Particle Removal on Silicon Wafer Surface by Ozone-HF-NH 4

Similar documents
Influence of Loading Position and Reaction Gas on Etching Characteristics of PMMA in a Remote Plasma System

Removal of Cu Impurities on a Si Substrate by Using (H 2 O 2 +HF) and (UV/O 3 +HF)

The Study of Structure Design for Dividing Wall Distillation Column

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

수소가스화기에서석탄의메탄화반응특성. Characteristics of Coal Methanation in a Hydrogasifier

Temperature Control in Autothermal Reforming Reactor

Effect of Precipitation on Operation Range of the CO 2

SPCC Department of Bio-Nano Technology and 2 Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea.

Temperature Effect on the Retention Behavior of Sugars and Organic Acids on poly (4-vinylpyridine) Resin

Seed Production from Pond Cultured Cherry Salmon, e ll, Oncorhynchus masou (Brevoort) ll ll

Section 3: Etching. Jaeger Chapter 2 Reader

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis

X-ray photoelectron spectroscopic characterization of molybdenum nitride thin films

A CANON COMMUNICATIONS LLC PUBLICATION MARCH

History and Status of the Chum Salmon Enhancement Program in Korea

Spring Lecture 4 Contamination Control and Substrate Cleaning. Nanometer Scale Patterning and Processing

MEGASONIC CLEANING OF WAFERS IN ELECTROLYTE SOLUTIONS: POSSIBLE ROLE OF ELECTRO-ACOUSTIC AND CAVITATION EFFECTS. The University of Arizona, Tucson

Surface Reaction Modeling for Plasma Etching of SiO 2

Direct Measurement of Metallic Impurities in 20% Ammonium Hydroxide by 7700s/7900 ICP-MS

CONTROL AND OPTIMIZATION OF THERMAL OXIDATION PROCESSES FOR INDUSTRIAL SOLAR CELL FABRICATION S (1)

Evaluation of Cleaning Methods for Multilayer Diffraction Gratings

EE 527 MICROFABRICATION. Lecture 24 Tai-Chang Chen University of Washington

P. J. Resnick, C. L. J. Adkins, C. A. Matlock, M. J. Kelly, P. J. Clews, N. C. Korbe Sandia National Laboratories Albuquerque, NM 8718.

7. Relax and do well.

Solutions and Ions. Pure Substances

Marks for each question are as indicated in [] brackets.

/CO/CO 2. Eui-Sub Ahn, Seong-Cheol Jang, Do-Young Choi, Sung-Hyun Kim* and Dae-Ki Choi

Collection Efficiency of Metallic Contaminants on Si Wafer by Vapor-Phase Decomposition Droplet Collection

8. Relax and do well.

CHAPTER 6: Etching. Chapter 6 1

Mechanism of the Initial Oxidation of Hydrogen and. Halogen Terminated Ge(111) Surfaces in Air

Novel Photo Resist Stripping for Single Wafer Process

Modeling for the Recovery of Organic Acid by Bipolar Membrane Electrodialysis

Novel Bonding Technology for Hermetically Sealed Silicon Micropackage

Chem 51, Spring 2015 Exam 8 (Chp 8) Use your Scantron to answer Questions There is only one answer for each Question. Questions are 2 pt each.

Dainippon Screen Mfg. Co., Ltd , Takamiya, Hikone, Shiga , Japan. IMEC vzw, Kapeldreef 75, B-3001 Leuven, Belgium

4FNJDPOEVDUPS 'BCSJDBUJPO &UDI

Stabilization of HRP Using Hsp90 in Water-miscible Organic Solvent

Oxidation of hydrogenated crystalline silicon as an alternative approach for ultrathin SiO 2 growth

Performance of Direct Methanol Fuel Cell (DMFC) based on New Electrode Binder (speek/nafion): Effect of Binder Content

경막형용융결정화에의한파라디옥사논과디에틸렌글리콜혼합물로부터파라디옥사논의정제. Purification of p-dioxanone from p-dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization

+ +r lk+ + q +p np p rn+ Qp L + +p+ + P P +P+ P P+ P P R + R K. r+ + rk q pp lp+ + + pp+ p L + +N n + + +Q+P R P PP+ + P +K+R+L+

8. Relax and do well.

Evaluation of the plasmaless gaseous etching process

SUPPLEMENTARY FIGURES

High Temperature Water Clean and Etch Reactions with Low-k and SiO 2 Films: Experiments and Simulations

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1. Analytical Chemistry CMY 283. Time: 120 min Marks: 100 Pages: 6

8. Relax and do well.

7. Relax and do well.

Reactive Ion Etching (RIE)

7. Relax and do well.

Device Fabrication: Etch

Kurita Water Industries Ltd. Takeo Fukui, Koji Nakata

Our country, our future 525/1 S6 CHEMISTRY PAPER 1 DURATION: 2 HOUR 45 MINUTES

Wet and Dry Etching. Theory

Chem October 31, Dr. Susan E. Bates

Homogeneous Electrochemical Assay for Protein Kinase Activity

Circle the letters only. NO ANSWERS in the Columns!

한외여과막시스템을이용한금속가공폐수의실험실적처리및현장적용연구

PARTICLE ADHESION AND REMOVAL IN POST-CMP APPLICATIONS

Oxidation of Si. Why spend a whole lecture on oxidation of Si? GaAs has high m and direct band no oxide

Chem 102H Exam 2 - Spring 2005

CVD-3 LFSIN SiN x Process

Faculty of Natural and Agricultural Sciences Chemistry Department. Semester Test 1 MEMO. Analytical Chemistry CMY 283

RCA cleaning: SC1, SC2, DHF, BOE, SPM

High Accuracy EUV Reflectometry and Scattering at the Advanced Light Source

Inductively Coupled Plasma Etching of Ta, Co, Fe, NiFe, NiFeCo, and MnNi with Cl 2 /Ar Discharges

ZEP520 ZEP520. Technical Report. ZEON CORPORATION Specialty Materials Division. High Resolution Positive Electron Beam Resist.

Fabrication Technology, Part I

Industrial In-line and Multi Component Monitor Using Absorption Spectroscopy and Its Application

and their Maneuverable Application in Water Treatment

Determination of Impurities in Silica Wafers with the NexION 300S/350S ICP-MS

ETCHING Chapter 10. Mask. Photoresist

Supporting Information for. Photoactive PANI/TiO 2 /Si Composite Coatings With 3D Bio-inspired. Structures

Chapter 3: Stoichiometry

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Steam-Injected SPM Process for All-Wet Stripping of Implanted Photoresist

Make sure the exam paper has 9 pages (including cover page) + 3 pages of data for reference

Supporting Information

Chemistry 2 Exam Roane State Academic Festival. Name (print neatly) School

Chem GENERAL CHEMISTRY I MIDTERM EXAMINATION

Defense Technical Information Center Compilation Part Notice

Chem Exam 1. September 26, Dr. Susan E. Bates. Name 9:00 OR 10:00

TRU Chemistry Contest Chemistry 12 May 21, 2003 Time: 90 minutes

Evaluation of plasma strip induced substrate damage Keping Han 1, S. Luo 1, O. Escorcia 1, Carlo Waldfried 1 and Ivan Berry 1, a

CHEM 171 EXAMINATION 1. October 9, Dr. Kimberly M. Broekemeier. NAME: Key

DURATION: 2 HOUR 45 MINUTES

Figure 1: Graphene release, transfer and stacking processes. The graphene stacking began with CVD

RESEARCH ON BENZENE VAPOR DETECTION USING POROUS SILICON

ICP-MS Analysis of Bulk & Process Chemicals for Semiconductor Processes. Ann O Connell Chemical Analysis Eng Intel Corporation

Formation of Nanostructured Layers for Passivation of High Power Silicon Devices

Chemistry, Max-von-Laue-Str. 7, D Frankfurt, Germany. F Bernin Crolles Cedex France

Supporting information. Uniform Graphene Quantum Dots Patterned from Selfassembled

Pattern Transfer- photolithography

GENERAL PRINCIPLES OF CHEMISTRY - CHEM110 TEST 3

8. Relax and do well.

Circle the letters only. NO ANSWERS in the Columns! (3 points each)

CHEM 107 (Spring-2005) Exam 3 (100 pts)

A graphene oxide-based AIE biosensor with high selectivity toward bovine serum albumin

CVD-3 MFSIN-HU-2 SiN x Mixed Frequency Process

Transcription:

Korean Chem. Eng. Res., Vol. 45, No. 2, April, 2007, pp. 203-207 -jo- g g oi m lmœ Ž m mm o m Ç m (t)e l 730-724 e p 283 (2006 10o 18p r, 2006 12o 7p }ˆ) Particle Removal on Silicon Wafer Surface by Ozone-HF-NH 4 OH Sequence Gun-Ho Lee Gand So-Ik Bae R & D Center, Siltron, 283, Imsoo-dong, Gumi, Gyeong-Buk 730-724, Korea (Received 18 October 2006; accepted 7 December 2006) k h ms r e e op p pq rp r p r l l l m. p 0.3 vol% p p lk pq r lp, pž p ms n e r pp v l. ms r p l p(0.01 vol%) k k rp pq 99% p r p p m. p k k l p op p l m k mll p q v el qn l p p., -ms- k k rp p SC-1 r p m. -ms- k k rp ml pq rp r p r p, m r kp n s de rp kp. Abstract In this paper efficient method for particle removal from silicon wafers by usage of HF and ozone was studied. It was found that at least 0.3 vol% concentration of HF was required for particle removal and removal efficiency increased with the application of megasonic in ozonated water. Additional cleaning with minute amount of ammonia (0.01 vol%) after HF/Ozone step showed over 99% in removal efficiency. It is proposed that the superior cleaning efficiency of HF-Ozone-ammonia is due to micro-etching of silicon surface and impediment of particle re-adsorption in alkali environment. Compared to SC-1 cleaning method micro roughness has also been slightly improved. Therefore it is expected that HF-ozone-ammonia cleaning method is a viable alternative to the conventional wet cleaning methods. Key words: Wafer Cleaning, Ozone, HF, Particle Removal, Ammonia Water 1. e op op rs rp, q vrp o ~ rp v rl s mm l p p mm. p mm p ~ qp pp r eˆ opp l l(bare) e op p rs el CMP(chemical mechanical polishing) pn l r p l, ~ qp rs el mm p p o ~ r p l r rp ee l mm p rr tp rl lk. l e op p m qp (design rule)p r rp v l r rl n vp k v rp v p. pl, To whom correspondence should be addressed. E-mail: thisisho@siltron.co.kr ~ qp o v p, r rl p v } l np n p. m v o n e op r l RCA r p pp, r p mm p s l SPM(sulfuric acid peroxide mixture) DHF(dilute HF) ˆrp s l n. RCA r p p m p k p n m de rp, SC-1(standard clean 1) SC-2(standard clean 2)p [1]. SC-1p k k, (DI water)p kp n l m l v r rp op p pq r l ˆ o p p, SC-2 m, p kp n l k pm(al 3+, Fe 3+, Mg 2+ ) }p m m p r n p. v RCA r p mm v p r l p pp lp pp } e ˆ 203

204 p Ë p rp rn k } np p n, ml r rp v lk l v p p, p rk np p r np p n r p. pm p r o l de r rl ms p pn r p p p [2-4]. msp r f m p l p, n p p v k qrp v p. l n msp o mm, r, Cum p r l n rp p k r p [5-7]. p op p e p r n rp, p r rl pqm mm r l n rp. pq l p e p l rl r, p e l ˆ e r [8-11]. v p pn rp o l rp v l op p m (lift-off) pq e q rrp p [12]. rnk p e op p rˆ ro(zeta potential) nk p phl lp (-)ro v v, pq p nk p phl rˆ ro. p pq p k (alkali) mll (-)ro v o p p rr r p l p lr v, m ll pq p ro lr l (+)ro v rr r p p p pq p op p p p ov. p pn r l op p eˆ r q pq r rp e n. l l r op p eˆ o l ms n m, q pqp r m pq p q p v o l p k k pn r v l pq r pp v eˆ l m. 2. l l d pn CMP(chemical mechanical polishing) rl p l rp m v 200 mmp e op n m. op p pq SP1-Classic(KLA- Tencor)p n l r mp, (micro-roughness) AFM(PSI)p n l m., r contact angle meter ellipsometer(sopra) pn l m. e s e p Table 1 Table 2l ˆ l. Table 2p Test 1l ms r l pžp p o l pq r pp m. r ms r, r, ms r s r p v m. l n pžp tž 1 MHz(550 W) n m. Test 2l p l pq r pp m. r Test 1 p v m, ms r l pž n m. Test 3l Test 1 p r rp v, s v rl k k pn r v m. Normal s l p SC1p NH 4 OH:H 2 :H 2 O=1:2:40(at 55 o C)l 300 s k v p. 3. y 3-1. Megasonic r, e op p p l p l p rl p pqp p ov pq r l ov. op l p l p kr e k. e l (1 vol%) r, ms r v l op l p m. Fig. 1p r, ms r l p pž p o l pq r pp ˆ p. r ms r, r, ms r s v m. ms r l pž p l pq r pp 20%p eˆ pl. ms l pž p v k r mp p pq r pp 78.7%(2127 ; > 0.12 µm)m, pž p l r mp pq r pp 98%(200 ; > 0.12 µm) r pp v m. 3-2. j mm o l Fig. 2 r l p l pq r Table 1. Compositions and conditions of the cleaning solutions used in this experiment Name Ozone #1 Diluted HF Ozone #2 Diluted NH 4 OH Dry Chemical DIO 3 HF:DIW DIO 3 NH 4 OH:DIW DIW Mixing ratio 30 ppm 1:100(1 vol%) 30 ppm 1:10000(0.01 vol%) Process temp. 25 C 25 C 25 C 25 C 25 C Process time 300 s 300 s 300 s 300 s 60 mm/min Accessory Megasonic Megasonic Megasonic Table 2. Cleaning test methods for particle removal from silicon wafer surface Conditions Cleaning Sequences Test 1 Megasonic On/Off of ozone bath Ozone #1 HF Ozone #2 dry Test 2 Change of HF concentrations Ozone #1 HF Ozone #2 dry Test 3 Adding of diluted NH 4 OH step Ozone #1 HF Ozone #2 Diluted NH 4 OH dry Normal SC1 NH 4 OH:H 2 :H 2 O = 1:2:40 (at 55 C) SC1 Rinse dry o45 o2 2007 4k

-ms- k k rl p e op p pq r 205 Fig. 1. Influence of megasonic irradiation in ozonated water. (a) without megasonic, (b) with megasonic. Fig. 2. Dependence of particle removal efficiency on dissolved HF concentration in DI Water. pp ˆ p. l p 0.3 vol% p l pq r pp 90% pl. v p 0.3 vol% p l p l lp 98% p p p pq r pp m. p e p l rl op p pq r l rp pq r o p e p l p 0.3 vol% p p p l l plk. l e p l p p o l op p r p r m (Fig. 3). p 0.3 vol% p l op p e p l pl. v, p 0.3 vol% p l r p ms rl e p l v k l kppp p m. op p p l v k l pq r pp p p, Fig. 4. Etching rate of silicon oxide on dissolved HF concentration in DI Water. p 0.3 vol% p l p l l pq op p d r p. Fig. 4 p l e p l ˆ p. l p v e p l v m. e (1)l e p l (Å/min) p e l l p r r l e p l m. l, p e 1,000 Å r p. r p Ellipsometer pn l op r (49 Point)p r m. Etching Rate(Å/min) = ( p Oxide THK - t Oxide THK)/Time = l p r Oxide THK/Time (1) msp p q e p 15 Å n, 0.3 vol%p op p e p l eˆ l m. 3-3. g g (jo/ / g g o) Fig. 5 ms p pn r, k k r v mp pq r pp ˆ p. k k r v p f op p p q r pp 99.8%(26 ; > 0.12 µm)p v eˆ pl. p p op p l l p pq r m ph 9 p p k (alkali) mll p pq p lr el pl p p. r, ms r k k r v mp l k k l p op Fig. 3. Contact angle image of wafer surface on dissolved HF concentration in DI Water. Korean Chem. Eng. Res., Vol. 45, No. 2, April, 2007

206 p Ë p Fig. 8. Particle removal mechanism from silicon wafer surface. Fig. 5. Particle removal efficiency on addition of diluted NH 4 OH step. Fig. 6. Particle map of silicon wafer surface. (a) HF-NH 4 OH cleaning (ozone skip), (b) only diluted NH 4 OH cleaning (ozone and HF skip). p e p k (Fig. 6(a)). l p e p l op p p k k l p d p k pl. p pn r l op p passivation eˆ o rp rp. l l r ms r v pm p po p., ms r v k k k p r mp n, op p pq r pl (Fig. 6(b)). Fig. 7p k k l e p l ˆ p. ml 0.01 vol%p p k k l p e p l l. k k e k v l eˆ Fig. 7. Etching rate of silicon oxide on dissolved NH 4 OH concentration in DI Water. o45 o2 2007 4k l pp n n op p e p. op p p o l k k l p lk, e l 0.01~0.1 vol%p k k n m. l p e p l m kv, op p pq r q p v l m. Fig. 8p e p r l op p pq r ƒ vp ˆ p. l pq e op l p r rp v l p. p pq rp r o pqm r p v p r lk. p op p e p l n rp l op p d r p. v p o l r p v l r pq e q r p. op p eˆ q pq r o l ms k k rp l p r m. q pq op p r k p r p l p rl d r m. l p k k ~ rkp op p l eˆ l pq r m rkp k mlp l pqp q p v p l. Fig. 9 ms m k k pn l r, op p ˆ p. (a) normal s l p SC-1p r p op p p, (b) ms m p pn l r p op p p. (c) ms m k k pn l r p op p ˆ p. ms k k pn rp e op p l m p v kpp k p l. m, SC-1 r t p p lpp p pl. 4. ms re e op p pq rp r p l l l m. l, ~w, r msp pn r l ms l pž p pq r pp, w, p pn r l l p 0.3 vol% p p lk, w, r pp n v eˆ o l ms r p k k r pq r pp v, op ms rl p

-ms- k k rl p e op p pq r 207 Fig. 9. Micro-roughness and AFM Image of silicon wafer surface with cleaning methods. lpp p m. ms/ / k k r p rp ml, pq r ˆo s de rp kp p n p. y 1. Kern, W., Handbook of Semiconductor Wafer Cleaning Technology: Science, Technology and Applications, Noyes Publication, New Jersey(1993). 2. Ojima, S., Kubo, K., Kato, M., Toda, M. and Ohmi, T., Megasonic Excited Ozonized Water for the Cleaning of Silicon Surfaces, J. Electrochem. Soc., 144(4), 1482-1487(1997). 3. De Smedt, F., De Gendt, S., Heyns, M. M. and Vinckier, C., The Application of Ozone in Semiconductor Cleaning Processes: The Solubility Issue, J. Electrochem. Soc., 148(9), 487-493(2001). 4. Morita, M., Ida, J., Ii, T. and Ohmi, T., Proceeding of the IEEE International Symposium on Semiconductor Manufacturing Conference, 453(1999). 5. Vankerckhoven, H., De Smedt, F., Van Herp, B., Claes, M., De Gendt, S., Heyns, M. M. and Vickier, C., Determination of Photoresist Degradation Products in O 3 /DI Processing, Solid State Phenomena, 76-77, 207-210(2001). 6. Sang-Woo Lim and Christopher E. D. chidsey, Control of Ozonated Water Cleaning Process for Photoresist Removal, Solid State Phenomena, 76-77, 215-218(2001). 7. Claes, M., De Gendt, S., Kenens, C., Conard, T., Bender, H., Storm, W., Bauer, T., Lagrange, S., Mertens, P. and Heyns, M. M., A Control Deposition of Organic Contamination and the Removal with Ozone Based Cleanings, Solid State Phenomena, 76-77, 223-226(2001). 8. Choi, B.-K. and Jeon, H.-T., Removal of Cu Impurities on a Si Substrate by Using (H 2 +HF) and (UV/O 3 +HF), J. Korean Phy. Soc., 33(5), 579-583(1998). 9. Vos, R., Xu, K., Lux, M., Fyen, W., Singh, R., Chin, Z., Mertens, P., Hatcher, Z. and Heyns, M., Use of Surfactants for Improved Particle Performance of dhf-based Cleaning Recipes, Solid State Phenomena, 76-77, 263-266(2001). 10. Choi, G.-M., Yokoi, I. and Ohmi, T., The Role of Oxidant in HF- Based Solution for Noble Metal Removal form Substrate, Solid State Phenomena, 76-77, 267-270(2001). 11. Bergman, E. J., Lagrange, S., Claes, M., De Gendt, S. and Rohr, E., Pre-Diffusion Cleaning Using Ozone and HF, Solid State Phenomena, 76-77, 85-88(2001). 12. Knotter, D. M. and Dumesnil, Y., Particle Deposition Studies in Acidic Solutions, Solid State Phenomena, 76-77, 255-258(2001). Korean Chem. Eng. Res., Vol. 45, No. 2, April, 2007