Berdermann, GSI Darmstadt. Helmholtz Zentrum für Schwerionenforschung

Similar documents
Charge transport properties. of heavily irradiated

CVDD materials, sensors and FEE Early Diamond-on-Iridium (DoI) samples Comparison to pc- and sccvdd Summary and Conclusions

Concluding NoRHDia, CARAT & ADAMAS

Energy loss measurements of swift ions penetrating hot and dense plasma at the UNILAC

Characterisation of single crystal CVD diamond particle detectors for hadron physics experiments

First Applications of CVD-Diamond Detectors in Heavy-ion Experiments

Fabio Schirru, Chiara Nociforo

Status Report: Charge Cloud Explosion

CVD diamonds for fast neutron detection and spectroscopy in high flux environment

Charge Collection and Space Charge Distribution in Epitaxial Silicon Detectors after Neutron-Irradiation

Status Report: Multi-Channel TCT

Trace alpha-particle detection system for water networks: from direct detection in liquid phase to element identification

BEGe Detector studies update

10 CVD-Diamond Detectors for Experiments with Hadrons, Nuclei, and Atoms

Pulse-shape shape analysis with a Broad-energy. Ge-detector. Marik Schönert. MPI für f r Kernphysik Heidelberg

SURVEY OF RECENT RADIATION DAMGE STUDIES AT HAMBURG

Modeling of charge collection efficiency degradation in semiconductor devices induced by MeV ion beam irradiation

Semiconductor-Detectors

Solid State Detectors

Diamond & Related Materials

physics/ Sep 1997

SINGLE CRYSTAL CVD DIAMOND MEMBRANE MICRODOSIMETERS FOR HADRON THERAPY. ADAMAS2017 Zagreb 28/11/2017 Pomorski Michal

Diamond (Radiation) Detectors Are Forever! Harris Kagan

arxiv: v1 [physics.ins-det] 25 May 2017

Energy resolution and absolute detection efficiency for LSO crystals: a comparison between Monte Carlo simulation and experimental data

Development and characterization of 3D semiconductor X-rays detectors for medical imaging

Press release. A 155 carat diamond with 92 mm diameter. Universität Augsburg Klaus P. Prem. 03/21/2017

RITU and the GREAT Spectrometer

Epitaxial SiC Schottky barriers for radiation and particle detection

Ultra-Pure 163 Ho Samples for Neutrino Mass Measurements

Carrier lifetime variations during irradiation by 3-8 MeV K in MCZ Si

Semiconductor Detectors

Radiation hardness of Low Gain Amplification Detectors (LGAD)

Basics and Means of Positron Annihilation

Zero-biased YBCO detectors for the real-time observation of coherent synchrotron radiation

Test Simulation of Neutron Damage to Electronic Components using Accelerator Facilities

D1. TASCA Focal Plane Detector Setup (Physics) - first mounting and detector tests

VERDI a double (v, E) fission-fragment fragment spectrometer

plasma optics Amplification of light pulses: non-ionised media

A new protocol to evaluate the charge collection efficiency degradation in semiconductor devices induced by MeV ions

Radiation damage in diamond sensors at the CMS experiment of the LHC

Fluence dependent variations of recombination and deep level spectral characteristics in neutron and proton irradiated MCz, FZ and epi-si structures

GaN for use in harsh radiation environments

TCT and CCE measurements for 9 MeV and 24 GeV/c irradiated n-type MCz-Si pad

Impact of high photon densities on AGIPD requirements

arxiv:physics/ v2 [physics.ins-det] 22 Nov 2005

Study of semiconductors with positrons. Outlook:

Germanium Detectors. Germanium, a special material. Detectors, big is beautiful. Operational features. Applications. Iris Abt

Non-traditional methods of material properties and defect parameters measurement

Fast Polycrystalline-CdTe Detector for LHC Luminosity Measurements

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

Characterization of Irradiated Doping Profiles. Wolfgang Treberspurg, Thomas Bergauer, Marko Dragicevic, Manfred Krammer, Manfred Valentan

Pulse Shape Analysis

Joint ICTP-IAEA Workshop on Physics of Radiation Effect and its Simulation for Non-Metallic Condensed Matter.

Introduction into Positron Annihilation

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

SUPPLEMENTARY INFORMATION

Fast-Timing with LaBr 3 :Ce Detectors and the Half-life of the I π = 4 Intruder State in 34 P

Development status of the positron lifetime beam MePS and the first lifetime measurements of porous ultra-low-k dielectrics with MePS

Status of the magnetic spectrometer PRISMA

An in in-beam Start Detector (SD) is an important component

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

Monitoring of recombination characteristics of the proton irradiated diodes by microwave absorption transients

Summary of readout test of DSG prototype with IPA4 cold preamp. C. Cattadori, M. Bernabe-Heider, O. Chkvorets, K. Gusev, M.

Doppler Shift Attenuation Method: The experimental setup at the MLL and the lifetime measurement of the 1 st excited state in 31 S

Development and test of the high-precision -beam monitor at the ESFRI facility ELI-NP

CVD Diamond History Introduction to DDL Properties of Diamond DDL Proprietary Contact Technology Detector Applications BDD Sensors

Performance of a triple-gem detector for high-rate particle triggering

Lecture 18. New gas detectors Solid state trackers

Monoenergetic Proton Beams from Laser Driven Shocks

Development of Radiation Hard Si Detectors

Impact of high photon densities on AGIPD requirements

GEM at CERN. Leszek Ropelewski CERN PH-DT2 DT2-ST & TOTEM

Dual Isotope Imaging with LaBr3:Ce Crystal and H8500 PSPMT

Advantages / Disadvantages of semiconductor detectors

Photovoltage phenomena in nanoscaled materials. Thomas Dittrich Hahn-Meitner-Institute Berlin

Development of Gamma-ray Monitor using CdZnTe Semiconductor Detector

Measurement of high energy gamma rays with large volume LaBr 3 :Ce scintillators

PERFORMANCE IMPROVEMENT OF CZT DETECTORS BY LINE ELECTRODE GEOMETRY

Characterization and Monte Carlo simulations for a CLYC detector

CPT ALPHA CPT 2.1 CPT , CERN. TRIUMF Canada s National Laboratory for Particle and Nuclear Physics

arxiv:physics/ v1 3 Aug 2006

Creation and annealing of point defects in germanium crystal lattices by subthreshold energy events

Review of Semiconductor Drift Detectors

Theory and practice of Materials Analysis for Microelectronics with a nuclear microprobe

Spatial resolution of a MPGD TPC using the charge dispersion signal

X-ray induced radiation damage in segmented p + n silicon sensors

Multiscale modelling of D trapping in W

M. De Napoli, F. Giacoppo, G. Raciti, E. Rapisarda, C. Sfienti. Laboratori Nazionali del Sud (LNS) INFN University of Catania. IPRD Oct.

Diagnostics at SARAF

Mara Bruzzi INFN and University of Florence, Italy and SCIPP, UC Santa Cruz, USA

Metrol. Meas. Syst., Vol. 23 (2016), No. 3, pp METROLOGY AND MEASUREMENT SYSTEMS. Index , ISSN

Modelling of Diamond Devices with TCAD Tools

Detector Array for Low Intensity radiation. DALI and DALI2. S.Takeuchi, T.Motobayashi. Heavy Ion Nuclear Physics Laboratory, RIKEN

Avalanche Diamond Detector

THE spectroscopic performance of large volume CdZnTe

BEAM BEAM. cathode anode cathode

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Charge Collection and Capacitance-Voltage analysis in irradiated n-type magnetic Czochralski silicon detectors

C.V. Nguyen, A.P.J. van Deursen

Transcription:

Elèni Berdermann, GSI Darmstadt Helmholtz Zentrum für Schwerionenforschung

ELECTRICAL CHARACTERIZATION of DIA-ON ON-IR; DoI- DETECTOR CHARACTERISTICS in 2010 INTRODUCTION DESCRIPTION of THE MEASUREMENTS: I IND ; Q C TCT SIGNALS Charge Transport; Internal Field; σ i (t) ALPHA SPECTROSCOPY Crystal Structure; CCE; δe/e SUMMARY and Preliminary Conclusions CHARACTERIZATION Next Steps

DETECTOR LABORATORY Mircea Ciobanu Shahinur Rahman Carmen Simons Michael Träger EBe ACCELERATOR HF GROUP Peter Moritz TARGET LABORATORY Willy Hartmann Annett Hübner Birgit Kindler Bettina Lommel UNIVERSITY OF AUGSBURG Stefan Dunst Martin Fischer Stefan Gsell Matthias Schreck Christian Stehl

TESTED DOI SAMPLES in 2010 MFDIA-886 886-1, d = 290µm (July 2010) MFDIA-886 886-2, d = 320µm (July 2010) FREESTANDING A = (3.5 x 3.5) mm² both sides polished METALLIZATION Ti/Pt/Au (50/50/100)nm annealed (500 O C) 4Q-motif (growth-s.); solid electrode (nucl.s.) Q4 Q1 Q3 Q2 ground electrode

BIREFRINGENCE IMAGES MFDia-886 886-1, d = 290µm, MFDia-886 886-2, d = 320µm, PC: Dia-on-Si Q4 Q1 Q3 Q2 Dia-on-Dia

8x10-11 DARK CURRENT [A] IV Characteristics Q1; Q3-2.7 V/µm 2.7 V/µm IV CHARACTERISTICS CS-886 886-1, d = 290µm (2010) -1x10-11 1.6x10-11 DARK CURRENT [A] - 1000 V 0 1000 V Q2; Q4-2.1 V/µm 1 V/µm -2x10-12 - 900 V 0 BIAS VOLTAGE [V] 500 V ground electrode

SINGLE-CARRIER DRIFT MODE; LOW IONIZATION a) IDEAL CASE: CONSTANT E D and COMPLETE DRIFT 12µm d D =300µm 241 Am α s,, 5.5 MeV + + + + + + + + + ---- + + + R bias DSO 6 GHz 20 GS/s v U D - - dr + - - - - - - - DBAII; inverting h E D =1V/µm t = 0 x = 12µm t TR t = t TR x = 300µm d=100µm 2 ns a) DRIFT VELOCITY and MOBILITY: v dr (E D ) e,h = d D /t TR (E D ) µ dr (E D ) e,h = v dr (E D ) e,h /E D start stop t [ns]

SINGLE-CARRIER DRIFT MODE; LOW IONIZATION b) PRESENCE of TRAP CENTRES and FIXED SPACE CHARGE 12µm 241 Am α s,, 5.5 MeV + + + + + + + + + ---- R bias * DSO 6 GHz 20 GS/s * DBA (50 Ω, 2.3 GHz) d D =300µm U D - - - - - - - - - DBAII; inverting h start E D =1V/µm varying stops d = 300µm 4-5 ns b) ESTIMATION of LIMITS LL < v dr (E D ) e,h ; µ dr (E D ) e,h ; τ e,h < UL e t = 0 x = 12µm t i = t itr 0 < x << 300µm t [ns]

DUAL-CARRIER DRIFT MODE; HIGH IONISATION traversing ions + + + + + + + + + R bias * DSO 6 GHz 20 GS/s * DBA (50 Ω, 2.3 GHz) d D =300µm E D = + 0.1-2V/µm E D = -0.1-2V/µm - - - - - - - - - h h h h h hhh h U D DRIFT VELOCITIES and MOBILITIES 20 h ns h non accessible shorter t TR longer relaxation time

SIGNAL PROCESSING: INDUCED CURRENT/COLLECTED CHARGE I tr (t,e) = Q G v dr (E) e,h d D (1 e (t /τ eff t /τ e,h ) (t /RiC) ) = Q C(E) t tr (1 e t /R ic ) Q G E = ; vdr = µ ( E) E ; D ε Dia BROADBAND = µ εε 0 tr bias τ eff 2 ; τ e e, hneff ed Neff t V life ; I = amplitude CHARGE-SENSITIVE 0 I Q C BB-Signal Area: tr ( t, E) = I0 1 0 t t tr ( t / R C ) i e Q c CS-Peak Amplitude: U peak (E) = (t,e) dt = Q C (E) C f I tr C f

1.0 ATTENTION max. poss. drift lengths: SC; 390µm PC-DG; 350µm PC-AG; 160µm DOI; 12µm 0.5 0.0 TCT with α-particles 2009 241 Am-α particles, 1.4 AMeV single - carrier drift h - drift signals first indication of DBA (50Ω, 2.3GHz) problems characterizing Diaon-Ir signals! -0.5-1.0 e - drift signals SC, 392µm, 0.9pF DoI, 12µm, 6pF PC-DG, 350µm, 7pF PC-AG, 158µm, 16pF DBA modified for 3.4GHz HP2 CC, Paris Sep 2010 0 1 2 3 4 5 DRIFT TIME [ns] CARAT - Advanced Diamond Detectors

AMPLITUDE on 50 Ω [mv] HP2 CC, Paris Sep 2010 2 1 0-1 -2 TCT with α-particles 2010 241 Am-α particles, 1.4 AMeV single - carrier drift h - drift signals e - drift signals DoI, 12µm, DBA, 3GHz DSO DoI, 12µm, mod. DBA, 6 GHz DSO DoI CS886-1, 290µm, mod. DBA, 6GHz DSO 0 1 2 3 4 DRIFT TIME [ns] effect of mod. DBA and 6GHz DSO effect of better DOI CARAT - Advanced Diamond Detectors

MFDIA886-2: pumped TCT with α-particles 11.8.2010 mod. DBA; 6GHz DSO; non-inverting Q4; n640v Q3; p480v Q3; p800v Q3; n480v Q3; n640v Q3; n800v 500ps/div

MFDIA886-2; Q1 pumped Positive Bias 320 480 640 800 [V] 1.40 1.72 2.02 2.24 FWHM [ns] MFDIA886-2; Q2 pumped Negative Bias - 320-480 - 640-800 [V] FWHM [ns] 1.04 0.85 0.81 0.77

TAKE TCT SIGNALS for SERIOUS and EXTRACT CHARGE DRIFT PARAMETERS VERY-VERY PRELIMINARY!!! M. Pomorski, PhD Thesis v dr = µ 0Ε µ 0Ε 1 + v s

TAKE TCT SIGNALS for SERIOUS and EXTRACT CHARGE DRIFT PARAMETERS VERY-VERY PRELIMINARY!!! M. Pomorski PhD Thesis

TC signals, traversing ions 2010 mixing of discrete life/drift times? NO! imperfections of the beam-test setup HP2 CC, Paris Sep 2010 CARAT - Advanced Diamond Detectors

BEAM TESTwith 40 Ar, 200AMeV; 6MHz/spill=4s ORIGINAL TC SIGNALS RECORDED by REMOTE CONTROLLED DSO, 6GHz BW, 20GS/s without amplifier! Fast uniform rise time; good S/N ratio expecting good σ i = σ N / (dv/dt) FWHM ~ 1.3 ns RateC = 700 MHz/detector channel HP2 CC, Paris Sep 2010 CARAT - Advanced Diamond Detectors

BEAM TESTwith 40 Ar, 200AMeV; 6MHz/spill=4s INTRINSIC TIME RESOLUTION of DoI SAMPLES COMPARED TO sc- and pccvdd detectors non corrected for σ N COUNTS / 10 3 6 4 2 Dia-on-Ir; moddba 40 Ar, 200AMeV σ i = 32 ps DG -PC; FEE1 27 Al, 2AGeV σ i < 25 ps sccvdd; LCBBA 6 Li, 1.8AGeV σ i < 32ps 0-0.4-0.2 0.0 0.2 0.4 HP2 CC, Paris Sep 2010 TIME DIFFERENCE [ns] CARAT - Advanced Diamond Detectors

α SPECTROSCOPY using CSTA2 preamps (U. Bonnes, TUD) 241 Am; E main α-line = 5486 kev MFDIA886-1/2 COUNTS 5486 kev MEASURED ENERGY [kev]

MFDia724b, d = 12µm m (2009) MFDia886-1, d= 290µm m (2010) COUNTS 50 CCE 1550 28.2 % e 40 E a =1550 30 20 241 Am, E α = 5486 kev CCE CCE 4950 90.2 %; 90.2 E a = % E a =1550 CS886-1, 2010 DoI 724b, 2009 5486 10 0 1000 2000 3000 4000 5000 6000 MEASURED ENERGY [kev] HP2 CC, Paris Sep 2010 CARAT - Advanced Diamond Detectors

MFDia886-1_Q1 (2010)

MFDia886-2_Q1,Q3,Q4 (2010)

MFDia886-2_Q1,Q3 (2010) comp. to a thick sccvdd (390µm)

Low dark conductivity; order of 10-13 10-12 A Narrow TCT signals of fast rt << 80 ps; 0.5 < FWHM < 2.4 ns corresponding to (preliminarily!!) very high v dr values; e-v drmax = 415 µm/ns and e-µ dr (1V/µm) ~ 3080 cm²/vs (!!) CCE α ; ~ 90% - 97% Intrinsic time resolution; σ i = 25 ps Energy resolution; δe/e 3-4% CVD-DOI DOI is a DEFECTIVE SINGLE CRYSTAL DIAMOND MATERIAL THE SHORT CHARGE DRIFT COMBINED WITH A HIGH CCE IS PRESENTLY NOT WELL UNDERSTOOD!!

Systematic analysis of TCT signals: FWHM vs. E D CCE(E D ) vs. T TR (E D ) to estimate mean τ e,h NEW MEASUREMENTS applying/removing shortly HV (proposal Christoph Nebel)...any other proposal is also welcome...