Translator

CD4021BC 8-Stage Static Shift Register

MM74HC574 3-STATE Octal D-Type Edge-Triggered Flip-Flop

74F194 4-Bit Bidirectional Universal Shift Register

INTEGRATED CIRCUITS. 74LVC138A 3-to-8 line decoder/demultiplexer; inverting. Product specification 1998 Apr 28

INTEGRATED CIRCUITS. 74LV273 Octal D-type flip-flop with reset; positive-edge trigger. Product specification 1997 Apr 07 IC24 Data Handbook

LH5P8128. CMOS 1M (128K 8) Pseudo-Static RAM PIN CONNECTIONS

UNISONIC TECHNOLOGIES CO., LTD U74HC164

74LV393 Dual 4-bit binary ripple counter

MM74HCT373 MM74HCT374 3-STATE Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop

DM74LS373 DM74LS374 3-STATE Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops

54AC258 54ACT258 Quad 2-Input Multiplexer with TRI-STATE Outputs

74HC General description. 2. Features. Octal D-type flip-flop; positive-edge trigger; 3-state; inverting

MM54HC73 MM74HC73 Dual J-K Flip-Flops with Clear

INTEGRATED CIRCUITS. 74LV stage binary ripple counter. Product specification 1998 Jun 23 IC24 Data Handbook

IBM IBM M IBM B IBM P 4M x 4 11/11 EDO DRAM

93L34 8-Bit Addressable Latch

High Speed Super Low Power SRAM

MM74HC573 3-STATE Octal D-Type Latch

MM54HC373 MM74HC373 TRI-STATE Octal D-Type Latch

IBM IBM M IBM B IBM P 4M x 4 12/10 DRAM

74F174 Hex D-Type Flip-Flop with Master Reset

256K X 16 BIT LOW POWER CMOS SRAM

MM74HC374 3-STATE Octal D-Type Flip-Flop

MM74HC161 MM74HC163 Synchronous Binary Counter with Asynchronous Clear Synchronous Binary Counter with Synchronous Clear

MM74HCT573 MM74HCT574 Octal D-Type Latch 3-STATE Octal D-Type Flip-Flop

CD4028BC BCD-to-Decimal Decoder

HEF4028B. 1. General description. 2. Features. 3. Applications. 4. Ordering information. BCD to decimal decoder

About the change in the name such as "Oki Electric Industry Co. Ltd." and "OKI" in documents to OKI Semiconductor Co., Ltd.

MM74HC373 3-STATE Octal D-Type Latch

MM74HC373 3-STATE Octal D-Type Latch

INTEGRATED CIRCUITS. 74LV00 Quad 2-input NAND gate. Product specification Supersedes data of 1998 Apr 13 IC24 Data Handbook.

HM6264A Series. Features. Ordering Information word 8-bit High Speed CMOS Static RAM

74LCX16374 Low Voltage 16-Bit D-Type Flip-Flop with 5V Tolerant Inputs and Outputs

5-stage Johnson decade counter

74LV373 Octal D-type transparent latch (3-State)

74LCX16374 Low Voltage 16-Bit D-Type Flip-Flop with 5V Tolerant Inputs and Outputs

DQ0 DQ1 DQ2 DQ3 NC WE# RAS# A0 A1 A2 A3 A4 A5. x = speed

LH5P832. CMOS 256K (32K 8) Pseudo-Static RAM

NJU BIT PARALLEL TO SERIAL CONVERTER PRELIMINARY PACKAGE OUTLINE GENERAL DESCRIPTION PIN CONFIGURATION FEATURES BLOCK DIAGRAM

DM74LS670 3-STATE 4-by-4 Register File

MM74HC154 4-to-16 Line Decoder

16-Mbit (1M x 16) Static RAM

NC7SB3157 TinyLogic Low Voltage UHS Analog Switch 2-Channel Multiplexer/Demultiplexer (Preliminary)

74HC General description. 2. Features. 3-to-8 line decoder, demultiplexer with address latches; inverting

CD4027BC Dual J-K Master/Slave Flip-Flop with Set and Reset

7C33128PFS32A 7C33128PFS36A. January 2001 Preliminary Information. 3.3V 128K X 32/36 pipeline burst synchronous SRAM

CD4013BC Dual D-Type Flip-Flop

INTEGRATED CIRCUITS. 74F154 1-of-16 decoder/demultiplexer. Product specification Jan 08. IC15 Data Handbook

74LCXH Low Voltage 16-Bit D-Type Flip-Flop with Bushold and 26Ω Series Resistors in Outputs

54LS256 DM74LS256 Dual 4-Bit Addressable Latch

INTEGRATED CIRCUITS. 74LV259 8-bit addressable latch. Product specification Supersedes data of 1997 Jun 06 IC24 Data Handbook.

CD74HC195. High Speed CMOS Logic 4-Bit Parallel Access Register. Features. Description. Ordering Information. PInout. [ /Title (CD74 HC195 ) /Subject

MM54HC194 MM74HC194 4-Bit Bidirectional Universal Shift Register

MM74HC175 Quad D-Type Flip-Flop With Clear

MM54HC175 MM74HC175 Quad D-Type Flip-Flop With Clear

I/O 8 I/O 15 A13 A 14 BHE WE CE OE BLE

SN54HC682, SN74HC682 8-BIT MAGNITUDE COMPARATORS

MB81C4256A-60/-70/-80/-10 CMOS 256K x 4 BIT FAST PAGE MODE DYNAMIC RAM

SN54HC20, SN74HC20 DUAL 4-INPUT POSITIVE-NAND GATES

NC7SZ374 TinyLogic UHS D-Type Flip-Flop with 3-STATE Output

The 74HC21 provide the 4-input AND function.

74LV374 Octal D-type flip-flop; positive edge-trigger (3-State) INTEGRATED CIRCUITS

256K x 16 Static RAM CY7C1041BN. Features. Functional Description

Transcription:

ADVANCED 16M (2-Bank x 524,288-Word x 16-Bit) Synchronous DRAM FEATURES OPTIONS GENERAL DESCRIPTION APR. 2007 (Rev.2.9)

F D Read (READ) [RAS = H, CAS = L, WE = H] Write (WRITE) [RAS = H, CAS =WE = L] Chip Select: L=select, h=deselect RAS Com- CAS Com- Define Basic Com- WE Com- Precharge (PRE) [RAS = L, CAS = H, WE = L] A[10] Refresh option @refresh command Precharge Option @ precharge or read/write command Activate (ACT) [RAS = L, CAS = WE = H] Auto-Refresh (REFA) [RAS = CAS = L, WE = = H] RC Command Truth Table [1] Command Mnemonic 1. H = High Level, L = Low Level, V = Valid, X = High or Low, n = cycle number n- 1 n RAS CAS WE BA Deselect DESEL H X H X X X X X X No Operation NOP H X L H H H X X X Row Address Entry & Bank Activate ACT H X L L H H V V V Single Bank Precharge PRE H X L L H L V L X Precharge All Banks PREA H X L L H L V H X Column Address Entry & Write WRITE H X L H L L V L V Column Address Entry & Write with Auto-Precharge WRITEA H X L H L L V H V Column Address Entry & Read READ H X L H L H V L V Column Address Entry & Read with Auto-Precharge READA H X L H L H V H V Auto-Refresh REFA H H L L L H X X X Self-Refresh Entry REFS H L L L L H X X X Self-Refresh Exit REFSX L H H X X X X X X A[10 ] L H L H H H X X X Burst Terminate TBST H X L H H L X X X Mode Register Set MRS H X L L L L X L V A[9: 0]

[1] [2] Function Truth Table Current State RAS CAS WE Address [3] Command Action [4] IDLE H X X X X DESEL NOP L H H H X NOP NOP L H H L BA TBST ILLEGAL [5] L H L X BA, CA, A[10] READ / WRITE ILLEGAL [5] L L H H BA, RA ACT Bank Active, Latch RA L L H L BA, A[10] PRE / PREA NOP [6] L L L H X REFA Auto-Refresh [7] L L L L Op-Code, Mode-Add MRS Mode Register Set [7] ROW ACTIVE H X X X X DESEL NOP L H H H X NOP NOP L H H L BA TBST NOP L H L H BA, CA, A[10] READ / READA Begin Read, Latch CA, Determine Auto- Precharge L H L L BA, CA, A[10] WRITE / WRITEA Begin Write, Latch CA, Determine Auto- Precharge L L H H BA, RA ACT Bank Active / ILLEGAL [5] L L H L BA, A[10] PRE / PREA Precharge / Precharge All L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL READ H X X X X DESEL NOP (Continue Burst to END) L H H H X NOP NOP (Continue Burst to END) L H H L BA TBST Terminate Burst L H L H BA, CA, A[10] READ / READA Terminate Burst, Latch CA, Begin New Read, Determine Auto-Precharge [8] L H L L BA, CA, A[10] WRITE / WRITEA Terminate Burst, Latch CA, Begin Write, Determine Auto-Precharge [8] L L H H BA, RA ACT Bank Active / ILLEGAL [5] L L H L BA, A[10] PRE / PREA Terminate Burst, Precharge L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL WRITE H X X X X DESEL NOP (Continue Burst to END) L H H H X NOP NOP (Continue Burst to END) L H H L BA TBST Terminate Burst L H L H BA, CA, A[10] READ / READA Terminate Burst, Latch CA, Begin Read, Determine Auto-Precharge [8] L H L L BA, CA, A[10] WRITE / WRITEA Terminate Burst, Latch CA, Begin Write, Determine Auto-Precharge [8] L L H H BA, RA ACT Bank Active / ILLEGAL [5] L L H L BA, A[10] PRE / PREA Terminate Burst, Precharge L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL

Function Truth Table [1] [2] (Continued) Current State RAS CAS WE Address [3] Command Action [4] READ with AUTO PRECHARGE WRITE with AUTO PRECHARGE H X X X X DESEL NOP (Continue Burst to END) L H H H X NOP NOP (Continue Burst to END) L H H L X TBST ILLEGAL L H L H BA, CA, A[10] READ / READA ILLEGAL L H L L BA, CA, A[10] WRITE / WRITEA ILLEGAL L L H H BA, RA ACT Bank Active / ILLEGAL [5] L L H L BA, A[10] PRE / PREA ILLEGAL [5] L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL H X X X X DESEL NOP (Continue Burst to END) L H H H X NOP NOP (Continue Burst to END) L H H L X TBST ILLEGAL L H L H BA, CA, A[10] READ / READA ILLEGAL L H L L BA, CA, A[10] WRITE / WRITEA ILLEGAL L L H H BA, RA ACT Bank Active / ILLEGAL [5] L L H L BA, A[10] PRE / PREA ILLEGAL [5] L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL PRE -CHARGING H X X X X DESEL NOP (Idle after t RP ) L H H H X NOP NOP (Idle after t RP ) L H H L X TBST ILLEGAL [5] L H L X BA, CA, A[10] READ / WRITE ILLEGAL [5] L L H H BA, RA ACT ILLEGAL [5] L L H L BA, A[10] PRE / PREA NOP [6] (Idle after t RP ) L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL ROW ACTIVATING H X X X X DESEL NOP (Row Active after t RCD ) L H H H X NOP NOP (Row Active after t RCD ) L H H L X TBST ILLEGAL [5] L H L X BA, CA, A[10] READ / WRITE ILLEGAL [5] L L H H BA, RA ACT ILLEGAL [5] L L H L BA, A[10] PRE / PREA ILLEGAL [5] L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL WRITE RECOVERING H X X X X DESEL NOP L H H H X NOP NOP L H H L X TBST ILLEGAL [5] L H L X BA, CA, A[10] READ / WRITE ILLEGAL [5] L L H H BA, RA ACT ILLEGAL [5] L L H L BA, A[10] PRE / PREA ILLEGAL [5] L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL

Function Truth Table [1] [2] (Continued) Current State RAS CAS WE Address [3] Command Action [4] REFRESHING H X X X X DESEL NOP (Idle after t RC ) MODE REGISTER SETTING 1. H = High Level, L= Low Level, X = High or Low. 2. All entries assume that was High during the preceding clock cycle and the current clock cycle. 3. BA = Bank Address, RA = Row Address, CA = Column Address, NOP = No OPeration. 4. ILLEGAL = Device operation and/or data-integrity are not guaranteed. 5. ILLEGAL to bank in specified state; function may be legal in the bank indicated by BA, depending on the state of that bank. 6. NOP to bank precharging or in idle state. May precharge bank indicated by BA. 7. ILLEGAL if any bank is not idle. L H H H X NOP NOP (Idle after t RC ) L H H L X TBST ILLEGAL L H L X BA, CA, A[10] READ / WRITE ILLEGAL L L H H BA, RA ACT ILLEGAL L L H L BA, A[10] PRE / PREA ILLEGAL L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL H X X X X DESEL NOP (Idle after t RSC ) L H H H X NOP NOP (Idle after t RSC ) L H H L X TBST ILLEGAL L H L X BA, CA, A[10] READ / WRITE ILLEGAL L L H H BA, RA ACT ILLEGAL L L H L BA, A[10] PRE / PREA ILLEGAL L L L H X REFA ILLEGAL L L L L Op-Code, Mode-Add MRS ILLEGAL 8. Must satisfy bus contention, bus turn around, write recovery requirements.

Function Truth Table for [1] Current State n- 1 n RAS CAS WE Add Action SELF-REFRESH [2] H X X X X X X INVALID 1. H = High Level, L= Low Level, X = High or Low. 2. Low to High transition will re-enable and other inputs asynchronously. A minimum setup time must be satisfied before any command other than EXIT. 3. Power-Down and Self-Refresh can be entered only from the All Banks Idle State. 4. Must be legal command. L H H X X X X Exit Self-Refresh (Idle after t RC ) L H L H H H X Exit Self-Refresh (Idle after t RC ) L H L H H L X ILLEGAL L H L H L X X ILLEGAL L H L L X X X ILLEGAL L L X X X X X NOP (Maintain Self-Refresh) POWER DOWN H X X X X X X INVALID L H X X X X X Exit Power Down to Idle L L X X X X X NOP (Maintain Self-Refresh) ALL BANKS IDLE [3] H H X X X X X Refer to Function Truth Table ANY STATE other than listed above H L L L L H X Enter Self-Refresh H L H X X X X Enter Power Down H L L H H H X Enter Power Down H L L H H L X ILLEGAL H L L H L X X ILLEGAL H L L L X X X ILLEGAL L X X X X X X Refer to Current State = Power Down H H X X X X X Refer to Function Truth Table H L X X X X X Begin Suspend at Next Cycle [4] L H X X X X X Exit Suspend at Next Cycle [4] L L X X X X X Maintain Suspend

Power On Sequence RP SELF REFRESH REF REFS MODE REGISTER SET MRS IDLE REF AUTO REFRESH SUSPEND AC T POWER DOWN ROW TBST TBST WRIT REA WRITE READE WRITE READ SUSPEND WRITE WRI TE READ READ SUSPEND WRITE WRITE READE READE WRITE A SUSPEND WRITE A READ A READ A SUSPEND PRE PRE PRE POWER APPLIED POWER ON PRE PRECH ARGE Automatic Sequence Command Sequence

Mode Register RSC BA A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 0 0 WBL 0 Ø LTMODE BT BL LATENC Y MODE A9 ø CL BL BT = 0 BT = 1 0 0 0 1 1 0 0 1 2 2 BURST 0 1 0 4 4 LENGT 0 1 1 8 8 1 0 0 R R 1 0 1 R R 1 1 0 R R 1 1 1 Full Page R BURST 0 SEQUENTIAL Write Burst Length (WBL) TYPE 1 INTERLEAVED Length = BL specified 1 Single bit (BL = CAS 0 0 0 R 0 0 1 R 0 1 0 2 0 1 1 3 1 0 0 R 1 0 1 R 1 1 0 R 1 1 1 R RAS CAS WE BA, A[10:0] CAS Burst Length Burst Length Command READ WRITE Address Y Y DQ Q0 Q1 Q2 Q3 D0 D1 D2 D3 Burst Type Initial Address B L Column Addressing A2 A1 A0 Sequential Interleaved 0 0 0 8 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 0 1 1 2 3 4 5 6 7 0 1 0 3 2 5 4 7 6 0 1 0 2 3 4 5 6 7 0 1 2 3 0 1 6 7 4 5 0 1 1 3 4 5 6 7 0 1 2 3 2 1 0 7 6 5 4 1 0 0 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 1 0 1 5 6 7 0 1 2 3 4 5 4 7 6 1 0 3 2 1 1 0 6 7 0 1 2 3 4 5 6 7 4 5 2 3 0 1 1 1 1 7 0 1 2 3 4 5 6 7 6 5 4 3 2 1 0 0 0 4 0 1 2 3 0 1 2 3 0 1 1 2 3 0 1 0 3 2 1 0 2 3 0 1 2 3 0 1 1 1 3 0 1 2 3 2 1 0 0 2 0 1 0 1 1 1 0 1 0

OPERATIONAL DESCRIPTION Bank Activate Precharge RRD RP Command ACT ACT REA PRE ACT t RRD t RAS t RP A[9:0] Xa Xb Ya Xb A[10] Xa Xb 0 1 Xb BA 0 1 0 1 DQ Qa0 Qa1 Qa2 Qa3 Precharge All Figure 3. Bank Activation and Precharge All (BL=4, CL=3)

Read RP RCD RP Command ACT REA ACT REA PRE t RCD A[9:0] Xa Ya Xb Yb A[10] Xa 0 Xb 0 0 BA 0 0 1 1 0 Burst Length DQ Qa0 Qa1 Qa2 Qa3 Qb0 Qb1 Qb2 CAS Latency Figure 4. Dual Bank Interleaving READ (BL=4, CL=3) Command ACT READ A ACT t RCD t RP A[9:0] Xa Y Xa A[10] Xa 1 Xa BA 0 0 0 DQ Qa0 Qa1 Qa2 Qa3 Internal Precharge begins Figure 5. READ with Auto-Precharge (BL=4, CL=3) Command ACT READ A CL=3 DQ Qa0 Qa1 Qa2 Qa3 CL=2 DQ Qa0 Qa1 Qa2 Qa3 Internal Precharge Start Timing

Write RCD RDL WR RP RP Command ACT WRITE ACT WRITE PRE t RCD t RCD A[9:0] Xa Y Xb Y t RDL (1 A[10] Xa 0 Xb 0 0 BA 0 0 1 1 0 Burst Length DQ Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 Figure 7. Dual Bank Interleaving WRITE (BL=4) Command ACT WRITE ACT t RCD t RP A[9:0] Xa Y Xa A[10] Xa 1 Xa BA 0 0 0 t RDL DQ Da0 Da1 Da2 Da3 Internal Precharge Begins Figure 8. WRITE with Auto-Precharge (BL=4)

Burst Interruption [Read Interrupted by Read] Command REA REA READ READ A[9:0] Yi Yj Yk Yl A[10] 0 0 0 0 BA 0 0 1 0 DQ Qi0 Qj0 Qj1 Qk0 Qk1 Qk2 Ql0 Ql1 Ql2 Ql3 Internal Precharge Start Timing Figure 9. READ Interrupted by READ (BL=4, CL=3) [Read Interrupted by Write] Command REA WRITE A[9:0] Yi Yj A[10] 0 0 BA 0 0 DQMU, Q D Qi0 DQM U/ DQML control Dj0 Dj1 Dj2 Write control Dj 3

[Read Interrupted by Precharge] Command REA PRE DQ Q 0 Q 1 Q 2 Q 3 CL=3 Command REA PRE DQ Q 0 Q 1 Q 2 Command REA PRE DQ Q 0 Command REA PRE DQ Q 0 Q 1 Q 2 Q 3 CL=2 Command REA PRE DQ Q 0 Q 1 Q 2 Command REA PRE DQ Q 0 Figure 11. READ Interrupted by Precharge (BL=4)

[Read Interrupted by Burst Terminate] Command REA TBST DQ Q 0 Q 1 Q 2 Q 3 CL=3 Command REA TBST DQ Q 0 Q 1 Q 2 Command REA TBST DQ Q 0 Command REA TBST DQ Q 0 Q 1 Q 2 Q 3 CL=2 Command REA TBST DQ Q 0 Q 1 Q 2 Command REA TBST DQ Q 0 Figure 12. READ Interrupted by Burst Terminate (BL=4)

[Write Interrupted by Write] Command WRIT WRIT WRITE WRITE A[9:0] Yi Yj Yk Yl A[10] 0 0 0 0 BA 0 0 1 0 DQ Di0 Dj0 Dj1 Dk0 Dk1 Dk2 Dl0 Dl1 Dl2 Dl3 Figure 13. WRITE Interrupted by WRITE (BL=4) [Write Interrupted by Read] Command WRITE READ WRITE READ A[9:0] Yi Yj Yk Yl A[10] 0 0 0 0 BA 0 0 0 1 DQMU, DQ Di0 Qj0 Qj1 Dk0 Dk1 Ql0 Figure 14. WRITE interrupted by READ (BL=4, CL=3)

[Write Interrupted by Precharge] RDL Command WRITE PRE ACT A[9:0] Ya Xb A[10] 0 0 Xb BA 0 0 0 DQMU, DQ Di0 Di1 This data should be masked to satisfy t RDL requirement. Figure 15. WRITE Interrupted by Precharge (BL=4) [Write Interrupted by Burst Terminate] Command WRITE TBST A[9:0] Ya A[10] 0 BA 0 DQMU, DQ Da0 Da1 Da2

Auto Refresh RC RAS NOP or Deselect CAS WE Minimum t RC A[10:0] BA Auto Refresh on Bank 0 Auto Refresh on Bank 1 Figure 17. Auto Refresh Self Refresh RC RC RAS Stable NOP CAS WE new command A[10:0] X minimum t RC for recovery BA 0 Self Refresh Entry Self Refresh Exit

Suspend ext. int. Standby Power Down Command PRE NOP NOP NOP NOP NOP NOP NOP Active Power Down Command ACT NOP NOP NOP NOP NOP NOP NOP Figure 19. Power Down by Command WRITE REA DQ D0 D1 D2 D3 Q0 Q1 Q2 Q3 Figure 20. DQ Suspend by

DQMU / DQML Control Command WRITE REA DQML DQ[7:0] D0 D2 D3 Q0 Q1 Q3 DQMU Masked by DQML = Disabled by DQML = DQ[15:8] D0 D1 D3 Q0 Masked by DQMU = Disabled by DQMU Figure 21. DQMU / DQML Function Q2 Q3

ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings [1] Symbol Parameter Conditions Ratings Unit V DD Supply Voltage with respect to V SS -1.0 to 4.6 V V DDQ Supply Voltage for Output with respect to V SSQ -1.0 to 4.6 V V I Input Voltage with respect to V SS -1.0 to 4.6 V V O Output Voltage with respect to V SSQ -1.0 to 4.6 V I O Output Current 50 ma P D Power Dissipation T A = 25 C 1000 mw T OPR Operating Temperature Commerial 0 to 70 C Extended -25 to 85 C Industrial -40 to 85 C T STG Storage Temperature -65 to 150 C 1. Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress r ating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not im plied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Recommended Operating Conditions (T A : noted by temperture options, unless otherwise noted) Symbol Parameter Min Typ Max Unit V DD Supply Voltage 3.0 3.3 3.6 V V DDQ Supply Voltage for Output 3.0 3.3 3.6 V [1] V IH High-Level Input Voltage all inputs 2.0 V DDQ + 0.3 V [2] V IL Low-Level Input Voltage all inputs -0.3 0.8 V 1. V IH (max) = 5.6 V for pulse width less than 3 ns. 2. V IL (min) = -2.0 V for pulse width less than 3 ns. DC Characteristics (V DD = V DDQ = 3.3 ±0.3V, V SS = V SSQ = 0 V, unless otherwise noted) Symbol Parameter Test Conditions Min Max Unit V OH High-Level Output Voltage I OH = -2 ma 2.4 V V OL Low-Level Output Voltage I OL = 2 ma 0.4 V I OZ Off-state Output Current Q floating V O = 0 to V DDQ -10 10!A I I Input Current V IH = 0 to V DDQ + 0.3 V -10 10!A Capacitance (V DD = V DDQ = 3.3 ±0.3 V, V SS = V SSQ = 0 V, unless otherwise noted) Symbol Parameter Test Condition Min Max Unit C I(A) Input Capacitance, address pin V I = V SS 2.5 5 pf C I(C) Input Capacitance, control pin f = 1 MHz 2.5 5 pf C I(K) Input Capacitance, pin V I = 25 mvrms 2.5 5 pf C I/O Input Capacitance, I/O pin 4 7 pf

Average Supply Current from V DD (V DD = V DDQ = 3.3 ±0.3 V, V SS = V SSQ = 0 V, unless otherwise noted) Symbol Parameter Test Conditions AC Characteristics (V DD = V DDQ = 3.3 ±0.3 V, V SS = V SSQ = 0 V, unless otherwise noted) [1] Symbol Parameter 1. Input Pulse Levels: 0.4 V to 2.4 V with t r /t f = +1/+1 ns. Input Timing Measurement Level: 1.4 V. Min -6 Max Rating (Max) I CC1S Operating Current, Single Bank t RC = min, t = min, BL = 1, CL = 3 120 ma I CC1D Operating Current, Dual Bank t RC = min, t = min, BL = 1, CL = 3 170 ma I CC2H Standby Current, = H both banks idle, t = min, = H 20 ma I CC2L Standby Current, = L both banks idle, t = min, = L 2 ma I CC3H Active Standby Current, = H both banks active, t = min, = H 35 ma I CC3L Active Standby Current, = L both banks active, t = min, = L 4 ma I CC4 Burst Current t = min, BL = 4, CL = 3, both banks active t Cycle Time CL=2 - ns CL=3 6 ns t CH High Pulse Width 2.5 ns t CL Low Pulse Width 2.5 ns t T Transition Time of 1 10 ns t IS Input Setup Time (all inputs) 2 ns t IH Input Hold Time (all inputs) 1 ns t RC Row Cycle Time 60 ns t RCD Row to Column Delay 18 ns t RAS Row Active Time 42 100k ns t RP Row Precharge Time 18 ns t CCD Column Address to Column Adress Delay 1 t RRD Act to Act Delay Time 2 t RSC Mode Register Set Cycle Time 1 t RDL Last Data-In to Row Precharge Delay 1 t REF Refresh Interval Time 65.6 ms -6 Unit 180 ma I CC5 Auto-Refresh Current t RC = min, t = min 110 ma I CC6 Self-Refresh Current < 0.2 V 1 ma Low Power 500!A Unit 1.4 Signal 1.4 Any AC timing is referenced to the input signal crossing

Switching Characteristics (V DD = V DDQ = 3.3 ±0.3 V, V SS = V SSQ = 0 V unless otherwise noted) Symbol Parameter Min t AC Access Time from CL=2 - ns -6 Max CL=3 5.5 ns t OH Output Hold Time from 2.5 ns t OLZ Delay Time, Output Low Impedance from 1 ns Unit t OHZ Delay Time, Output High Impedance from CL=2 - ns CL=3 5.5 ns V TT = 1.4V 1.4 t AC t OH t OHZ VOUT 50! V REF = - + t OLZ DQ 1.4 50 pf (1) 1.4 Output Timing Measurement Reference Point 1. For AS4C1M16S, the Output Load is 30 DQ 1.4 Figure 22. Output Load Condition

t RCD t RDL t RAS t RP t RC RAS CAS WE HIG DQMU, A[9:0] Xa Yi Xb A[10] Xa Xb BA B0 B0 B0 B0 DQ Di0 Di1 Di2 Di3 ACT WRITE PRE ACT Figure 23. WRITE Cycle (single bank) BL=4

t RDL t RDL t RCD t RCD t RAS t RRD t RAS RAS CAS WE HIG DQMU, A[9:0] Xa Ya Xb Yb A[10] Xa Xb BA B0 B0 B1 B B0 B1 DQ Da0 Da1 Da2 Da3 Db0 Db1 Db2 Db3 ACT WRIT ACT WRIT PRE PRE Figure 24. WRITE Cycle (Dual Bank) BL=4

t RCD t RAS t RP t RC RAS CAS WE DQMU, A[9:0] Xa Ya Xb A[10] Xa Xb BA B0 B0 DQ Qa0 Qa1 Qa2 Qa3 ACT READ PRE ACT Figure 25. READ Cycle (Single Bank) BL=4, CL=3

t RCD t RCD t RRD t RAS t RAS t RP t RC RAS CAS WE DQMU, A[9:0] Xa Ya Xb Yb Xc A[10] Xa Xb Xc BA DQ Qa0 Qa1 Qa2 Qa3 Qb0 Qb1 Qb2 Qb3 ACT READ ACT READ PRE PRE ACT Figure 26. READ Cycle (Dual Bank) BL=4, CL=3

t RCD t RAS RAS CAS WE DQMU, A[9:0] Xa Ya Yb A[10] Xa BA DQ Da0 Da1 Da2 Da3 Qb0 Qb1 Qb2 Qb3 ACT WRITE READ PRE Figure 27. WRITE to READ (Single Bank) BL=4, CL=3

t RCD t RCD t RRD t RAS t RAS t RP t WR t RC RAS CAS WE DQMU, A[9:0] Xa Ya Xb Yb Xc A[10] Xa Xb Xc BA DQ Da0 Da1 Da2 Da3 Qb0 Qb1 Qb2 Qb3 ACT WRITE ACT REA PRE PRE ACT Figure 28. WRITE to READ (Dual Bank) BL=4, CL=3

t RCD t RAS RAS CAS WE DQML DQMU A[9:0] Xa Ya Yb A[10] Xa BA DQ[7:0] Da0 Da2 Da3 Qb0 Qb1 Qb3 DQ[15:8] Da0 Da1 Da3 Qb0 Qb1 Qb2 ACT WRITE READ PRE

t RCD t RDL t RAS RAS CAS WE for output disable DQMU, A[9:0] Xa Ya Yb A[10] Xa BA DQ Qa0 Qa1 Db0 Db1 Db2 Db3 PRE READ WRITE PRE Figure 30. READ to WRITE (Single Bank) BL=4, CL=3

t RCD t RCD t RRD t RAS t RAS t RP t RC t RDL RAS CAS WE for output disable DQMU, A[9:0] Xa Ya Xb Yb Xc A[10] Xa Xb Xc BA DQ Qa0 Qa1 Db0 Db1 Db2 Db3 ACT READ ACT PRE WRITE ACT PRE Figure 31. READ to WRITE (Dual Bank) BL=4, CL=3

t RCD t RDL + t RP t RC RAS CAS WE DQMU, A[9:0] Xa Ya Xb A[10] Xa Xb BA DQ Da0 Da1 Da2 Da3 ACT WRITE Internal Precharge starts this timing depends on BL ACT Figure 32. Write with Auto-Precharge BL=4

t RCD t RP t RC RAS CAS WE DQMU, A[9:0] Xa Ya Xb A[10] Xa Xb BA DQ Qa0 Qa1 Qa2 Qa3 ACT READ Internal Precharge start s @ CL=3, BL=4 this timing depends on CL and BL ACT Figure 33. Read with Auto-Precharge BL=4, CL=3

t RP t RC RAS CAS WE DC High DQMU, A[9:0] A[10] BA DQ If any bank is active, it PRE must be precharged REF S REF Figure 34. Auto-Refresh

t RP RAS CAS WE DQMU, A[9:0] A[10] BA DQ If any bank is active, it PRE must be precharged REF S Figure 35. Self-Refresh Entry

NOP or desel t RC RAS CAS WE t SRX DQMU, A[9:0] Xa A[10] Xa BA DQ Internal Re-start ACT Figure 36. Self-Refresh Exit

t RP t RSC t RCD RAS CAS WE DQMU, A[9:0] Mode Xa Ya A[10] Xa BA DQ Qa0 Qa1 Qa2 If any bank is PRE active, it must be MRS ACT READ precharged Figure 37. Mode Register Set BL=4, CL=3

PACKAGING INFORMATION V DD DQ0 DQ1 V SSQ DQ2 DQ3 V DDQ DQ4 DQ5 V SSQ DQ6 DQ7 V DDQ DQML WE CAS RAS BA A10 A0 A1 A2 A3 V DD 1 50 2 49 3 48 4 47 5 46 6 45 7 44 8 43 9 42 10 41 11 40 12 39 13 Top View 38 14 37 15 36 16 35 17 34 18 33 19 32 20 31 21 30 22 29 23 28 24 27 25 26 V SS DQ15 DQ14 V SSQ DQ13 DQ12 V DDQ DQ11 DQ10 V SSQ DQ9 DQ8 V DDQ NC DQMU NC A9 A8 A7 A6 A5 A4 V SS Figure 38. 50-Pin 400 mil TSOP II Pin Assignment

unit : mm

Ordering information Extended Temperature Range: -25C to 85C Frequency Speed(ns) Order Part # Package 166MHz 6ns AS4C1M16S-6TE 400-mil 50Pin TSOP II, Lead-Free

www.alliancememory.com 2008 Alliance Memory, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means or transferred to any thir d party without the prior written consent of Alliance Memory Inc.. Circuit diagrams utilizing Alliance Memory Inc. products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for design purposes is not necessarily given. Alliance Memory Inc. reserves the right to change products or specifications without notice. The information contained in this document does not convey any license under copyrights, patent rights or trademarks claimed and owned by ALLIANCE MEMORY, INC or its subsidiaries. ALLIANCE MEMORY, INC assumes no liability for Alliance Memory Inc. applications assistance, customer s product design, or infringement of patents arising from use of semiconductor devices in such systems designs. Nor does ALLIANCE MEMORY, INC warrant or represent that any patent right, copyright, or other intellectual property right of ALLIANCE MEMORY, INC covering or relating to any combination, machine, or process in which such semiconductor devices might be or are used. ALLIANCE MEMORY, INC products are not authorized for use in life support devices or systems. Life support devices or systems are device or systems which are: a) intended for surgical implant into the human body and b) designed to support or sustain life; and when properly used according to label instructions, can reasonably be expec ted to cause significant injury to the user in the event of failure. The information contained in this document is believed to be entirely accurate. However, ALLIANCE MEMORY, INC assumes no responsibility for inaccuracies. Printed in USA