Milnor s Exotic 7-Spheres Jhan-Cyuan Syu ( June, 2017 Introduction

Similar documents
Math 67. Rumbos Fall Solutions to Review Problems for Final Exam. (a) Use the triangle inequality to derive the inequality

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

A Common Fixed Points in Cone and rectangular cone Metric Spaces

Sobolev Spaces. Chapter 10

Chapter 3. Differentiable Mappings. 1. Differentiable Mappings

Nonlinear equations. Norms for R n. Convergence orders for iterative methods

a P (A) f k(x) = A k g k " g k (x) = ( 1) k x ą k. $ & g k (x) = x k (0, 1) f k, f, g : [0, 8) Ñ R f k (x) ď g(x) k P N x P [0, 8) g(x)dx g(x)dx ă 8

X(t)e 2πi nt t dt + 1 T

Governing Equations of Fluid Dynamics

and in each case give the range of values of x for which the expansion is valid.

Assignment-10. (Due 11/21) Solution: Any continuous function on a compact set is uniformly continuous.

are continuous). Then we also know that the above function g is continuously differentiable on [a, b]. For that purpose, we will first show that

RANDOM FIELDS AND GEOMETRY. Robert Adler and Jonathan Taylor

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1

Economics 204 Summer/Fall 2011 Lecture 5 Friday July 29, 2011

Math Ordinary Differential Equations

Analysis Finite and Infinite Sets The Real Numbers The Cantor Set

I. Relationship with previous work

S n+1 (1 + r) n+1 S ] (1 + r) n + n X T = X 0 + ( S) T,

Abstract Key Words: 1 Introduction

Weak convergence and large deviation theory

US01CMTH02 UNIT-3. exists, then it is called the partial derivative of f with respect to y at (a, b) and is denoted by f. f(a, b + b) f(a, b) lim

M e t ir c S p a c es

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai


d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Math 868 Final Exam. Part 1. Complete 5 of the following 7 sentences to make a precise definition (5 points each). Y (φ t ) Y lim

Course 224: Geometry - Continuity and Differentiability

5. Some theorems on continuous functions

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535

ANSWERS TO PROBLEM SET 1

x 3y 2z = 6 1.2) 2x 4y 3z = 8 3x + 6y + 8z = 5 x + 3y 2z + 5t = 4 1.5) 2x + 8y z + 9t = 9 3x + 5y 12z + 17t = 7

Vector hysteresis models

Functions. A function is a rule that gives exactly one output number to each input number.

Defn 3.1: An n-manifold, M, is a topological space with the following properties:

4 Divergence theorem and its consequences

Lecture 25 Markov Partitions

f(x) f(z) c x z > 0 1

State Space Representation of Gaussian Processes

LIST OF FORMULAS FOR STK1100 AND STK1110

SOME RESULTS AND PROBLEMS IN PROBABILISTIC NUMBER THEORY

1. Divisors on Riemann surfaces All the Riemann surfaces in this note are assumed to be connected and compact.

1 Introduction. 2 Measure theoretic definitions

Notas de Aula Grupos Profinitos. Martino Garonzi. Universidade de Brasília. Primeiro semestre 2018

RANDOM CUTTING AND RECORDS IN DETERMINISTIC AND RANDOM TREES

COMPLETE METRIC SPACES AND THE CONTRACTION MAPPING THEOREM

Linear Independence of Finite Gabor Systems

ASME 2013 IDETC/CIE 2013 Paper number: DETC A DESIGN ORIENTED RELIABILITY METHODOLOGY FOR FATIGUE LIFE UNDER STOCHASTIC LOADINGS

Real Analysis, 2nd Edition, G.B.Folland Elements of Functional Analysis

FIXED POINT METHODS IN NONLINEAR ANALYSIS

Fourier Analysis Linear transformations and lters. 3. Fourier Analysis. Alex Sheremet. April 11, 2007

Chapter 3. Antimagic Gl'aphs

3 Applications of partial differentiation

Tangent Space and Derivative Mapping on Time Scale

From now on, we will represent a metric space with (X, d). Here are some examples: i=1 (x i y i ) p ) 1 p, p 1.

Metric Spaces. Exercises Fall 2017 Lecturer: Viveka Erlandsson. Written by M.van den Berg

LECTURE NOTES IN PARTIAL DIFFERENTIAL EQUATIONS. Fourth Edition, February by Tadeusz STYŠ. University of Botswana

Stieltjes Transformation as the Iterated Laplace Transformation

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

Immerse Metric Space Homework

DISTRIBUTIONS FUNCTIONS OF PROBABILITY SOME THEOREMS ON CHARACTERISTIC. (1.3) +(t) = eitx df(x),

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Friday April 1 ± ǁ

Introduction and Preliminaries

! 94

LINEAR DISPERSIVE WAVES

power systems eehlaboratory

Economics 204. The Transversality Theorem is a particularly convenient formulation of Sard s Theorem for our purposes: with r 1+max{0,n m}

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx.

Supplementary Materials to Learning Sparse Causal Gaussian Networks With Experimental Intervention: Regularization and Coordinate Descent

Chain Rule. MATH 311, Calculus III. J. Robert Buchanan. Spring Department of Mathematics

MODERATE DEVIATIONS IN POISSON APPROXIMATION: A FIRST ATTEMPT

ANALYSIS QUALIFYING EXAM FALL 2016: SOLUTIONS. = lim. F n

Complex manifolds, Kahler metrics, differential and harmonic forms

General Franklin systems as bases in H 1 [0, 1]

Metric Spaces Math 413 Honors Project

(TRAVELLING) 1D WAVES. 1. Transversal & Longitudinal Waves

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

4th Preparation Sheet - Solutions

Some analysis problems 1. x x 2 +yn2, y > 0. g(y) := lim

1 Assignment 1: Nonlinear dynamics (due September

Problem Set 4. f(a + h) = P k (h) + o( h k ). (3)

Functions. Chapter Continuous Functions

LECTURE NOTES ON DIFFERENTIABLE MANIFOLDS

u =0with u(0,x)=f(x), (x) =

PCP Theorem And Hardness Of Approximation For MAX-SATISFY Over Finite Fields

INVITATION FOR BID Exploratory Geothermal Drilling Services Department of Natural Resources (DNR)

4 Introduction to First-Order Partial Differential


Common Fixed Point Theorems for Ćirić-Berinde Type Hybrid Contractions

MATH 6337: Homework 8 Solutions

AFFINE AND PROJECTIVE GEOMETRY, E. Rosado & S.L. Rueda CHAPTER II: AFFINE AND EUCLIDEAN GEOMETRY

Singular Integrals. 1 Calderon-Zygmund decomposition

Exercise 8.1 We have. the function is differentiable, with. f (x 0, y 0 )(u, v) = (2ax 0 + 2by 0 )u + (2bx 0 + 2cy 0 )v.

Bootstrap random walks

1.1. The category of Banach spaces. A Banach space E over F is a complete normed vector space where F = R or C. This means that

. (70.1) r r. / r. Substituting, we have the following equation for f:

8.333: Statistical Mechanics I Problem Set # 3 Due: 10/18/13. Kinetic Theory

Journal of Inequalities in Pure and Applied Mathematics

Quadratic estimates and perturbations of Dirac type operators on doubling measure metric spaces

Transcription:

許展銓 1 2 3 R 4 R 4 R n n 4 R 4

ξ : E π M 2n J : E E R J J(v) = v v E ξ ξ ξ R ξ : E π M M ξ : Ē π M ξ ξ R = ξ R i : E Ē i(cv) = ci(v) c C v E ξ : E π M n M c(ξ) = c i (ξ) H 2n (M, Z) i 0 c 0 (ξ) = 1 c i (ξ) H 2i (M, Z) i c i (E) = 0 i > n f : M M M M c(f ξ) = f c(ξ) c(ξ η) = c(ξ) c(η) η M c(γ) = 1 + g γ C P g H 2 (C P ) e(ξ R ) = c n (ξ) H 2n (M, Z) ξ n M

p(η) = i N 0 p i (η) p i (η) = ( 1) i c 2i (η C) H 4i (M, Z) η M ξ ξ C = C ξ C ξ ξ R C = C ξ ξ c i ( ξ) = ( 1) i c i (ξ) π n (X, x 0 ) = {f : n X f f(t 0 ) = x 0 }/ t 0 n [f] + [g] := [f + g] f, g : n X f(t 0 ) = g(t 0 ) = x 0 (f + g) : n X Ψ ρ ρ : n n n = n {t 0 } {t 0 } n Ψ : n n X n n n t 0 n n = n {t 0 } {t 0 } n ρ : n n n n {t 0 } {t 0 } n {t 0 } {t 0 } Ψ : n n X Ψ({ } {t 0 }) = f( ) Ψ({t 0 } { }) = g( )

H := {a + bi + cj + dk a, b, c, d R} {q 0,, q n } H n+1 4n+3 4n+3 H n+1 = R 4n+4 4n+3 R 4n+4 = H n+1 4n+3 n 4n+3 := {(q 0,, q n ) H n+1 (q 0,, q n ) 2 = q α 2 = 1}. (2) = 3 H 4n+3 q (q 0,, q n ) := (qq 0,, qq n ) 4n+3 H n+1, q H q = 1 (2) (2) = 3 (2) 4n+3 4n+3 / (2) 4n+3 / (2) = 4n+3 / 3 = H P n γ n H P n n := c 2 (γ n C ) = e(γ n R ) H 4 (H P n, Z). H P n H 4i (H P n, Z) = i n Z H i (H P n, Z) = 0 4 i c(γ n C ) = 1 + c 1 (γ n C ) + c 2 (γ n C ) = 1 + n p(γ n R ) c 0 (γ n C ) = 1 c 2 (γ n C ) = c i (γ n C ) = 0 i 0, 2 p(γ n R ) = p i (γ n R ) = ( 1) i c 2i (γ n R C) = ( 1) i c 2i (γ n C γ n C ) i N 0 i N 0 i N 0 π α=0 = c 0 (γ n C )c 0 (γ n C ) c 0 (γ n C )c 2 (γ n C ) c 2 (γ n C )c 0 (γ n C ) + c 2 (γ n C )c 2 (γ n C ) = 1 n n + 2 n = 1 2 n + 2 n.

(4) 4 4 G k π k 1 (G) k k k (4) 4 π 3 ((4)) π 3 ((4)) = π 3 ((3)) π 3 ( 3 ) = Z Z, (4) 4 (h, j) Z 2 f hj : 3 (4) f hj (v)w := v h wv j v, w H v 3 H ξ hj f hj R 4 hj ξ hj σ : 3 (4) σ : 3 (4) σ(v)w := vw σ (vw) := wv H H P 1 = 4 n = 1 γ := γ 1 σ γ σ σ σ π 3 ((4)) e(ξ hj ) = (h + j) p 1 (ξ hj ) = 2(h j) := 1 n = 1 e(γ R ) = p 1 (γ R ) = c 2 (γ C C) = c 2 (γ C γ C ) = [c 0 (γ C )c 2 ( γ C ) + c 2 (γ C )c 0 ( γ C )] = 2. e( γ R ) = p 1 ( γ R ) = 2 e(ξ hj ) = (h + j) p 1 (ξ hj ) = 2(h j)

k (R k+p ) k R k+p k (R k+p ) k R k+p k (R k+p ) γp k γ k (R k+p ) := {(X, v) X k (R k+p ) v X}. k (R k+p ) γ k p γ k (R k+p ) := {( X, ṽ) X k (R k+p ) ṽ X}. P(n) := {(i 1,, i r ) N r r N, i 1 i r, i 1 + + i r = n} p(n) := P(n), P(n). R 2 ξ m 2n 1 (R ) m H ( 2n+1 (R ); R) = R[p 1 ( ξ 2n+1 ),, p n ( ξ 2n+1 )] H ( 2n (R ); R) = R[p 1 ( ξ 2n ),, p n 1 ( ξ 2n ), e( ξ 2n )].

M M M M + M M M M 1, M 2 n M 1 + ( M 2 ) = W (n + 1) W M, M [M] = [M ] n Ω n n Ω n Ω := n N 0 Ω n {G α } G α G β G α+β Ω Ω i Ω j Ω i+j ([M], [N]) [M N] [M] = [M ] Ω i [N] = [N ] Ω j M M = W N N = V M N M N = (M + W ) N M (N V ) = W N + M V = (W N M V ) [M] [N] = [M ] [N ] M, N N N f : M N A M f N A p A f 1 (N ) df(t p M) + T f(p) N = T f(p) N.

f A N f N A = M f {y} y N f f A N T x M dfx T f(x) N T f(x) N/T f(x) N x A f 1 (N ) N = {y} df x x A f 1 (y) f : M N y N M = m N = n f {y} f 1 (y) m n x f 1 (y) df x : T x M T yn N := df x m n M R k k L : R k R m n N T x M R k F : M N R m n x (f(x), L(x)). df x (v) = (df x (v), L(v)) df x F U x V (y, L(x)) F f 1 (y) U ({y} R m n ) V f 1 (y) m n f : M N f N {y N f {y}} N f : M N M, N C := {x M df x }

0 N f(c) = {y N f {y}} N f(c) N {0} {0} M R m X M M K M f : M R n f X {0} K M K (K K ) ε > 0 g : M R n g X K {0} f c K = g c K c K := M K f(x) g(x) < ε x M λ : M [0, 1] λ K 1 λ c K 0 y Rn y < ε f y g(x) = f(x) λ(x)y f c K = g c K f(x) g(x) < ε x M g K {0} x 0 g 1 (0) K 0 = g(x 0 ) = f(x 0 ) λ(x 0 )y = f(x 0 ) y x 0 f 1 (y) f y df(t x0 M) = T y R n = T 0 R n. dg(t x0 M) = d(f + λy)(t x0 M) = df(t x0 M) = T 0 R n. y 0 g K X {0} g X K {0} f X K {0} Df(x) x X K f 1 (0) Df = ( f i / x j ) ij X K

K (X K ) (K K ) Df K U := X K g 1 (0) y U K x U ( ) gi x j ij = ( fi y i λ ) i x j x j ij y (Df) g K g K X {0} {0} K g 1 (0) = f 1 (y) (Df) 0 f 1 (y) ξ M ξ (ξ) := (ξ)/ (ξ) (ξ) ξ 1 (ξ) ξ = 1 t 0 (ξ) (ξ) M ξ k M (ξ) (k 1) ξ M k τ : π n+k ((ξ)) Ω n (ξ) f : n+k f f 0 : n+k f 1 0 ( t 0 ) = f 1 ( t 0 ) {W 1,, W r } f 1 0 (M) f 0 (W i ) π 1 (U i ) = U i R k U i M ρ i : π 1 (U i ) R k K i W i f 1 0 (M) (K 1 K r ) f 0 W i f 1,, f r f i f 1 i ( t 0 ) f i Wi K i = f i 1 Wi K i f i K1 K r M i = 1,, r

π(f i (x)) M π(f 0 (x)) x f 1 0 ( t 0 ) f 0 f i f i 1 f i 1 (W i ) π 1 (U i ) = U i R k ρ i f i 1 : W i R k ρ i f i 1 (K1 K i ) W i {0}. ρ i f i 1 : W i R k ρ i f i : ρ i f i Wi K i = ρ i f i 1 Wi K i f i K1 K r {0} N := g 1 ((ξ) t 0 ) f i : W i π 1 (U i ) = U i R k π(f i (x)) ρ i f i (x) f 1, f 2,, f r g := f r g 1 (M) (K1 K r ) g K1 Kr M g M K 1 K r f 1 0 (M) n+k c (0, 1) f 0 (x) < c x / (K 1 K r ) f i f i (x) f i 1 (x) < c r x n+k. g(x) f 0 (x) < c x n+k g(x) = 0 x / (K 1 K r ) g 1 (M) (K1 K r ) g M τ([f]) = [g 1 (M)] g 1 (M) n [f 0 ] = [f 1 ] π n+k ((ξ)) f 0 M f 1 M f 1 0 (M) = f 1 1 (M) F : n+k [0, 1] (ξ) F (x, [0, 1 3 ]) = f 0(x) F (x, [ 2 3, 1]) = f 1(x). f 0 M f 1 M F n+k (0, 1 3 ] N [ 2,1) M. 3

F F : n+k [0, 1] (ξ) F n+k (0,1) F (x, [0, δ)) = f 0 (x), F (x, (1 δ, 1]) = f 1 (x), δ 1/3 F (M) = f 1 1 (M) f 1 0 (M) [f 1 0 (M)] = [f 1 1 (M)] Ω n τ γ k p := γ k (R k+p ) k (R k+p ) k n p n τ : π(( γ k p )) Ω n M n n M n R n+k k T N k M n R n+k T N k M n U M n R n+k T N k U = T N k γ k n γ k p ( γ k p ). g : U ( γ p k ) g M g 1 ( k (R k+p )) = M g ĝ : n+k ( γ p k ) n+k = R n+k { } n+k U t 0 [ĝ] π(( γ p k )) [M n ] = [ĝ 1 ( k (R k+p ))] C P 2i 1 C P 2ir, (i 1,, i r ) P(m) Ω 4m Ω 4m p(m)

X r r 1 π n (X) Q = H n (X; Q) n 2r Ω Q = Q[C P 2, C P 4, C P 6, ] Ω n π n+k (( γ p k )) π n+k (( γ p k )) Q = H n+k (( γ p k ); Q). H n+k (( γ k p ); Q) = H n+k (( γ k p ); Q) Ω n p(m) n = 4m Ω n = 0 4 n. Ω n p(m) n = 4m Ω n = p(m) n = 4m C P 2i 1 C P 2ir (i 1,, i r ) P(m) Ω 4m Q

F M n H n (M; F ) = F H m (M; F ) = 0 m > n. M n H k (M; R) = H n k (M; R) k = 0, 1,, n R H i (M; F ) H n i (M; F ) F. H i (M; F ) = H n i (M; F ) = H n i (M; F ) H n i (M; F ) H i (M; F ) H i (M; Z) H n i (M; Z) Z. n H n/2 (M; Z) x, y := x(y), x, y H n/2 (M; Z) x H n/2 (M; Z) x, n/2 n/2 M n M µ M H(M; Z) = Z M

M 4n α, β H 2n (M, R) α, β := (α β)(µ M ). H p dr (M; R) = H p (M; R). M n 4 n σ(m) n = 4k σ(m), H 2k (M; R),,, σ : Ω Z σ σ : Ω Z σ σ(m + N) = σ(m) + σ(n) σ(m N) = σ(m) σ(n) σ(m) = 0 M = W

M = m, N = n W = m + 1 V := M N 4 V 4 m 4 n σ(m N) = 0 σ(m) σ(n) = 0 V = 4k H 2k (V ; R) = s+t=2k H s (M; R) R H t (N; R). x, y H 2k (V ; R) xy(µ V ) := x y(µ V ) = 0 {v s i }, {w t j} H s (M; R), H t (N; R) v s i v m s j = δ ij, w t iw n t j = δ ij s m/2, t n/2 A = H m/2 (M; R) H n/2 (N; R) m, n A = 0 B := A H 2k (V ; R) B {v s i w t j s + t = 2k, s m 2, t n 2 } R H 2k+1 (W 4k+1, M 4k ) H 2k (M 4k ) H 2k (W 4k+1 ) i i H 2k (W 4k+1 ) H 2k (M 4k ) H 2k+1 (W 4k+1, M 4k ) i H 2k (M) x, y M 4k x, y W 4k+1 i (x ) = x, i (y ) = y x, y = (x y)(µ M ) = i (x y )(µ M ) = (x y )i (µ M ). A = n N 0 A n A Π := {a 0 +a 1 +a 2 + a i A i } A Π 1 := {1 + a 1 + a 2 + a i A i } A Π x A Π {K n } n N0 K n (x 1,, x n ) n K(ab) = K(a)K(b) a, b A Π 1 K(x) := 1 + K 1 (x 1 ) + K 2 (x 1, x 2 ) +. δ

A R[t] t 1 f(t) 1 + λ 1 t + λ 2 t 2 + R[[t]] {K n } K(1 + t) = f(t) {K n } K(1 + t) = 1 + K 1 (t) + K 2 (t, 0) + K 3 (t, 0, 0) + = 1 + λ 1 t + λ 2 t 2 + λ 3 t 3. K n (x 1,, x n ) x n 1 λ n n {K n } n N {t 1,, t n } 1 I = (i 1,, i r ) P(n) λ I := λ i1 λ ir 1,, n {t 1,, t n } { 1,, n } K n ( 1,, n ) := λ I g I ( 1,, n ) I P(n) g I g I ( 1,, n ) = t i 1 j1 t ir j r 1 j 1,, j r n g I (ab) = HJ=I g H (a)g J (b). K(ab) = K(a)K(b) {K n } f(t) {K n } m M m 4 m K(M m ) = 0 m = 4k K(M 4 k) := K k (p 1,, p k )(µ M ). g I

{L n } t t = 1 + 1 3 t 1 45 t2 + + ( 1)n 1 2 2n B n t n +, (2n)! B k k σ(m 4k ) = L(M 4k ) σ(c P 2k ) = L(C P 2k ) k N σ(c P 2k ) = 1 L(C P 2k ) p(c P 2k ) = (1 + a 2 ) 2k+1 a := c 1 (γ 1 ) γ 1 C P 2k L(1 + a 2 + 0 + ) = a 2 a 2 L(p(C P 2k )) = ( a ) 2k+1. a a z ( z ) 2k+1 z 2 k u = z z 1 2πi L(C P 2 k) = 1 dz = du 1 u 2 dz ( z) = 1 1 + u 2 + u 4 + du = 1. 2k+1 2πi u 2k+1

f M f y f M y y f : M n R α (x 1, x 2,, x n ) U y x i (y) = 0 1 i n f(x) = f(b) x 2 1 x 2 α + x 2 α+1 + + x 2 n x U \ {y}. 4 4 ξ hj 4 f hj : 3 (4) f hj (v)w := v h wv j v 3 H v h wv j H hj ξ hj h + j = 1 M 7 k := hj Mk 7 k h j = k M 7 k 7 Mk 7 f : M 7 k R y 0, y 1 M 7 k

f f f(y 0 ) = 0 f(y 1 ) = 1 d dt = f(). f 1 (a) a (0, 1) f 1 ([0, a]) = f 1 ([0, b]) a, b (0, 1) a (x 1,, x 7 ) f 1 ([0, a]) y 0 f() = x 2 1 + + x 2 7. f 1 ([0, a]) = 7 f 1 ([0, 1)) = M 7 k {y 1} = 7 7 k = 7 7 k = 7 Mk 7 M 7 k M 7 k R4 3 (R 4 {0}) 3 g (R 4 {0}) 3 g : (u, v) (u, v ) ( u u, uh vu j 2 u H R 4 {0} H 3 H h + j = 1 u = u g 3 g := 3 (4) g(u)v := u h vu j. ). Mk 7 (u, v) (u, v ) f(u, v) = Re(v) = Re(u ) u := u (v ) 1 = 1 + u 2 1 + u 2 u u u h vu j Mk 7

f f (u, v ) (u, v) (0, v) f 3 (0, 1) (0, 1) k M 7 k 7 M 7 k (ξ hj ) M 7 k 7 Mk 7 = 7 Wk 8 W 8 k = (ξ hj ) H i ( 4 ) = H 4+i ((ξ hj ), hj ) = H 4+i ((ξ hj ), t 0 ). H i (Wk 8 ) = Z i = 0, 4, 8 H i (Wk 8 ) = 0 i 0, 4, 8. Wk 8 1 1 W k 8 σ(wk 8) = 1 1 = 7p 2 p 2 1 45 Wk 8 e(ξ h j) = p 1 (ξ hj ) = 2k := e(γ 1 R ) H 4 (H P 1, Z) γ 1 R H P 1 π : ξ hj 4 T ξ hj = π (T 4 ) π (ξ hj ) p(t 4 ) = 1 p(t ξ hj ) = π p(ξ hj ) p 1 (T ξ hj ) = π p 1 (ξ hj ) = π (2k ) = 2k = 2ke(ξ hj ). p 2 1(T Wk 8) = p2 1(T ξ hj ) = 4k 2 4k 2 + 45 = 7p 2 0 ( 7) k 0 ( 7) k k 0 ( 7) k Mk 7 7