Advanced Radiation Application E. high-order harmonic generation & attosecond science

Similar documents
Attosecond Science (1) (1)

4. High-harmonic generation

4. High-harmonic generation

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

attosecond laser pulse

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

京都 ATLAS meeting 田代. Friday, June 28, 13

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

The unification of gravity and electromagnetism.

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

質量起源 暗黒物質 暗黒エネルギー 宇宙線 陽子崩壊 ニュートリノ質量 米国 P5 ニュートリノ CPV 宇宙背景ニュートリノクォーク レプトンマヨラナ粒子 ニュートリノ測定器 陽子崩壊探索. Diagram courtesy of P5. Origin of Mass.

電離によるエネルギー損失. β δ. Mean ioniza9on energy. 物質のZ/Aに比例 Z/A~1/2, β~1 1.5MeV/(g cm 2 ) 入射粒子の速度 (β) に依存粒子識別が可能低速では1/β 2. 高速ではβ 2 /(1- β 2 ) で上昇 1.

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

2011/12/25

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

2A01 Fourier-transform spectroscopy of D + 2 using intense near-infrared few-cycle laser pulses [Abstract] [Introduction] [Methods]

Illustrating SUSY breaking effects on various inflation models

XAFS Spectroscopy X-ray absorption fine structure

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

Attosecond-streaking time delays: Finite-range property and comparison of classical and quantum approaches

Looking into the ultrafast dynamics of electrons

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

Fundamentals in Nuclear Physics

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

SOLID STATE PHYSICAL CHEMISTRY

RQ1A070AP. V DSS -12V R DS(on) (Max.) 14mW I D -7A P D 1.5W. Pch -12V -7A Power MOSFET. Datasheet 外観図 内部回路図 特長 1) 低オン抵抗 2) ゲート保護ダイオード内蔵

高エネルギーニュートリノ : 理論的な理解 の現状

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

Thermal Safety Software (TSS) series

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

1 1 1 n (1) (nt p t) (1) (2) (3) τ T τ. (0 t nt p ) (1) (4) (5) S a (2) (3) 0sin. = ωp

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

High-Harmonic Generation II

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

Yutaka Shikano. Visualizing a Quantum State

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

基礎科学特別講義 東大駒場キャンパス

XENON SHORT ARC LAMPS キセノンショートアークランプ

Strange nuclear structures with high density formed by single/double K -- meson

Kinetic Analysis of the Oxidation of Ascorbic Acid in an Open Reactor with Gas Bubbling

Wavelength scaling of high-order harmonic yield from an optically prepared excited state atom

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015

UTokyo OCW. Copyright 2015, The University of Tokyo / UTokyo OCW The Global Focus on Knowledge Lecture Series Copyright 2015, Taro Toyoizumi

熊本大学学術リポジトリ. Kumamoto University Repositor

Neutron-Insensitive Gamma-Ray Detector with Aerogel for Rare Neutral-Kaon Decay Experiment

ATLAS 実験における荷電ヒッグス粒子の探索

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

Mathematics 数理科学専修. welcome to 統合数理科学を 目 指 す 基礎理工学専攻

Development of Advanced Simulation Methods for Solid Earth Simulations

シリコンベース新材料を用いた薄膜結晶太陽電池を目指して

Overview: Attosecond optical technology based on recollision and gating

KOTO実験による K中間子稀崩壊探索 南條 創 (京都大学)

新学習指導要領で求められる暗黙知の指導に関する事例研究 保健体育科教育法 Ⅰと器械運動 Ⅱにおける指導内容から

Advance Publication by J-STAGE. 日本機械学会論文集 Transactions of the JSME (in Japanese)

Advanced 7 Bio-Inspired System

ロタキサンの超高速初期過程の研究 : シクロデキストリンに包摂されたアゾベンゼン誘導体の光異性化ダイナミクス

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

Electron dynamics in a strong laser field

Y. Okayasu for the Jlab E collaboration Department of Physics. Tohoku University

低温物質科学研究センター誌 : LTMセンター誌 (2013), 23: 22-26

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

FDM Simulation of Broadband Seismic Wave Propagation in 3-D Heterogeneous Structure using the Earth Simulator

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

J-PARC E16 電子対測定実験の物理と実験計画

Introduction to Multi-hazard Risk-based Early Warning System in Japan

High Harmonic Generation of Coherent EUV/SXR Radiation. David Attwood University of California, Berkeley

October 7, Shinichiro Mori, Associate Professor

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと

din Linguistics 一 一 St1'uctur~s a proposals representagrammati squite incomplete. Although generate al

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

ADEOS-II ミッションと海洋学 海洋気象学 (ADEOS-II Mission and Oceanography/Marine Meteorology)

Absolute Calibration for Brewer Spectrophotometers and Total Ozone/UV Radiation at Norikura on the Northern Japanese Alps

SML-811x/812x/813x Series

Experimental and FE Analysis of Seismic Soil-Pile-Superstructure Interaction in Sand. Mahmoud N. HUSSIEN*, Tetsuo TOBITA and Susumu IAI

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

Graphene and Carbon Nanotubes. R. Saito Tohoku University

Models for Time-Dependent Phenomena

galaxy science with GLAO

日本政府 ( 文部科学省 ) 奨学金留学生申請書

Estimation of Gravel Size Distribution using Contact Time

数理統計学から た Thermo-Majorization: 統計モデルの 較と情報スペクトル. National Institute of Informatics Keiji Matsumoto

Transcription:

Advanced Radiation Application E high-order harmonic generation & attosecond science

High-harmonic generation 高次高調波発生 No.

高調波発生 (Harmonic generation) 結晶 ガス等(crystal, gas) Linear optical effect 線形光学効果 弱い光 ω ω Material response is linear in light intensity 物質の応答が 入射光強度に比例 非線形光学効果 強い光 ω Nonlinear optical effect Nonlinear material response 物質の応答が 入射光強度に非線形に依存 ω,3ω,5ω, 波長変換 (frequency conversion) D = ε E + P P = ε [ χ E + χ E + χ E + ] (1) () (3) 3 非線形分極 (nonlinear) 線形分極 linear polarization 3ω 3次高調波(3rd harmonic) 5ω 5次高調波(5th harmonic) 反転対称な媒質では χ () = for a medium with inversion symmetry D E = µ t No. 3

摂動論的高調波発生 (perturbative harmonic generation) 3rd harmonic 3次高調波 Ionization 電離 5th harmonic 5次高調波 Ionization 電離 仮想準位 Virtual level ω Virtual level 仮想準位 ω ω ω 3 ω Ground state 基底状態 ω ω 5 ω ω ω Ground state 基底状態 次数が高くなるほど 発生効率は減少 Harmonic order Efficiency No. 4

高次高調波発生 High-harmonic generation (HHG) discovered in 1987 Intense laser pulse gas jet harmonics of high orders Highly nonlinear optical process in which the frequency of laser light is converted into its integer multiples. Harmonics of very high orders are generated.!! 新しい極端紫外 軟エックス線光源として注目される New extreme ultraviolet (XUV) and soft X-ray source No. 5

How high orders? Harmonic spectrum 高調波スペクトル Wahlström et al., Phys. Rev. A 48, 479 (1993) 41111-3 Takahashi et al. Takahashi et al., Appl. Phys. Lett. 93, 41111 (8) Harmonic intensity (arb. unit) 15 W/cm 1-1 - -3-4 -5-6 -7-8 FIG. 4.!Color online" Experimentally obtained harmonic spectra in Ar. Red and blue profile depict the spectra with # =.8!m pump and # = 1.4!m pump, respectively. Both HH spectra are normalized to the peak intensity. The laser focused intensity is adjusted to generate HH under a neutral condition for both wavelengths. The inset shows a measured two dimensional harmonic spectrum image driven by 1.4!m pump. 8 nm, 1.6 14 W/cm Only odd orders 奇数次のみ Simulation 3 Harmonic order 4 5 8 31= 6 was raised up to 6 mj, a maximal output energy exceeding 7 mj was achieved at the signal wavelength near 1.4!m. Temporal characterization of amplified OPA pulses was performed using a single-shot autocorrelation!ac" technique. A typical AC trace is shown in the inset of Fig.. a Gaussian pulse shape, the pulse width of 1.4!m nmassuming pulse was evaluated to be 4 fs in full width at half maximum!fwhm", the energy of which corresponds to the red filled circles in Fig. 3. The solid red line depicts the Fourier- matching cond propagation ax the Ar harmon cutoff energy w spectrum drive magnitudes low measured HH significant cuto the.8!m dr field generate higher energy This photon en predicted valu In conclu sources based monic beams. pulse width w 1.4!m. Total #45% conver HH spectrum extension exce file is almost p is attractive no the kiloelectro ergy scaling o 1 M. 6 Hentschel, R No. T. Brabec, P. Co ture!london" 4

Plateau プラトー - remarkable feature of high-harmonic generation plateau cutoff 15 W/cm Harmonic intensity (arb. unit) Wahlström et al., Phys. Rev. A 48, 479 (1993) 1-1 - -3-4 -5-6 -7-8 8 nm, 1.6 14 W/cm plateau cutoff Simulation 3 Harmonic order 4 5 プラトー(plateau) Efficiency does NOT decrease with increasing harmonic order. 次数が上がっても強度が落ちない カットオフ(cutoff) Maximum energy of harmonic photons e E 14 Ec Ip + 3Up Up (ev) = = 9.3 I(W/cm ) (µm) 4m ponderomotive energy 摂動論的には解釈できない(non-perturbative) No. 7

高次高調波発生のメカニズム Mechanism of HHG 摂動論的高調波 perturbative 電離 ionization 高次高調波 非摂動論的 HHG(non-perturbative) Laser field レーザー電場 recombination virtual state 仮想準位 再結合 発光 photon emission (HHG) ω ω ω 3 ω ground state 基底状態 electron 電子 トンネル 電離 tunneling ionization 電場中の古典 的運動 Semiclassical electron motion 3-step model Paul B. Corkum, Phys. Rev. Lett. 71, 1994 (1993) No. 8

高次高調波発生の3ステップモデル 3-step model of HHG Paul B. Corkum, Phys. Rev. Lett. 71, 1994 (1993) Ionization at ωt = φ E [(cos φ cos φ ) + (φ φ ) sin φ ] z= ω Ekin = Up (sin φ sin φ ) Recombination at φ = φret (φ ), which satisfies z = Laser field E(t) = E cos ωt レーザー電場 recombination Phase of recombination (phi_r) 35 3 再結合 発光 photon emission (HHG) 5 15 electron 電子 5 5 Phase of electron release (phi) 15 トンネル 電離 tunneling ionization 電場中の古典 的運動 Semiclassical electron motion No. 9

高次高調波発生の3ステップモデル 3-step model of HHG Field (in E) 1 field recombination ionization -1 3 There is the maximum kinetic energy which is classically allowed. Ec = Ip + 3.17Up 1 9 18 long short short long Electron kinetic energy (in Up) Simple explanation of the cutoff law カットオフ則のシンプルな説明 7 36 Phase (degrees) There are two pairs of ionization and recombination times which contribute to the same harmonic energy. Short and long trajectories No.

Even up to 1.6 kev, > 5 orders almost x-ray! Popmintchev et al., Science 336, 187 (1) a new type of laser- based radiation source レーザーをベースにした新しいタイプの放射線源 No. 11

re I ωl and I ωl,);# <+=4#>, 4+;# #?-+/3)', 3' /"%## 3$#',3)', +' ()$1-/# )./+3'# *% /"# %+3+/3)' )* /"#,/%)'&65%3;#' +/)$3( 31)#, -,3'& +of &#'#%+5 /+ #%%)%K, Advanced Radiation Application (Kenichi ISHIKAWA) for internal use only (Univ. Tokyo) Both PROOF and FROG-CRAB assume only 3@+/3)' )* /"#?-+'/-$that /%#+/$#'/ )* %#*: 8A:!"#,#,3$-+/3)', 63# /"# ;3,3.# y, ωl, and twice + BCD5+, 75%+6 1-,# '#+% /"# 1%)1+&+/3)' +=3, 3' /"# *+% E# 43/"3' #=1#%3$#' + B5#F,1#(/%+ %+'&# '#+% GD #F H*- 3'# 3' I3&: JKL +(()$1+'3#.6 /"# (+%%3#% photoelectrons emitted in a small angle in the streaking delay between + *#4,$+,+/#3/# 1-,#,:!"# +11#+%+'(# )*,+/#3/#,,#1+%+/#.6,#()' 1%# What happens if the fundamental laser!! MN *%)$ /"# (#'/%+ 1-,# #+, /) +,1#(/%+ $)-+/3)' 43/" + )* /"# 4+; photoelectron 1#%3) )* /43(# /"# +,#% 1")/)' #'#%&6L +, %#;#+#.6 /"# (+(-+/# +$13/-#,1#(/%-$ H*- 3'#K 3' /"# 3',#/ )* I3&: J:!"# #1/" )* /"3, 3'& /"# #; $)-+/3)' 1%);3#, +,#',3/3;# $#+,-%# )*,+/#3/# ()'/#'/:!"# +//),#()' information of pulse is very short? では 超短パルスレーザ $#+,-%#,1#(/%-$ )* /"# "+%$)'3( 75%+6 1-,# %#O#(/#.6 )-% *#45(6(# <)MP3 $-/3+6#% H)//# 3'# 3' /"# 3',#/ )* I3&: JK,#/, +,+*# -11#% "3&"5"+%$ ncoded in I ωl, 3T# Hentschel et al. (1) H$)%# ーによる高次高調波はどんな感じ )/"#% /"+' se are guessed *%+(/3)' )* 8 6 86 4 9 Energy (ev) 94 τx = 53 as 6 4 Time (fs) 4 6 Laser electric field (arbitrary units) X-ray intensity (arbitrary units) D %'3"- 5 P'($3('%#+.'&<E#(+8 1#'&<'Q* %#7"-&'( *1%#1*%; "&-E(# -. ' -.%<@<&'; "3(#4 5,# @<&'; "3(# * "&-+3$#+ *1 ' G<77<(-16 IDD<7>'& 1#-1 6' =-(37# >; ' B<.8 BCD< 17 6'3*'1 ('#& "3(# )*%, '1-1<'Q* "#'J *1%#1*%; -. L " FDF H $7!I4 R-& %,# #(#$%&*$ E#(+ -. %,# ('#& "3(#8 %9# :! #Q"9!# IS%IT :$-9&D# U!: )*%,! O D 9$-*1# "3(#:8 ),#&# %T * %,# "3(# +3&'%*-18 &D * %,# '163('& $'&&*#&.&#?3#1$; '1+! * %,# V'>-(3%#W ",'#4 5,# +',#+ (*1#,-) %,# -1<'Q* #(#$%&*$ E#(+ -. %,# ('#& "3(# (#'=*16 %,# *1%#&'$%*-1 &#6*-14 5,# $'($3('%#+ @<&'; &'+*'%*-1 * #(#$%#+ )*%,*1 ' C<#M "#$%&'( &'16# 1#'& LD #M4 N1#%8 $'($3('%#+ 9.3(( (*1#: '1+ 7#'3&#+ 9+-%%#+ (*1#: @<&'; "3(# "#$%&37 #(#$%#+ >; %,# X-S!* &#Y#$%-&8,-)*16 %,'% '>-3% LDZ -. %,# %-%'( Y3#1$# * )*%,*1 ' C<#M &'16# '&-31+ LD #M4 Zhao et al. (1) Light emission takes place only once. )*+!"#$%&' (%' V3/" 3/, %+6 1-,# #;)-/3)' ) 3',/+'/+'#) ;3,3.# 3&",3'-,)3+!"# )/, 3' $+''#%L %#!9BD '$ / "+;# /) %#$ )'# &#'#%+ (+(-+/# 75%+6,)-%!"# $#+ +%&#% /"+' /3;#6 /"# 1 /"+/ /"# ). 1 Macmillan Magazine -18 sec) pulse Attosecond Fig. 3. (Color online) Characterization of a 67 as( XUV pulse. 光の放出は1回だけ (a) Streaked photoelectron spectrogram obtained experimenアト秒パルス tally. (b) Filtered I ω trace (left) from the spectrogram in L /3)' /) /"# %3;#% 1-3$1%);# /" $#'/,: No. 1 (a) and the retrieved I ωl trace (right). (c) Photoelectron spec-

Electronic dynamics Pulse duration (fs) Molecular vibration Molecular rotation From femtosecond to attosecond -15 sec -18 sec 5 4 3 1-6 -4 - -1 Single cycle at 8 nm - 196 197 198 199 Year (by J. Itatani) c= dt No. 13

Attosecond Science アト秒科学 No. 14

femtosecond, attosecond ミリ m -3 マイクロ μ -6 ナノ n -9 ピコ p -1 フェムト f -15 アト a -18 Light propagates during 3 fs 3 8 (m/s) 3 15 (s) = 9 6 (m) = 9 µm 15 No.

Why so short pulses? necessary shutter speed snapping ultrafast motion 16 for No.

Electrons moving around the nucleus Orbital period of the electron inside an atom Electron Nucleus π = π T = ω! e 1 mω r = 4π# r 4π# mr3 18 = 15 s = 15 as e Need for attosecond shutter No. 17

Dynamics of the Auger effect オージェ効果のダイナミクス A method to analyze ultrafast processes with a laser field. No. 18

Auger effect Ejection of a core electron オージェ効果 Photoelectron 光電子 Augerオージェ電子 electron 光電子 Photoelectron 内殻電子が電離 光電効果 Instantaneous Core-excited ion 内殻励起状態のイオン ~ a few fs Ejection of a valence electron 特性X線を放出するかわり に軌道電子を放出 Observation of the ejection of Auger electrons Ionizing X rays < a few fs Attosecond pulse No. 19

How to measure the electron ejection time? Pump イオン化を引き起 こす 高調波(HHG) Probe 電子の放出時刻を 測る レーザー光 laser No.

How to measure the electron ejection time? 高調波とレーザー光を遅 延時間を持たせて照射 Irradiate an atom with an attosecond pulse and laser pulse with delay No. 1

How to measure the electron ejection time? E(t) = E (t) cos(ωt + φ) dv dp =m = ee(t) dt dt ionization at t = tr で電離 Initial momentum 初速度 運動量! p = m(h ωx Ip ) p = p + p! " ee (t) sin(ωtr +φ) = 4mUp (tr ) sin(ωtr +φ) p = e E(t)dt = ea(tr ) ω tr 検出器での運動量 Momentum at the detector 検出器での運動エネルギー Kinetic energy at the detector p p = W + W W + m! 8W Up (tr ) sin(ωtr + φ) No.

How to measure the electron ejection time? 検出器での運動エネルギー! W W + 8W Up (tr ) sin(ωtr + φ) Electron kinetic energy Ejection time 光電子のエネルギーと 遅延時間の関係 No. 3

Life time of the Auger decay 8 fs Auger effect 光電子 オージェ電子 Auger electron 光電子 Probe Laser 75 nm Photoelectron Pump HHG soft x rays 13 nm フェムト秒程度の超高速過程が見える Ultrafast process fs No. 4

Delay in photoemission 光電効果には何アト秒かかるか No. 5

When Does Photoemission Begin? The photoelectric effect is usually considered instantaneous. e Ne Ne+ ts p Ne s Short light pulse Ne Ne+ tp e No. 6

rent experimental parameters, the small devia- time for allowing us to track the history of measure only re that modeled via the CVA give rise to a -as discrepancy in the relative delay. Accepting this small discrepancy, manyelectron models were applied to investigate the effects of electron correlation. As a first attempt, the multiconfigurational Hartree-Fock method was used to evaluate transition matrix elements from the ground state of Ne to states where the electron wave asymptotically propagated along the direction of the streaking NIR electric field. These calls for precise knowledge of the delay between the XUV pulse and an outgoing electron wave packet (henceforth, absolute delay). This can only be inferred from theory. For multielectron systems, such as Ne, physical description of the discrepancies revealed by this work proved to be a challenge. The sensitive experimental test to which time-dependent manyelectron models can now be subjected will benefit their development. lute delays relies tested time-dep Presently, only tw provide this deg photoionization cause of low S/N complex system of the photoelect streaking will atomic photoion sensitive tests, w ually improving predictions. Thes understanding of and will make t atomic chronosco Advanced Radiation Application (Kenichi ISHIKAWA) for internal use only (Univ. of Tokyo) photoemission c tions between the electron s exact motion and microscopic phenomena accurately (Fig. 1A) The s electron appears to come out 1 attoseconds earlier than the p electron! References a 1.. 3. 4. 5. 6. 7. 8. 9.. 11. Fig. 3. The relative delay between photoemission from the p and s subshells of Ne atoms, induced by Schultze et al.,sub -as, Science 38, 1658 () near -ev XUV pulses. The depicted delays are extracted from measured attosecond streaking spectrograms by fitting a spectrogram, within the strong-field approximation, with parameterized NIR and XUV fields. Our optimization procedure matches the first derivatives along the time delay dimension of the measured and reconstructed spectrograms, thereby eliminating the influence of unstreaked background electrons [for details on the fitting algorithm, see (9)]. From the analysis of a set of spectrograms, the measured delays and associated retrieval uncertainties are plotted against the amplitude of the vector potential applied in the attosecond streak camera. Spectrograms measured in the presence of a satellite attosecond pulse were found to exhibit a less accurate retrieval of the delay value. When a subset of data (red diamonds) that represents scans with less than 3% satellite pulse content was evaluated, a mean delay value of 1 as with a standard deviation of ~5 as was found. The green circles represent the result of analyzing spectrograms recorded with an XUV pulse with narrower bandwidth in order to exclude the potential influence of shakeup states contributing to the electron kinetic energy spectrum. 1. 13. 14. 15. 16. 17. 18. 19.. 1. H. Hertz, Annal W. Hallwachs, A A. Einstein, Ann E. P. Wigner, Ph C. A. A. de Carv 83 (). A. F. Starace, in (Springer, Berlin S. T. Manson, R M. Y. Ivanov, J. (7). A. Baltuška et a R. Kienberger e M. Nisoli, G. Sa (9). G. Sansone et a M. Schultze et a E. Goulielmakis M. Hentschel et A. Borisov, D. S Echenique, Che A. L. Cavalieri e A. K. Kazansky, 17741 (9) C. Lemell, B. So A 79, 691 ( J. C. Baggesen, 436; and er U. Becker, D. A Photoionization (Plenum, New Y A. Rudenko et a J. Mauritsson et 7 No.. 3.

Delay in photoemission Neon atom measured by attosecond streaking Ne Ne + e t s Ne s p from s (inner shell) from p (outer shell) delay 1 as Short light pulse short light pulse Ne t p Ne + e how long does it take? photon absorption What%is%happening? Dynamic multielectron correlation? electron emission e relative delay betweenphotoemissionfromthep Schultze al., Science and s subshells 38, of1658 Ne atom () stationary-state correlation Mechanism Eisenbud-Wigner-Smith delay Coulomb-laser coupling laser-induced state distortion unknown mechanisms... laser effect 8 1/

Time- dependent ab- initio simulation of inner- shell photoionization of an excited He atom (e.g., 1sp) XUV pulse 9 1/

Method: Time- dependent Schrödinger equation (TDSE) i " "t #(r 1,r,t) = [ H atom + ( z 1 + z )E(t)]#(r 1,r,t) H atom = " 1 # r 1 " 1 # r " r 1 " r + 1 r 1 1 r 1 = ' & #= # # 4" r < #+1 & Y $ #q (ˆ r 1 )Y #q (ˆ r ) # +1 r > q=%# P L "(r 1,r,t) = l1 l (r 1,r,t) $ $ # L l1 l r 1 r ( r ˆ 1,ˆ r ) L l 1,l " L l1 l (ˆ r 1,ˆ r ) = $ l 1 ml # m L Y (ˆ r ) l1 m 1 Y (ˆ r ) l,#m Discretization of m P l1 l L (r,r,t) on (r,r ) 1 1 grid Coupled spherical harmonics $ r 1 " j 1 # 1 ' & % ( )*r r " $ j # 1 ' & % )*r P L L ( l1 l (r 1,r,t) " P l1 l j 1 j (t) Ishikawa et al., Phys. Rev. A 7, 1347 (5), Phys. Rev. Lett. 8, 333 (1), Phys. Rev. Lett. 8, 931 (1) 3 1/

inner-shell photoionization of an excited helium atom XUV pulse 3D TDSE 1D TDSE Ĥ = i=1 ˆp i r i + 1 r 1 r Ĥ = i=1 ˆp i z i + a + a = b =.8a.u. 1 (z 1 z ) + b temporal evolution of the ionic state 1. remove the bound states of the neutral below the first ionization threshold. remove doubly excited (autoionizing) states 3. project on each ionic state 31 1/

3D simulation Photoionization of 1sp 1 P He temporal evolution of the ionic state two distinct time scales 7.9 ev, 5 cycles, 1 W/cm 3.x -6.5 XUV pulse p shake- up. 3p 1.5 1. 3d knock- up.5. 4 6 s 4f 8 the pulse ends Sukiasyan, Ishikawa, Ivanov, Phys. Rev. A 86, 3343 (1) 3 1/

1D simulation Similar dynamics is seen for 1D simulations from the 1st excited atom from the nd excited atom 8. -4 odd-number states populated by knock-up 3 (b) 3 (c) even-number states populated by knock-up 1. -3 4 4. -4 only even-number states can be populated by photoabsorption 4 3 4 Time, a.u. 1 5 5. -4 only odd-number states can be populated by photoabsorption 3 5 1 3 4 Time, a.u. Sukiasyan, Ishikawa, Ivanov, Phys. Rev. A 86, 3343 (1) 33 1/

6. -5 4. -5. -5 1. -3 4 5. -4 1D from the nd excited atom 7 (a) 3 4 5 Time, a.u. (c) 3 5 1 3 4 Time, a.u. 8 9 knock-up lasts longer for higher ionic channels. 3.x -6 Population.5. 1.5 1..5. Shake-up Knock-up XUV pulse 34 4 p 3p Time (as) 6 reflects the larger radii of the higher excited states 3d s 4f 8 XUV pulse 3D knock- up Sukiasyan, Ishikawa, Ivanov, Phys. Rev. A 86, 3343 (1) 1/

Time-dependent transition matrix element by the e-e interaction i(z 1,z,t) 1/ (z 1 z ) + b j(z 1,z,t).5..15 7-8 8-9 (b) 1D attosecond cascades.1.5 6-8 8-3 4 5 Time, a.u. increasing delays reflect the larger radii of the excited states involved Sukiasyan, Ishikawa, Ivanov, Phys. Rev. A 86, 3343 (1) 35 1/

summary knock-up in attosecond photoionization of an excited helium atom Post-ionization interaction of the outgoing core electron with the outer spectator electron Neon atom Short light pulse Ne s p short light pulse photon absorption Ne Ne t s t p Ne + from s (inner shell) from p (outer shell) how long does it take? What%is%happening? Dynamic multielectron correlation e Ne + electron emission e Sukiasyan, Ishikawa, Ivanov, Phys. Rev. A 86, 3343 (1) 36 1/