The Stoichiometry of Reactions Introduction Copyright c 2018 by Nob Hill Publishing, LLC

Similar documents
The Stoichiometry of Reactions Introduction

Review of Chemical Equilibrium Introduction

Review of Chemical Equilibrium Introduction

Thermodynamic and Stochiometric Principles in Materials Balance

A First Course on Kinetics and Reaction Engineering Example 1.2

2 What is Chemical Reaction Stoichiometry (CRS)?

The Concept of Equilibrium

MATH3200, Lecture 31: Applications of Eigenvectors. Markov Chains and Chemical Reaction Systems

EA = I 3 = E = i=1, i k

Chapter 3. Stoichiometry: Calculations with Chemical Formulas and Equations

2 Reaction kinetics in gases

Algebra & Trig. I. For example, the system. x y 2 z. may be represented by the augmented matrix

Lecture 18: The Rank of a Matrix and Consistency of Linear Systems

Introductory College Chemistry

Chapter 5. Chemistry for Changing Times, Chemical Accounting. Lecture Outlines. John Singer, Jackson Community College. Thirteenth Edition

Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz,

Example. We can represent the information on July sales more simply as

Chapter 6 Chemical Reactions Equations Worksheet Answers

Chemical Reactions and Stoichiometry. Ms. Grobsky

Stoichiometry. Please take out your notebooks

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3

Chemical Reaction Engineering. Lecture 2

Linear Algebra. Solving Linear Systems. Copyright 2005, W.R. Winfrey

let: rate constant at sea level be ks and that on mountain be km ks/km = 100 ( 3mins as opposed to 300 mins)

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

Stoichiometry. Chapter 3

Example: 2x y + 3z = 1 5y 6z = 0 x + 4z = 7. Definition: Elementary Row Operations. Example: Type I swap rows 1 and 3

Stoichiometry Part I

Definition 2.3. We define addition and multiplication of matrices as follows.

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education: Disciplinary Core Ideas

Matrix Algebra. Matrix Algebra. Chapter 8 - S&B

Atomic Masses and Molecular Formulas *

Math 54 Homework 3 Solutions 9/

REVIEW FOR EXAM II. The exam covers sections , the part of 3.7 on Markov chains, and

Computational Fluid Dynamics Prof. Sreenivas Jayanti Department of Computer Science and Engineering Indian Institute of Technology, Madras

AP Chemistry - Notes - Chapter 12 - Kinetics Page 1 of 7 Chapter 12 outline : Chemical kinetics

ECON 186 Class Notes: Linear Algebra

A First Course on Kinetics and Reaction Engineering Unit 2. Reaction Thermochemistry

AP Chem Chapter 12 Notes: Gaseous Equilibrium

Chemistry 1A, Fall 2007 KEY Midterm Exam III November 13, 2007 (90 min, closed book)

Row Reduced Echelon Form

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1

9/14/ Chemistry Second Edition Julia Burdge. Stoichiometry: Ratios of Combination. Molecular and Formula Masses

The first assumption we will put into our theory of kinetics is that two molecules must collide for a reaction to occur between them.

Determine whether the following system has a trivial solution or non-trivial solution:

Lecture 1 Systems of Linear Equations and Matrices

Thermochemistry X.S. Bai Thermochemistry

Practical Linear Algebra: A Geometry Toolbox

COMBUSTION CHEMISTRY COMBUSTION AND FUELS

Washington University in St. Louis Chemistry Tournament Sample Problems for Individual Round #3: Kinetics, Electrochemistry, and Thermodynamics

Review of Matrices and Block Structures

CHEM Chemical Kinetics. Reaction Mechanisms

Solving Systems of Linear Equations Using Matrices

National University of Singapore. Semester II ( ) Time allowed: 2 hours

The following gas laws describes an ideal gas, where

Chapter 14 Chemical Kinetics

Kinetics CHAPTER IN THIS CHAPTER

4 Universal, Systematic Method to Obtain Chemical Equations (MRM)

A 2. =... = c c N. 's arise from the three types of elementary row operations. If rref A = I its determinant is 1, and A = c 1

Math 103, Summer 2006 Determinants July 25, 2006 DETERMINANTS. 1. Some Motivation

Matrices. In this chapter: matrices, determinants. inverse matrix

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

Surface Chemistry Tutorial

Chemical Kinetics. Chapter 13. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Equation Stoichiometry.notebook. November 23, 2015

10.3 Matrices and Systems Of

3. Replace any row by the sum of that row and a constant multiple of any other row.

3 Stoichiometry: Calculations with Chemical Formulas and Equations

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

1. Why are chemical reactions important to energy, environmental and process engineering? Name as many reasons as you can think of.

The Rate Expression. The rate, velocity, or speed of a reaction

All of my class notes can be found at

Linear Algebra I Lecture 8

A First Course on Kinetics and Reaction Engineering Unit 22. Analysis of Steady State CSTRs

MATH240: Linear Algebra Review for exam #1 6/10/2015 Page 1

Math 416, Spring 2010 The algebra of determinants March 16, 2010 THE ALGEBRA OF DETERMINANTS. 1. Determinants

Objective #1 (46 topics, due on 09/04/ :59 PM) Section 0.1 (15 topics) Course Name: Chem Hybrid Fall 2016 Course Code: PVPTL-XH6CF

EEC 503 Spring 2009 REVIEW 1

II. Determinant Functions

Ch. 3 The Mole: Relating the Microscopic World of Atoms to Laboratory Measurements. Brady & Senese, 5th Ed.

Chapter 14 Chemical Kinetics

Introduction to Chemical Kinetics. Chemical Kinetics

Chapter 12 Stoichiometry

CHEM 116 Collision Theory and Reaction Mechanisms

Chemical Kinetics. Kinetics is the study of how fast chemical reactions occur. There are 4 important factors which affect rates of reactions:

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Balancing chemical reaction equations (stoichiometry)

Notes on Row Reduction

CHEMICAL KINETICS. LECTURE Introduction

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

2.9 The Mole and Chemical Equations:

Chemical Kinetics. Introduction

Examples of fast and slow reactions

sum of squared error.

Fundamentals Of Combustion (Part 1) Dr. D.P. Mishra Department of Aerospace Engineering Indian Institute of Technology, Kanpur

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

The Mole. Relative Atomic Mass Ar

Evaluating Determinants by Row Reduction

Prep for AP Chemistry

Kinetics. Chapter 14. Chemical Kinetics

Transcription:

1 / 70 The Stoichiometry of Reactions Introduction Copyright c 2018 by Nob Hill Publishing, LLC Stoichiometry: the determination of the proportions in which chemical elements combine or are produced and the weight relations in any chemical reaction. 1 the stoichiometric matrix, ν linearly independent reactions mass conservation in chemical reactions reaction rates, r i, production rates, R j, i = 1,... n r j = 1,... n s 1 Webster s New World College Dictionary, fourth edition, 2000.

2 / 70 Chemical Reactions and Stoichiometry 1 Nitric oxide, smog formation in the atmosphere. 1 reaction among 3 species. 2 Water-gas shift reaction. 3 reactions among 6 species. 3 Chemical vapor deposition. 20 reactions among 14 species.

3 / 70 Nitric Oxide 2NO + O 2 2NO 2 One chemical reaction and three different chemical species: NO, O 2, and NO 2.

4 / 70 Water-Gas Shift Reaction H 2 O + CO CO 2 + H 2 H 2 O + H OH + CO H 2 + OH CO 2 + H Three chemical reactions and six different chemical species: H, H 2, OH, H 2 O, CO, and CO 2. Let A j represent the jth species A 1 = H, A 2 = H 2, A 3 = OH, A 4 = H 2 O, A 5 = CO, and A 6 = CO 2.

5 / 70 Species Vector and Sign Convention H 2 O + CO CO 2 + H 2 H 2 O + H H 2 + OH OH + CO CO 2 + H A 1 = H, A 2 = H 2, A 3 = OH, A 4 = H 2 O, A 5 = CO, and A 6 = CO 2. A 4 + A 5 A 6 + A 2 A 4 + A 1 A 2 + A 3 A 3 + A 5 A 6 + A 1

6 / 70 Species Vector and Sign Convention A 4 + A 5 A 6 + A 2 A 4 + A 1 A 2 + A 3 A 3 + A 5 A 6 + A 1 A 4 A 5 + A 6 + A 2 = 0 A 4 A 1 + A 2 + A 3 = 0 A 3 A 5 + A 6 + A 1 = 0 products have positive coefficients reactants have negative coefficients

7 / 70 The Stoichiometric Matrix 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 A 1 A 2 A 3 A 4 A 5 A 6 = stoichiometric matrix ν A column vector of A j, j = 1,..., 6 νa = 0 0 0 0 (2.7)

8 / 70 The ith reaction and the jth species νa = 0 n s ν ij A j = 0, j=1 i = 1,..., n r i runs from 1 to n r, the total number of reactions in the network j runs from 1 to n s, the total number of species in the network

9 / 70 Stoichiometric matrix for a single reaction A 1 = NO, A 2 = O 2, A 3 = NO 2. [ 2A 1 A 2 + 2A 3 = 2NO + O 2 2NO 2 2 1 2 ] A 1 A 2 A 3 = 0 The stoichiometric matrix for a single reaction is a row vector. [ ] ν = 2 1 2

10 / 70 Columns of ν H 2 O + CO CO 2 + H 2 H 2 O + H OH + CO H 2 + OH CO 2 + H A 1 = H, A 2 = H 2, A 3 = OH, A 4 = H 2 O, A 5 = CO, and A 6 = CO 2. Instead of A 1 = H and A 6 = CO 2, what is the stoichiometric matrix if A 1 is CO 2 and A 6 is H? Modified species vector: A 1 = CO 2, A 2 = H 2, A 3 = OH, A 4 = H 2 O, A 5 = CO, and A 6 = H.

11 / 70 Columns of ν A 4 + A 5 A 4 + A 6 A 3 + A 5 A 1 + A 2 A 2 + A 3 A 1 + A 6 ν = 1 1 0 1 1 0 0 1 1 1 0 1 1 0 1 0 1 1

12 / 70 Columns of ν 1 Switching species one and six in the A implies switching the first and sixth columns in the stoichiometric matrix. 2 Connection of the columns of ν and the species taking part in the reactions. 3 The jth column of the ν matrix supplies the stoichiometric numbers of the jth species in all of the reactions.

13 / 70 Rows of ν H 2 O + CO CO 2 + H 2 H 2 O + H OH + CO H 2 + OH CO 2 + H A 1 = H, A 2 = H 2, A 3 = OH, A 4 = H 2 O, A 5 = CO, and A 6 = CO 2. Exchange the first and third reactions OH + CO H 2 O + H CO 2 + H H 2 + OH H 2 O + CO CO 2 + H 2

14 / 70 Rows of ν A 3 + A 5 A 6 + A 1 A 4 + A 1 A 2 + A 3 A 4 + A 5 A 6 + A 2 ν = 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1

15 / 70 Rows of ν Exchanging the orders of the first and third reactions causes us to exchange the first and third rows in the ν matrix Connection of the rows of ν and the reactions. The ith row of the stoichiometric matrix contains the stoichiometric numbers of all species in the ith reaction. Since there is no reason to prefer one ordering of species and reactions over another, one may permute the columns and rows into any order and maintain a valid stoichiometric matrix.

16 / 70 Silicon chemical vapor deposition (CVD) SiH 4 SiH2 + H 2 SiH 4 SiH3 + H SiH 4 + SiH 2 Si2 H 6 Si 2 H 4 + H 2 SiH4 + SiH 2 SiH 4 + H SiH 3 + H 2 SiH 4 + SiH 3 Si2 H 5 + H 2 SiH 4 + SiH SiH 3 + SiH 2 SiH 4 + SiH Si 2 H 5 SiH 4 + Si 2SiH 2 Si + H 2 SiH2 SiH 2 + SiH Si 2 H 3 SiH 2 + Si Si 2 H 2 SiH 2 + Si 3 Si2 H 2 + Si 2 H 2 + Si 2 H 2 Si2 H 4 H 2 + Si 2 H 4 Si2 H 6 H 2 + SiH SiH 3 H 2 + Si 2 Si2 H 2 H 2 + Si 2 H 3 Si2 H 5 Si 2 H 2 + H Si 2 H 3 Si + Si 3 2Si2

17 / 70 Silicon chemical vapor deposition (CVD) 1 The CVD reactions are a simplified version of 120 reactions that were originally postulated for this reaction network [1]. 2 Combustion chemistry: several hundred reactions. 3 Polymerizations and long-chain-producing reactions: thousands of species and associated reactions. 4 The stoichiometry of these complex problems is intractable if we do not develop a systematic, automated procedure.

18 / 70 Stoichiometric matrix for CVD chemistry There are 20 reactions, n r = 20. There are 14 different species, n s = 14. A possible assignment to the A vector is: H, H 2, Si, SiH, SiH 2, SiH 3, SiH 4, Si 2, Si 2 H 2, Si 2 H 3, Si 2 H 4, Si 2 H 5, Si 2 H 6, Si 3.

19 / 70 Stoichiometric matrix for CVD chemistry 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 2 0 1 0 0 0 0 0 0 0 ν = 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 0 1

20 / 70 Stoichiometric matrix for CVD chemistry ν is a 20 14 matrix; it contains many zero entries. A matrix with many zero entries is called sparse Physical fact: very few molecules can take part in a particular reaction. Why? All of the reactions in the CVD chemistry are unimolecular or bimolecular.

21 / 70 Conservation of mass Show conservation of mass in a chemical reaction can be stated as νm = 0 in which M j is the molecular weight of species j.

22 / 70 What is conserved? 2NO + O 2 2NO 2 In a chemical reaction, the number of molecules is not conserved In a chemical (i.e. not nuclear) reaction, elements are conserved In a chemical (i.e. not nuclear) reaction, mass is conserved

23 / 70 Conservation of mass 2NO + O 2 2NO 2 The molecular weights of reactants and products are related by 2M NO + M O2 = 2M NO2. [ 2M NO M O2 + 2M NO2 = 2 1 2 νm = 0 ] M NO M O2 M NO2 = 0

24 / 70 Conservation of Mass H 2 O + CO CO 2 + H 2 H 2 O + H OH + CO H 2 + OH CO 2 + H A 1 = H, A 2 = H 2, A 3 = OH, A 4 = H 2 O, A 5 = CO, and A 6 = CO 2. [ M = M H M H2 M OH M H2 O M CO M CO2 ] T the superscript T means the transpose of the matrix For the first reaction, H 2 O + CO CO 2 + H 2, we know M CO2 + M H2 M H2 O M CO = 0

25 / 70 Conservation of Mass [ 0 1 0 1 1 1 νm = 0 ] M H M H2 M OH M H2 O M CO M CO2 = 0

26 / 70 Independent Reactions H 2 O + CO CO 2 + H 2 H 2 O + H OH + CO H 2 + OH CO 2 + H Question: can we express any reaction in the network as a linear combination of the other reactions? If we can, then the set of reactions is not independent. Can we express the first reaction as a linear combination of the second and third reactions?

27 / 70 Independent Reactions By inspection, the first reaction is the sum of the second and third reactions, so the set of three reactions is not independent. H 2 O + H H 2 + OH + OH + CO CO 2 + H H 2 O + CO CO 2 + H 2 If we deleted the first reaction from the network, would the remaining two reactions be independent? Why or why not? H 2 O + H H 2 + OH OH + CO CO 2 + H

28 / 70 Independent Reactions There is nothing wrong with the first reaction Can we write the second reaction as a linear combination of the first and third reactions? H 2 O + CO CO 2 + H 2 { OH + CO CO 2 + H } H 2 O + H H 2 + OH So the first and third reactions could be chosen as the independent set of two reactions. For this example, any two of the reactions comprise an independent set.

29 / 70 Independent Reactions Consider the stoichiometric matrix for the water gas shift reaction 0 1 0 1 1 1 ν = 1 1 1 1 0 0 1 0 1 0 1 1 Whether or not the ith reaction is a linear combination of the other reactions is the same as whether or not the ith row of the ν matrix is a linear combination of the other rows.

30 / 70 Independent Reactions The linear independence of the reactions in a reaction network is equivalent to the linear independence of the rows in the corresponding stoichiometric matrix. The rank of a matrix is defined as the number of linearly independent rows (or equivalently, columns) in the matrix. Therefore, the number of linearly independent reactions in a network, n i, is equal to the rank of ν.

31 / 70 More species than reactions Our first use of mathematics to tell us something nonobvious about reactions Show that mass conservation implies that any independent set of reactions has more species than reactions. We know that mass conservation is equivalent to νm = 0 Consider the columns of the ν matrix as column vectors. Matrix-vector multiplication can be expressed as a linear combination of the columns of ν with the elements of the M vector as the coefficients in the linear combination

More species than reactions νm = ν 11 ν 12 ν 1ns............ ν ni 1 ν ni 2 ν ni n s M 1 M 2... M ns = ν 11... ν ni 1 M 1 + ν 12... ν ni 2 M 2 + + ν 1ns... ν ni n s M n s = 0... 0 32 / 70

33 / 70 More species than reactions The last equation implies the columns of ν are linearly dependent because the molecular weights are nonzero. Because the rows are linearly independent, we conclude there are more columns (species) than rows (independent reactions), n s > n i and ν is a wide matrix (i.e. not a square or tall matrix).

34 / 70 The fine print Notice that one must consider linearly independent reactions for the statement in the example to be true. 2NO + O 2 2NO 2 4NO + 2O 2 4NO 2 6NO + 3O 2 6NO 2 8NO + 4O 2 8NO 2 ν = 2 1 2 4 2 4 6 3 6 8 4 8

35 / 70 Maximal sets of linearly independent reactions. Please read the book for this discussion. I will skip over this in lecture.

36 / 70 Reaction Rates Consider the third reaction in the CVD chemistry SiH 4 + SiH 2 Si 2 H 6 The reaction rate, r, is defined as the number of times this reaction event takes place per time per volume.

37 / 70 Reaction rate for SiH 2 + SiH 4 Si 2 H 6 H H Si H H H Si H H Si H H H Si H V H Turn SiH 4, SiH 2 and Si 2 H 6 molecules loose in a box of some fixed volume V The reaction extent, ε, keeps track of the number of times this reaction event occurs. Count up the net number of times an SiH 4 molecule hits an SiH 2 molecule and turned into an Si 2 H 6 molecule during a short period of time.

38 / 70 Reaction rate for SiH 2 + SiH 4 Si 2 H 6 H H Si H H H Si H H Si H H H Si H V H The change in the reaction extent, ε, is the net number of reaction events that occur in the time interval t. The reaction rate is then r = ε tv

39 / 70 Sign of r, forward or reverse? If the forward event (an SiH 4 molecule and an SiH 2 molecule turning into an Si 2 H 6 molecule) occurs more often than the reverse event (an Si 2 H 6 molecule decomposing into an SiH 4 molecule and an SiH 2 molecule), then the change in ε is positive and the reaction rate is positive. If the reverse event occurs more often than the forward event, then the change in ε and reaction rate are negative. If the system is at equilibrium, then the change in ε is zero and the forward and reverse events occur in equal numbers.

40 / 70 Units of r The extent ε is a number of molecular change events. The units of r are molecules/(time volume). Or divide by Avogadro s number, The units of extent are moles and the units of reaction rate are moles/(time volume)

41 / 70 Continuum assumption H H Si H H H Si H H Si H H H Si H V H Ignore the discrete nature of the molecules. How? Take the volume V large enough to average the random fluctuations of the molecules, but small enough that there is negligible spatial variation in the average concentrations of the components or the reaction rate within V. Under this continuum assumption, we can speak of the reaction rate as defined at a point in space within some larger reacting system or physical reactor equipment.

42 / 70 Production Rates It is difficult to measure reaction rates directly, because we do not directly sense molecular transformation events. We can measure concentrations. A major goal is to connect the reaction rate to the rate of change of the concentrations of the various species in the reactor, which are the quantities we usually care about in a commercial reactor. production rate, R, the rate at which a given species is produced (moles/(time volume)) due to the chemical reactions taking place.

43 / 70 Production Rates SiH 4 + SiH 2 Si 2 H 6 Each time the forward reaction event occurs, an Si 2 H 6 molecule is produced. Each time the reverse reaction occurs, an Si 2 H 6 molecule is consumed. The production rate of Si 2 H 6, R Si2 H 6, is therefore directly related to the reaction rate, R Si2 H 6 = r Notice that if r is positive R Si2 H 6 is positive as we expect because Si 2 H 6 is being produced.

44 / 70 Production Rates The three production rates are: R SiH4 = r R SiH2 = r R Si2 H 6 = r

45 / 70 Production rate vector The production rate vector, R, R = R SiH4 R SiH2 R Si2 H 6 The connection between the three production rates and the single reaction rate 1 R = 1 r 1

46 / 70 Our friend, the stoichiometric matrix, emerges SiH 4 + SiH 2 Si 2 H 6 ν = [ 1 1 1] 1 R = 1 r 1 The column vector in this equation is the transpose of the row vector ν

47 / 70 Multiple Reactions Recall the water gas shift H 2 O + CO CO 2 + H 2 H 2 O + H OH + CO H 2 + OH CO 2 + H Three reaction rates are required to track all three reactions. r i denotes the ith reaction rate

48 / 70 Multiple Reactions H 2 O + CO CO 2 + H 2 H 2 O + H H 2 + OH OH + CO CO 2 + H Production rate of atomic hydrogen, H H is consumed in the second reaction H is produced in the third reaction. R H = (0) r 1 + ( 1) r 2 + (1) r 3 = r 2 + r 3

49 / 70 Multiple Reactions H 2 O + CO CO 2 + H 2 H 2 O + H H 2 + OH OH + CO CO 2 + H production rate of molecular hydrogen, H 2. H 2 is produced in the first reaction H 2 is produced in the second reaction R H2 = (1) r 1 + (1) r 2 + (0) r 3 = r 1 + r 2

50 / 70 Multiple Reactions Fill in remaining four species R H R H2 R OH R = H2 O R CO R CO2 0 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 r 1 r 2 r 3

51 / 70 Fundamental Relationship R H R H2 R OH R H2 O R CO R CO2 = 0 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 1 r 1 r 2 r 3 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 A 1 A 2 A 3 A 4 A 5 A 6 = 0 0 0 The two matrices are transposes of each other.

52 / 70 Fundamental Relationship R = ν T r in which ν T denotes the transpose of the stoichiometric matrix. We can always compute the production rates from the reaction rates. That computation is a simple matter of matrix multiplication. The reverse problem, deducing the reaction rates from the production rates, is not so simple as it involves solving a set of equations.

53 / 70 Computing Production Rates from Reaction Rates Computing R from r is a simple Consider again the water gas shift reaction chemistry, 0 1 0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 1 H H 2 OH H 2 O CO CO 2 = In Chapter 5 we discuss means for predicting reaction rates given species concentrations, but for now just assume we know the three reaction rates are, in some chosen units of moles/(time volume), 0 0 0

54 / 70 Computing Production Rates from Reaction Rates Assume we know the reaction rates are: r 1 r 2 = r 3 The production rates of the six species due to these reactions are then computed as: R H 0 1 1 1 R H2 1 1 0 3 1 R OH R = 0 1 1 H2 O 1 1 0 2 = 1 3 3 R CO 1 0 1 4 R CO2 1 0 1 4 1 2 3

55 / 70 Computing Production Rates from Reaction Rates H 2 O + CO CO 2 + H 2 H 2 O + H OH + CO r 1 r 2 r 3 = H 2 + OH CO 2 + H The effect of the three reactions is to produce H, H 2 and CO 2, and to consume OH, H 2 O and CO at the given rates. 1 2 3

56 / 70 Computing Reaction Rates from Production Rates Linearly independent set: the first two water gas shift reactions H 2 O + CO CO 2 + H 2 H 2 O + H H 2 + OH Production rates: R H R H2 R OH R H2 O R CO R CO2 = 0 1 1 1 0 1 1 1 1 0 1 0 [ r1 r 2 ]

57 / 70 Errors in the Data and Least-Squares Estimation of Rates We can compute the production rates when the two reaction rates are [ ] [ ] r1 1 = 2 r 2 we obtain R = 2 3 2 3 1 1

58 / 70 Errors in the Data and Least-Squares Estimation of Rates Assume the production rate of H is in error R meas = 2.1 3 2 3 1 1 Six equations and only two unknowns, the equations are inconsistent, no exact solution.

59 / 70 Errors in the Data and Least-Squares Estimation of Rates Least-Squares Approach: Square the error in each equation and sum Inconsistent equations (no exact solution). R = ν T r Least-squares solution. r = (ν ν T ) 1 νr

60 / 70 Impact of measurement error instead of the correct R meas = 2.1 3 2 3 1 1 r est = r = [ 1 2 ] [ 0.98333 2.03333 A small error in the H production rate has translated into small errors in both inferred reaction rates. ]

61 / 70 Impact of measurement error R meas = 2.05 2.06 1.93 1.97 2.04 1.92 2.94 3.02 3.04 2.93 3.06 3.04 2.01 1.94 2.01 1.92 2.01 2.04 2.98 2.98 2.98 2.99 2.96 2.96 1.03 1.03 0.98 1.07 0.95 1.08 0.97 1.05 1.06 1.09 1.00 1.07 Take each column of R meas, and compute the least squares estimate of r for that measurement r est = [ 0.97 1.03 1.03 1.06 0.98 1.05 2.01 1.99 1.98 1.92 2.03 1.96 ]

62 / 70 Estimating reaction rates from production rates 2.2 2.15 2.1 2.05 r 2 2 1.95 1.9 1.85 1.8 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 r 1 Figure 2.2: Estimated reaction rates from six production rate measurements subject to measurement noise.

63 / 70 Estimating reaction rates from production rates 2.2 2.15 2.1 2.05 r 2 2 1.95 1.9 1.85 1.8 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 r 1 Figure 2.3: Estimated reaction rates from 500 production rate measurements subject to measurement noise.

64 / 70 Summary stoichiometric matrix Keeping track of the stoichiometry of chemical reactions, n s ν ij A j = 0, j=1 i = 1, 2,..., n r A j represents chemical species j, j = 1,..., n s n s species in the reaction network ν ij is the stoichiometric coefficient for species j in reaction i, i = 1,..., n r n r reactions in the network νa = 0

65 / 70 Summary linear independence A set of reactions is linearly independent if no reaction in the set can be written as a linear combination of the other reactions in the set. The rank of a matrix is the number of linearly independent rows (equivalently columns) of the matrix The rank of ν is the number of linearly independent reactions in the network

66 / 70 Summary Reaction and Production Rates We define the rate of reaction i, r i, to be the net number of times a reaction event occurs per time per volume. Given the rates of all reactions, we can calculate directly the production rates of all species, n r R j = ν ij r i, i=1 j = 1,... n s R = ν T r

67 / 70 Summary exchanging rates Given the rates of reactions, it is a simple matter to compute the species production rates In general, one cannot solve uniquely the reverse problem, namely given observed production rates, compute the corresponding reaction rates. We require additional information, such as rate expressions for the elementary reactions in a reaction mechanism. If the set of chemical reactions is linearly independent, then one can uniquely solve the reverse problem.

68 / 70 Summary measurement and least squares R = ν T r (2.60) If the observed production rates contain experimental errors, there may not exist an exact solution of reaction rates, r, that satisfy Equation 2.60. Find the reaction rates that most closely satisfy Equation 2.60. The closest solution in a least-squares sense is easily computed with standard linear algebra software.

69 / 70 Notation A j a jl E l i j M j n i n r n s r i R j ν ij jth species in the reaction network chemical formula number in species j corresponding to element l lth element comprising the species reaction index, i = 1, 2,..., n r species index, j = 1, 2,..., n s molecular weight of the jth species number of independent reactions in reaction network total number of reactions in reaction network total number of species in reaction network reaction rate for ith reaction production rate for jth species stoichiometric number for the jth species in the ith reaction

70 / 70 References I M. E. Coltrin, R. J. Kee, and J. A. Miller. A mathematical model of the coupled fluid mechanics and chemical kinetics in a chemical vapor deposition reactor. J. Electrochem. Soc., 131(2):425 434, 1984.