HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY

Similar documents
Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Higgs Boson: from Collider Test to SUSY GUT Inflation

Gauge coupling unification without leptoquarks Mikhail Shaposhnikov

Higgs Vacuum Stability and Physics Beyond the Standard Model Archil Kobakhidze

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology

Inflationary particle production and non-gaussianity

Particle Physics Today, Tomorrow and Beyond. John Ellis

SM, EWSB & Higgs. MITP Summer School 2017 Joint Challenges for Cosmology and Colliders. Homework & Exercises

Higgs inflation: dark matter, detectability and unitarity

Higgs Signals and Implications for MSSM

Cosmological Relaxation of the Electroweak Scale

Little Higgs Models Theory & Phenomenology

Inflation from supersymmetry breaking

The mass of the Higgs boson

Naturalizing SUSY with the relaxion and the inflaton

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

HIGGS INFLATION & VACUUM STABILITY

Will Planck Observe Gravity Waves?

Cosmology meets Quantum Gravity?

Probing New Physics of Cubic Higgs Interaction

Quantum black holes and effective quantum gravity approaches!

Scale symmetry a link from quantum gravity to cosmology

Ultraviolet Completion of Electroweak Theory on Minimal Fractal Manifolds. Ervin Goldfain

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

arxiv:hep-ph/ v1 16 Mar 1994

Could the Higgs Boson be the Inflaton?

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

Introduction to Supersymmetry

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Phenomenology for Higgs Searches at the LHC

Double Higgs production via gluon fusion (gg hh) in composite models

Exploring Universal Extra-Dimensions at the LHC

Beyond Standard Models Higgsless Models. Zahra Sheikhbahaee

from exact asymptotic safety to physics beyond the Standard Model

arxiv:hep-ph/ v1 6 Feb 2004

Anomaly and gaugino mediation

Theory of anomalous couplings. in Effective Field Theory (EFT)

Conformal Standard Model

Cosmic Inflation Lecture 16 - Monday Mar 10

SUPERSYMETRY FOR ASTROPHYSICISTS

Sreerup Raychaudhuri TIFR

Quantum Fields in Curved Spacetime

How high could SUSY go?

Naturalizing Supersymmetry with the Relaxion

Analyzing WMAP Observation by Quantum Gravity

Inflationary Massive Gravity

Stable violation of the null energy condition and non-standard cosmologies

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Oddities of the Universe

Scale-invariant alternatives to general relativity

Electroweak resonances in HEFT

+ µ 2 ) H (m 2 H 2

A Domino Theory of Flavor

Beyond the SM: SUSY. Marina Cobal University of Udine

Introduction to the Beyond the Standard Model session

Higher dimensional operators. in supersymmetry

The cosmological constant puzzle

A Minimal Composite Goldstone Higgs model

Yasunori Nomura. UC Berkeley; LBNL. hep-ph/ [PLB] hep-ph/ [PLB] hep-ph/ [PRD] Based on work with Ryuichiro Kitano (SLAC)

THE SM VACUUM AND HIGGS INFLATION

German physicist stops Universe

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Inflation Mikhail Shaposhnikov SEWM, Montreal, 29 June - 2 July 2010

Detecting Higgs Bosons within Supersymmetric Models

Asymptotic safety of gravity and the Higgs boson mass. Mikhail Shaposhnikov Quarks 2010, Kolomna, June 6-12, 2010

The Matter-Antimatter Asymmetry and New Interactions

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

Non-locality in QFT due to Quantum Effects in Gravity

Beyond the Standard Model

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

The Standard model Higgs boson as the inflaton

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

The Higgs discovery - a portal to new physics

Twin Higgs Theories. Z. Chacko, University of Arizona. H.S Goh & R. Harnik; Y. Nomura, M. Papucci & G. Perez

Outlook Post-Higgs. Fermilab. UCLA Higgs Workshop March 22, 2013

Supersymmetry Breaking

Hidden two-higgs doublet model

CMB Polarization in Einstein-Aether Theory

Inflaton decay in supergravity and the new gravitino problem

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

2T-physics and the Standard Model of Particles and Forces Itzhak Bars (USC)

Crosschecks for Unification

Higgs field as the main character in the early Universe. Dmitry Gorbunov

Where are we going? Beyond SM? Is there life after Higgs? How do we achieve. John Ellis our goal?

New Model of massive spin-2 particle

Higgs Physics and Cosmology

Dark Matter and Gauged Baryon Number

Phenomenological Aspects of Local String Models

The 126 GeV Higgs boson mass and naturalness in (deflected) mirage mediation

Scale hierarchies and string phenomenology

Baryon and Lepton Number Violation at the TeV Scale

Radiative Generation of the Higgs Potential

The Higgs Boson and Electroweak Symmetry Breaking

Reφ = 1 2. h ff λ. = λ f

E 6 Spectra at the TeV Scale

Non-Minimal SUSY Computation of observables and fit to exp

Realistic Inflation Models and Primordial Gravity Waves

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

Inflation Daniel Baumann

Origin of the Universe - 2 ASTR 2120 Sarazin. What does it all mean?

Transcription:

HIGGS-GRAVITATIONAL INTERATIONS! IN PARTICLE PHYSICS & COSMOLOGY beyond standard model ZHONG-ZHI XIANYU Tsinghua University June 9, 015

Why Higgs? Why gravity? An argument from equivalence principle Higgs: unique fundamental scalar mass term sensitive to UV physics (gravity!) the unique non-minimal gravitational coupling term mechanism of electroweak symmetry breaking? Gravitation top-down approach spontaneous dimensional reduction bottom-up approach effective field theory

3 Outline LHC / future colliders low energy, very high luminosity cosmic inflation very high energy, poor luminosity two complementary colliders

4 Outline Spontaneous dimensional reduction 1) an effective theory ) new mechanism of unitarization / EWSB Non-minimal coupling 1) frame independence ) equivalence theorem 3) unitarity bound 4) collider signature SM Higgs inflation 1) unitarity problem ) quantum correction Beyond SM 1) Extending Higgs inflation with TeV new particles ) Higgs inflation with noscale SUSY GUT 3) Asymptotically safe Higgs inflation

5 Spontaneous dimensional reduction SDR - a novel effect in many quantum gravity models asymptotic safety CDT Hořava gravity loop QG... Ds 3.8 3.6 3.4 3. n 1 HmL 4 3 = g=1.5 g= = 3.8 0 100 00 300 400 σ from J. Ambjørn et al, PRL95 (005)171301 L SDR = 5TeV = 5TeV 0.01 0.05 0.1 0.5 1 5 10 50 m HTeVL µ n(µ) =4 SDR

6 Effective theory of EWSB with SDR Dimension as a scaling property ) Effective theory approach ) Spacetime integral measured ) d n x, n = n(µ) L = 1 4 W a µ W µ a 1 4 B µ B µ + M W W + µ W µ + 1 M Z Z µ Z µ ) [L ]=n(µ), [g] =(4 n)/ g ) g = g M (4 n/) W g : gauge coupling : dimensionless HJ He and ZZ Xianyu, Eur. Phys. J. Plus 18 (013) 40! HJ He and ZZ Xianyu, Phys. Lett. B 70 (013) 14

7 Effective theory of EWSB with SDR Partial wave unitarity WW! ZZ scattering in a Higgsless SM: T g E 4MW a 0 (E) = E n 4 (16 ) (n/) 1 ( n 1) Z 0 d sin n 3 T(E, ) a 0 < 1 a 0 1.4 1. 1.0 0.8 0.6 (b) γ=1.5 unitarity violation 4D 6TeV 5TeV σ exp (pb) 10 5 10 4 10 3 (a) SM(600GeV) unitarity violation 5TeV 4d HLSM 6TeV 0.4 0. 4TeV 10 SM(15GeV) 4TeV 0 0. 0.4 0.6 0.8 1 3 4 5 6 E (TeV) 10 0. 0.4 0.6 0.8 1 3 4 E (TeV) HJ He and ZZ Xianyu, Eur. Phys. J. Plus 18 (013) 40! HJ He and ZZ Xianyu, Phys. Lett. B 70 (013) 14

8 Effective theory of EWSB with SDR Non-standard Higgs + SDR anomalous couplings: L H =( applevh + 1 apple 0 h ) M W v W + M Z v 10 5 10 4 (a) M h =15GeV Δκ=+0.3 unitarity violation SM+AC Z Δκ 10 5 10 4 1.0 0.8 0.6 0.4 0. M h =15GeV 4TeV 5TeV 4d SM+AC 0.0 0 1 3 4 5 (b) M h =15GeV Δκ=-0.3 E (TeV) 6TeV unitarity violation SM+AC σ exp (pb) 10 3 σ exp (pb) 10 3 10 10 SM 4TeV 5TeV 6TeV SM 4TeV 5TeV 6TeV 10 0. 0.4 0.6 0.8 1 3 4 E (TeV) 10 0. 0.4 0.6 0.8 1 3 4 E (TeV) HJ He and ZZ Xianyu, Eur. Phys. J. Plus 18 (013) 40! HJ He and ZZ Xianyu, Phys. Lett. B 70 (013) 14

9 Non-minimal Higgs-gravitational coupling SM + GR as an effective theory p The unique non-minimal dim-4 operator Lagrangian in Jordan frame: L J p = M P g 1+ H H M P {z } (H) Weyl transformation R + D µ H g µ! g µ V (H) grh H to Einstein frame: L E p g = M P R + 3 M P 4 rµ (H H) + 1 D µh V (H) 4

10 Non-minimal Higgs-gravitational coupling Perturbative expansion Jordan frame: kinetic mixing between and Einstein frame: kinetic rescaling + higher dim. operators of Example:W + W! (t,u-channels not shown) h µ Jordan frame h W C L W L W C L W L W C L W L Einstein frame ZZ Xianyu, J Ren, HJ He, Phys. Rev. D 88 (013) 096013! J Ren, ZZ Xianyu, HJ He, JCAP 1406 (014) 03

11 Non-minimal Higgs-gravitational coupling Unitarity bound for Jordan-Einstein equivalence Goldstone boson ET Coupled-channel analysis: +, 0 0,, 0 s-wave amplitude: a 0 (E) 4 4 / E + O(E 0 ) unitarity condition: Re a 0 < 1 unitarity bound on E: E < ( )!1limit: E < p 8 v ξ 10 18 10 15 10 1 10 9 10 6 Bound Higgs from measurement M P /v limit: E < p 8 MP 3 10 3 1 10 3 10 6 10 9 10 1 10 15 10 18 E (GeV) ZZ Xianyu, J Ren, HJ He, Phys. Rev. D 88 (013) 096013! J Ren, ZZ Xianyu, HJ He, JCAP 1406 (014) 03

1 Non-minimal Higgs-gravitational coupling Weak boson scattering at LHC & future pp (100TeV) cross section (pb) (pb) 10 3 10 10 (c) m h =15GeV 0. 0.4 0.6 0.8 1 3 4 E (TeV) ξ=10 15 W + W +! W + W + ξ= 10 15 ξ=0 (SM) 1 3 4 5 6 8 10 15 0 30 Universality: gravity is blind to internal gauge structure. Non-resonance: strong coupling at high energies Other probe of non-minimal coupling: h 3 coupling? cross section (pb) (pb) 10 10 1 0.1 (c') W + W +! W + W + m h =15GeV E (TeV) ξ=3 10 14 ξ=1.5 10 14 ξ=0 (SM) ZZ Xianyu, J Ren, HJ He, Phys. Rev. D 88 (013) 096013! J Ren, ZZ Xianyu, HJ He, JCAP 1406 (014) 03

Higgs inflation 13 M P =1 The second rôle of the God Particle generating primordial density fluctuations during inflation! producing all particles in the universe during reheating Non-minimal coupling in action Higgs potential in Einstein frame:v ( )= 1 4 4 / 4 Normalized inflaton: ' p 3/ log =1+ Inflaton potential: V ( ) ' 4 1 e p /3

14 Higgs inflation Fitting observables V ( ) ' 4 1 e Scalar amplitude (V / ) 1/4 ' 0.07 ' 0.13 Scalar tilt n s ' 0.967 and tensor-to-scalar ratio r ' 0.003 independent of parameter input (as long as 1 ) An apparent unitarity problem? p /3 Typical energy density during inflation V 1/4 O(10 16 GeV) on the other hand, O(10 4 ) ) M P / O(10 14 GeV) ) O(10 4 )

15 Higgs inflation Background-field-dependent unitary bound WW! ZZ channel with arbitrary background : a 0 = 1+ apple 1 16 1 1+6 1 1+ E 10 1/ 1/ p a 0 ' 3 8 E a 0 ' 1 16 E E. 1/ E. 1/ p E/M P 1 10-1 10-10 -3 10-4 Strong Gravity ξ=10 ξ=10 ξ=10 3 ξ=10 4 (a) 10-6 10-5 10-4 10-3 10-10 -1 1 ϕ /M P J Ren, ZZ Xianyu, HJ He, JCAP 1406 (014) 03

16 Higgs inflation Background-field-dependent unitary bound The most stringent bound can be found from coupled-channel analysis. ξ 10 18 10 15 10 1 10 9 10 6 10 3 (b) Large-ϕ Unitarity Bound EW vacuum Unitarity Bound Inflation Scale 1 10 3 10 6 10 9 10 1 10 15 10 18 E (GeV) Unitarity of Higgs inflation E/M P 10 Strong Gravity 1 ξ=10 10-1 10-10 -3 10-4 ξ=10 ξ=10 3 ξ=10 4 (a) 10-6 10-5 10-4 10-3 10-10 -1 1 ϕ /M P J Ren, ZZ Xianyu, HJ He, JCAP 1406 (014) 03

17 Higgs inflation Quantum correction Running of Higgs self-coupling: = 1 16 (4 6y t + ) Importance of precise measurement of Higgs & top masses 180 0.10 178 Metastable l 0.05 Unstable Central Values M t HGeVL 176 174 0.00 4s in M t 17 4s in M H 170-0.05 4s in a 3 1000 10 6 10 9 10 1 10 15 10 18 m HGeVL 168 10 1 14 16 18 130 13 M H HGeVL from A. Spencer-Smith, arxiv:1405.1975

18 Higgs inflation with new physics A successful Higgs inflation needs new physics. Three mechanisms for Higgs inflation: 1. Higgs inflation with TeV scale new particles. Higgs inflation in no-scale supersymmetric GUT 3. Asymptotically safe Higgs inflation

19 Extending Higgs inflation New particles @ TeV SU() L U(1) Y Z S (1, 0, ) T L (1, 3,+) T R (1, 3, ) Scalar potential & Yukawa terms: V (H, S) = µ 1H H 1 µ S + 1 (H H) + 1 4 S 4 + 1 3S H H + apples. L tt = y 1 Q e 3LHtR y Q e 3LHTR y p 3 ST L T R y p 4 ST L t R +h.c. HJ He, ZZ Xianyu, JCAP 1410 (014) 019

0 Extending Higgs inflation Improved UV behavior of Higgs self-coupling 1 = 1 1 (4 ) 3 + 1 1 y 6y 4 1y 1 y Sample u m S m T A 7 TeV 3.08 TeV 3.08 TeV 1.8 10 1.3368 10 7.5305 D 4 TeV 1.6 TeV 1.6 TeV 3 10 10 670 0.15 Sample A λ 3 0.15 Sample D λ i 0.10 0.05 λ λ i 0.10 0.05 λ 3 λ 0 λ (SM) λ 1 0 λ (SM) λ 1 10 3 10 6 10 9 10 1 10 15 10 18 μ (GeV) 10 3 10 6 10 9 10 1 10 15 10 18 μ (GeV) HJ He, ZZ Xianyu, JCAP 1410 (014) 019

1 Extending Higgs inflation (V(h)/M Pl 4 ) 10 8.0 1.5 1.0 0.5 Sample A 0.0 0.0 0. 0.4 0.6 0.8 1.0 1. h/m Pl (V(h)/M Pl 4 ) 10 10.0 1.5 1.0 0.5 Sample D 0.0 0.0 0. 0.4 0.6 0.8 1.0 1. h/m Pl Inflation potential HJ He, ZZ Xianyu, JCAP 1410 (014) 019

Extending Higgs inflation (V(h)/M Pl 4 ) 10 8.0 1.5 1.0 0.5 Sample A (V(h)/M Pl 4 ) 10 10.0 1.5 1.0 0.5 Sample D r 0.0 0.0 0. 0.4 0.6 0.8 1.0 1. 0.5 0.0 0.15 0.10 0.05 h/m Pl Planck TT+Low P Planck TT,TE,EE+Low P D 0.00 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 n s A B C 0.0 0.0 0. 0.4 0.6 0.8 1.0 1. sample h/m Pl A 7.5305 0.00035 B 10.456 0.00 C 0.85 0.03 D 670 HJ He, ZZ Xianyu, JCAP 1410 (014) 019

3 Extending Higgs inflation Prediction of observables ( n s, r ) Large range of tensor-to-scalar ratio Heavy fine tuning in critical region (A,B,C) Standard Higgs inflation recovered in large region (D) r 0.5 0.0 0.15 0.10 0.05 Planck TT+Low P Planck TT,TE,EE+Low P D 0.00 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 n s A B C sample A 7.5305 0.00035 B 10.456 0.00 C 0.85 0.03 D 670 HJ He, ZZ Xianyu, JCAP 1410 (014) 019

4 Higgs inflation in no-scale GUTs Supersymmetric Higgs inflation in general Non-minimal coupling in SUGRA tachyonic instability in NMSSM eta-problem in generic SUGRA models No-scale supergravity SUSY with zero vacuum energy gravitino mass undetermined classically simple string compactification rich flat directions Grand unification GUT scale ~ inflation scale: any underlying connection? J Ellis, HJ He, ZZ Xianyu, Phys. Rev. D 91 (015) 0130(R)

5 Higgs inflation in no-scale GUTs No-scale SU(5) model + h i = H = q Hc H u Z H = Hc eh d 15 hsi diag 1, 1, 1, 3, 3 (Slightly deformed) no-scale Kähler potential & superpotential K = 3 log T + T 1 3 tr ( ) 1 3 H + H + (HH +h.c.) W = 1 m tr ( )+µhh + 1 4 tr ( 4 ) 1H H (HH) J Ellis, HJ He, ZZ Xianyu, Phys. Rev. D 91 (015) 0130(R)

6 Higgs inflation in no-scale GUTs No-scale SU(5) model + Superpotential at low energies: 4 W = H c (µ 9 1S )H c + H u (µ 1S ) H e d + h i = H = q Hc H u Z H = Hc eh d 15 hsi diag 1, 1, 1, 3, 3 After GUT breakinghsi u ) µ = 1 u, M c = 5 9 1u J Ellis, HJ He, ZZ Xianyu, Phys. Rev. D 91 (015) 0130(R)

7 Higgs inflation in no-scale GUTs F-term scalar potential V = e G apple K IJ Inflation trajectory:h 1 = Hu 0 + Hd 0 @G @ I @G @ J 3 Assuming modulus stabilized att = T =1/ G K+ log W V (H 1 )= Removing singularities: 1 u4 1 1 u H 1 H 1 1 (1 6 H1 ) = 1 3 1(1 )u J Ellis, HJ He, ZZ Xianyu, Phys. Rev. D 91 (015) 0130(R)

8 Higgs inflation in no-scale GUTs Simplified inflation potential:v (H 1 )= 1 Normalizing the inflaton field:h 1! h Two interesting limits: =0 ) V (h) =3 1u 4 tanh (h/ p 6) =1 ) V (h) = 1 1u 4 H 1 1u 4 h 0.5 0.0 (a) Planck TT+Low P Planck TT,TE,EE+Low P 0.5 0.0 (b) Planck TT+Low P Planck TT,TE,EE+Low P 0.15 =1 0.15 r r 0.10 0.10 0.05 =0 0.00 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 n s 0.05 0.00 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 n s J Ellis, HJ He, ZZ Xianyu, Phys. Rev. D 91 (015) 0130(R)

9 Higgs inflation in no-scale GUTs Simplified inflation potential:v (H 1 )= 1 Normalizing the inflaton field:h 1! h Two interesting limits: Generalization: Flipped SU(5) & Pati-Salam GUTs Phenomenologically viable (nucleon decay etc.) Colored Higgs mass disentangled from inflation scale No discrete symmetry needed 1u 4 H 1 =0 ) V (h) =3 1u 4 tanh (h/ p 6) =1 ) V (h) = 1 1u 4 h J Ellis, HJ He, ZZ Xianyu, Phys. Rev. D 91 (015) 0130(R)

30 Asymptotically safe Higgs inflation Asymptotic safety UV-complete GR with a non-gaussian fixed point Running Coupling 10 4 10 3 10 10 1 asympotic safety in gravitational sector M P 10-10 -1 1 10 1 10 μ/μ tr Transition scale µ tr O(µ 0 ) ) µ tr = Cµ 0 M P λ 0.06 0.05 0.04 0.03 0.0 0.01 0 asympotic freedom in matter sector 10 6 10 8 10 10 10 1 μ (GeV) M h =15GeV 16GeV 17GeV ZZ Xianyu, HJ He, JCAP 1410 (014) 083

31 Asymptotically safe Higgs inflation AS Cosmology: FRW solution with running M P Friedmann s equation: M P(µ) =M P0 1+ µ µ tr How to choose renormalization scale µ? 3MP(µ)H = V = 1 4 (µ)h4 V = X j z j M 4 j 16 log M j µ M j = O( j )h + O(1)H SM: j 'O(1) ) µ ' h AS: j! 0 ) µ 'H ZZ Xianyu, HJ He, JCAP 1410 (014) 083

3 Asymptotically safe Higgs inflation 3M P(H)H = 1 4 (H)h 4 ) flat inflation potential: Agreements with collider measurements improved V 1/4 (GeV) 10 16 10 15 10 14 10 15 10 16 10 17 10 18 h (GeV) m h =17GeV m h =16GeV m h =15GeV m t (GeV) 175 174 173 σ 1σ r 0.0 0.15 0.10 Planck TT+Low P Planck TT,TE,EE+Low P tiny tensor mode, r O(10 7 ) 17 0.05 171 14.0 14.5 15.0 15.5 16.0 m h (GeV) 0.00 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00 n s ZZ Xianyu, HJ He, JCAP 1410 (014) 083

33 Summary & Outlook SDR & Non-minimal coupling @ TeV An explicit construction of SDR? Other probe of non-minimal coupling? Higgs inflation and extensions Jordan frame formulation? Frame dependence? UV dynamics of Higgs inflation? Reheating in various Higgs inflation models General properties of Higgs inflation Non-Gaussianity

THANK YOU