EART162: PLANETARY INTERIORS

Similar documents
EART193 Planetary Capstone. Francis Nimmo

EART162: PLANETARY INTERIORS

Importance of Solar System Objects discussed thus far. Interiors of Terrestrial Planets. The Terrestrial Planets

EART162: PLANETARY INTERIORS

Physics and Chemistry of the Earth and Terrestrial Planets

EART164: PLANETARY ATMOSPHERES

Thermal and compositional structure of the Mantle and Lithosphere

ES265 Order of Magnitude Phys & Chem Convection

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Associated fields include:

Physics and Chemistry of the Earth and Terrestrial Planets

Simple Thermal Isostasy

Heat in the Earth and heat flow (see Mussett & Khan, Chapter 17; various topics in Fowler, Chapter 7, especially p )

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 26: Planetary Geology [3/23/07] Announcements.

Petrology. Petrology: the study of rocks, especially aspects such as physical, chemical, spatial and chronoligic. Classification:

EARTH S ENERGY SOURCES

Units. specified to be meaningful. between different scales. - All physical quantities must have their units. - We will always used SI units.

Astronomy 111 Practice Midterm #2

Phys 214. Planets and Life

(b) What is the amplitude at the altitude of a satellite of 400 km?

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces

Seismotectonics of intraplate oceanic regions. Thermal model Strength envelopes Plate forces Seismicity distributions

Lecture 23: Jupiter. Solar System. Jupiter s Orbit. The semi-major axis of Jupiter s orbit is a = 5.2 AU

EART164: PLANETARY ATMOSPHERES

Formation of the Earth and Solar System

Earth as a planet: Interior and Surface layers

EART164: PLANETARY ATMOSPHERES

How can solid rock be bent, squished, stretched, and cracked?

Class Exercise. Today s Class. Overview of Mercury. Terrestrial Planet Interiors. Today s Class: Mercury & Venus

Geotherms. Reading: Fowler Ch 7. Equilibrium geotherms One layer model

Lecture #11: Plan. Terrestrial Planets (cont d) Jovian Planets

Course Business. Today: isostasy and Earth rheology, paper discussion

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

2. Heat Flow. Ge 163 3/30/15-

Earth. Interior Crust Hydrosphere Atmosphere Magnetosphere Tides

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy 1140 Quiz 3 Review

Forms of Energy. Energy: commonly defined as the capacity to do work (i.e. by system on its surroundings); comes in many forms

1. The process by which the ocean floor sinks beneath a deep-ocean trench and back into the mantle is known as

Earth. Properties of Earth. Earth's Interior. Earth is the planet that we know best

Heat Transfer There are three mechanisms for the transfer of heat:

Earth! Objectives: Interior and plate tectonics Atmosphere and greenhouse effect

AST 301 Introduction to Astronomy

Standard 2, Objective 1: Evaluate the source of Earth s internal heat and the evidence of Earth s internal structure.

Internal Layers of the Earth

Solution for Homework# 3. Chapter 5 : Review & Discussion

Evidence of Earth s Interior Direct and Indirect Evidence

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts

Tectonics. Planets, Moons & Rings 9/11/13 movements of the planet s crust

Lecture 17: Earth s Interior. Extrasolar Planets. Extrasolar Planets. planet

Earth, the Lively* Planet. * not counting the life on the planet!

Intro to Quantitative Geology

Venus - Overview. Exploration of Venus. Admin. 9/26/17. Second planet from Sun Earth s sister planet

Chapter 7 Earth Pearson Education, Inc.

General Introduction. The Earth as an evolving geologic body

Geophysics Departmental Exam: 2004 Part 1

GEOL5690 Class notes #2: Passive Margins & Thermal Subsidence

KNOWLEDGE GET FROM TODAY S CLASS MEETING Class Meeting #15, Monday, February 22 nd, 2016

Plate Tectonics. Why Continents and Ocean Basins Exist

Tutorials for Thermal Convection. Shijie Zhong Department of Physics University of Colorado Boulder, CO

Extraterrestrial Volcanism

1 The Earth as a Planet

Planetary Atmospheres

10/11/2010. Acceleration due to gravity, a. Bulk Properties Mass = 6 x kg Diameter = 12,756 km Density = 5515 kg/m 3 (mix of rock and iron)

Geodynamics Lecture 7 Heat conduction and production

Name: Date: Per. Plate Tectonics Study Guide (Ch. 5)

Material is perfectly elastic until it undergoes brittle fracture when applied stress reaches σ f

Lecture #1 Tidal Models. Charles McLandress (Banff Summer School 7-13 May 2005)

Climate Regulation. - What stabilizes the climate - Greenhouse effect

SIO15 Midterm 1, Monday Oct. 30, 2017 TEST VARIATION: 2

How Could Plato Serve Planetary Physics and. What can we Learn From Solar System Planets for Terrestrial Exoplanets?

The Moon & Mercury: Dead Worlds

Planetary Atmospheres

For the next few weeks: Terrestrial Planets, their Moons, and the Sun. Planetary Surfaces and Interiors 2/20/07

Today. Events. Terrestrial Planet Geology. Fall break next week - no class Tuesday

Jovian (Jupiter like) Planets

Previously Documented Basin-localized Extension on Mercury

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs

Next opportunity to observe the Moon and Venus close together: Dec. 31, Announcements

What are terrestrial planets like on the inside? Chapter 9 Planetary Geology: Earth and the Other Terrestrial Worlds. Seismic Waves.

Lecture Outlines. Chapter 11. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Physics of the Earth

Nebular Hypothesis (Kant, Laplace 1796) - Earth and the other bodies of our solar system (Sun, moons, etc.) formed from a vast cloud of dust and

Astronomy 311: Lecture 3 - Geomagnetism. Magnetism is a very important force in physics: one half of electromagnetism.

The Solar System 6/23

Chapter 9. ASTRONOMY 202 Spring 2007: Solar System Exploration. Class 27: Planetary Geology [3/26/07] Announcements.

Terrestrial Bodies of the Solar System. Valerie Rapson

OCN 201: Earth Structure

3. Titan is a moon that orbits A) Jupiter B) Mars C) Saturn D) Neptune E) Uranus

Lecture #10: Plan. The Moon Terrestrial Planets

The Solar System. Earth as a Planet

The Earth in the Universe

Chapter 7 Earth and the Terrestrial Worlds

The Theory of Plate Tectonics

Exercise 1: Vertical structure of the lower troposphere

Information on internal structure from shape, gravity field and rotation

2 Equations of Motion

Origin of the Solar System

Radiation from planets

Shape and Size of the Earth

HOMEWORK 3 Draft presentations due November 4 Oral presentations of Group problems, November 6, November 8

Transcription:

EART16: PLANETARY INTERIORS Francis Nimmo F.Nimmo EART16 Spring 10

Last Week Elasticity: G E (1 v) xx Flexural equation gives deflection w in response to load 4 d w D gw q( x) 4 m w dx The flexural parameter a gives us the characteristic wavelength of deformation a 4D 1/ 4 g( E m xx G xy xy K dp d w ) E 3(1 v) F.Nimmo EART16 Spring 10

This Week Heat Transfer See Turcotte and Schubert ch. 4 Conduction, convection, radiation Radiation only important at or above the surface not dealt with here Convection involves fluid motions dealt with later in the course Conduction is this week s subject Next week - Midterm F.Nimmo EART16 Spring 10

Conduction - Fourier s Law T 1 >T 0 T 0 F d ( T1 T dt Heat flow F k 0) k d dz T 1 Heat flows from hot to cold (thermodynamics) and is proportional to the temperature gradient Here k is the thermal conductivity (Wm -1 K -1 ) and units of F are Wm - (heat flux is per unit area) Typical values for k are -4 Wm -1 K -1 (rock, ice) and 30-60 Wm -1 K -1 (metal) Solar heat flux at 1 A.U. is 1300 Wm - milliwatt=10-3 W Mean subsurface heat flux on Earth is 80 mwm - What controls the surface temperature of most planetary bodies? F.Nimmo EART16 Spring 10

Diffusion Equation F F 1 dz The specific heat capacity C p is the change in temperature per unit mass for a given change in energy: DE=mC p DT We can use Fourier s law and the definition of C p to find how temperature changes with time: a T t k C p T z T k z Here k is the thermal diffusivity (=k/c p ) and has units of m s -1 Typical values for rock/ice 10-6 m s -1 F.Nimmo EART16 Spring 10

Depth Diffusion lengthscale (1) How long does it take a change in temperature to propagate a given distance? Consider an isothermal body suddenly cooled at the top The temperature change will propagate downwards a distance d in time t T 0 T 1 d Temp. Profile at time t Initial profile After time t, F~k(T 1 -T 0 )/d The cooling of the near surface layer involves an energy change per unit area DE~d(T 1 -T 0 )C p / We also have Ft~DE This gives us d ~ kt F.Nimmo EART16 Spring 10

Diffusion lengthscale () This is perhaps the single most important equation in the entire course Another way of deducing this equation is just by inspection of the diffusion equation a Examples: d ~ kt 1. How long does it take to boil an egg? d~0.0m, k=10-6 m s -1 so t~6 minutes. How long does it take for the molten Moon to cool? d~1800 km, k=10-6 m s -1 so t~100 Gyr. What might be wrong with this answer? F.Nimmo EART16 Spring 10

Heat Generation in Planets Most bodies start out hot (because of gravitational energy released during accretion) But there are also internal sources of heat For silicate planets, the principle heat source is radioactive decay (K,U,Th at present day) For some bodies (e.g. Io, Europa) the principle heat source is tidal deformation (friction) Radioactive heat production declines with time Present-day terrestrial value ~5x10-1 W kg -1 (or ~1.5x10-8 W m -3 ) Radioactive decay accounts for only about half of the Earth s present-day heat loss (why?) F.Nimmo EART16 Spring 10

Example - Earth Near-surface consists of a mechanical boundary layer (plate) which is too cold to flow significantly (Lecture 3) The base of the m.b.l. is defined by an isotherm (~1400 K) Heat must be transported across the m.b.l. by conduction Let s assume that the heat transported across the m.b.l. is provided by radioactive decay in the mantle (true?) d R m.b.l. interior By balancing these heat flows, we get kdt d 3 a HR Here H is heat production per unit volume, R is planetary radius Plugging in reasonable values, we get m.b.l. thickness d=5 km and a heat flux of 16 mwm -. Is this OK? F.Nimmo EART16 Spring 10

Internal Heat Generation Assume we have internal heating H (in Wkg -1 ) From the definition of C p we have Ht=DTC p So we need an extra term in the heat flow equation: T t T k z H C p This is the one-dimensional, Cartesian thermal diffusion equation assuming no motion In steady state, the LHS is zero and then we just have heat production being balanced by heat conduction The general solution to this steady-state problem is: a T a bz H z k C p F.Nimmo EART16 Spring 10

Example Let s take a spherical, conductive planet in steady state In spherical coordinates, the diffusion equation is: T t k r 1 T H r r r C p The solution to this equation is a T( r) T s H 6k ( R r Here T s is the surface temperature, R is the planetary radius, is the density So the central temperature is T s +(HR /6k) E.g. Earth R=6400 km, =5500 kg m -3, k=3 Wm -1 K -1, H=6x10-1 W kg -1 gives a central temp. of ~75,000K! What is wrong with this approach? ) 0 F.Nimmo EART16 Spring 10

What happens if the medium is moving? Two ways of looking at the problem: Following an individual particle Lagrangian In the laboratory frame - Eulerian Particle frame In the particle frame, there is no change in temperature with time u In the laboratory frame, the temperature at a fixed point is changing with time Laboratory frame But there would be no change if the Temperature contours temperature gradient was perpendicular to the velocity T In the Eulerian frame, we write u T t What does T mean? The right-hand side is known as the advected term Where does this come from? F.Nimmo EART16 Spring 10

Material Derivative So if the medium is moving, the heat flow equation is DT Dt T k dz Here we are using the material derivative D/Dt, where D Dt t H C p u It is really just a shorthand for including both the local rate of change, and the advective term It applies to the Eulerian (laboratory) reference frame Not just used in heat transfer (T). Also fluid flow (u), magnetic induction etc. F.Nimmo EART16 Spring 10

Skin-Depth Problem Let s go back to the original diffusion equation: T t T k dz Say we have a surface temperature which varies periodically (e.g. day-night, yearly etc.) with frequency w How deep do these temperature changes penetrate? The full solution is annoying and involves separation of variables (see T&S Section 4-14) But there s a quick way to solve this problem using d ~kt This approach gives us a skin depth of d~(pk/w) 1/ which is very close to the full solution of d=(k/w) 1/ Note that w=p/period! F.Nimmo EART16 Spring 10

Skin-Depth and Thermal Inertia Temperature fluctuations are damped at depth; higher frequency fluctuations are damped at shallower depths The skin depth tells us how thick a layer feels the efffect of the changing surface temperature On a planetary surface, the power input (radiation) varies periodically e.g. F=F 0 sin (wt) The resulting change in the temperature of the nearsurface layer is given by: 1/ 1/ F0t F0t DT ~ 1/ ( kc ) I The quantity I is the thermal inertia, which tells us how rapidly the temperature of the surface will change p a F.Nimmo EART16 Spring 10

Why is thermal inertia useful? The main controls on thermal inertia are the physical properties of the near-surface materials e.g. particle size and rock vs. sand fraction (rocks have a higher I and thus take longer to heat up or cool down) Thermal inertia (and thus these physical properties) can be measured remotely infra-red cameras on spacecraft can track the changing temperature of the surface as a function of time University of Colorado Map of thermal inertia of Mars (Mellon et al. 000) Low I dust bowl High I lava flows F.Nimmo EART16 Spring 10

Thermal Stresses Recall thermal expansivity a: materials expand if heated and cool if contracted (a~10-5 K -1 for rock) adt 1 1 E ( 1 ) adt 1 E ( 1) adt EaDT 1 1 (Contraction strain is negative) Say we have plane strain, confined so that 1 = =0 This results in (See Week 3) E.g. during an ice age DT=10 K, =10 MPa i.e. a lot! Other applications: cooling lithospheres, rotating bodies, badly-insulated spacecraft... F.Nimmo EART16 Spring 10

Deformation Heating Energy per unit volume W required to cause a given amount of strain a W Power P per unit volume is 1 E So power depends on stress and strain rate E.g. long-term fault slip =10-15 s -1, =10 MPa, P=10-8 Wm -3 comparable to mantle heat production A particularly important sort of deformation heating is that due to solid body tides Diurnal tides can be large e.g. 30m on Europa P E Jupiter Eccentric orbit Satellite F.Nimmo EART16 Spring 10

Tidal Heating (1) A full treatment is beyond the scope of this course, but here s an outline Strain depends on tidal amplitude H H R Strain rate depends on orbital period What controls the tidal amplitude? EH Combining the various pieces, we get P QR Here Q is a dimensionless factor telling us what fraction of the elastic energy is dissipated each cycle Example: Io H=300 m, Q=100, R=1800km, =1.8 days, E=10 GPa (why?). This gives us P=x10-5 Wm -3 R a H F.Nimmo EART16 Spring 10

Tidal Heating () P=x10-5 Wm -3 results in a surface heat flux of 1W m - (about as much energy as Io receives from the Sun!) Is this a reasonable estimate? Tides can be the dominant source of energy for satellites orbiting close to giant planets April 1997 Sept 1997 July 1999 Pillan Pele 400km F.Nimmo EART16 Spring 10

Summary Everything you need to know about heat conduction in one equation: d =kt Heat transport across mechanical boundary layer is usually by conduction alone Heat is often transported within planetary interiors by convection (next lecture) Main source of heat in silicate planets is radioactive decay Tidal heating can be an important source of heat in bodies orbiting giant planets F.Nimmo EART16 Spring 10

Supplementary Material Follows F.Nimmo EART16 Spring 10

Conductive half-space cooling problem Depth T s d Profile at time t T m Initial profile Governing equation: We are interested in how rapidly a temperature change propagates We have already found a scaling argument: t ~ d /k Now we ll take a more rigorous approach (see T&S 4-15) T t T k dz To simplify, we non-dimensionalize the temperature: T Ts T T The governing equation doesn t change, but the boundary conditions become simpler: (z,0)=1, (0,t)=0 (inf,t)=1 m F.Nimmo EART16 Spring 10 s

Conductive half-space (cont d) k t dz The problem has only one length-scale: (kt) 1/ We can go from variables (t,z) to one by employing a similarity variable h: z h kt This approach assumes that solutions at different times will look the same if the lengths are scaled correctly So we can rewrite the original diffusion equation: a d h dh 1 d dh (inf)=1, (0)=0 F.Nimmo EART16 Spring 10

Conductive half-space (cont d) Relative concentration, C/C 0 erf h d h dh 1 d dh (inf)=1, (0)=0 Where erf is the error function: z/(kt) 1/ 1 0.8 0.6 0.4 0. 0 h Solution: 0 0.5 1 1.5.5 3 Space-time similarity variable, x/(dt) 1/ T m Not quite right... T s erf erf ( h) T T m Ts T s (h) p h h ' e 0 dh' Re-dimensionalize: erf z kt So e.g. for any combination such that z/(kt) 1/ =1, we have T-T s =0.15(T m -T s ) F.Nimmo EART16 Spring 10

So what? Let s say the characteristic cooling timescale t c is the time for the initial temperature contrast to drop by 85% From the figure on the previous page, we get t c z 4k This should look very familiar (give or take a factor of 4) So the sophisticated approach gives an almost identical result to the one-line approach An identical equation arises when we consider the solidification of material (the Stefan problem), except that the 4 is replaced by a factor of similar size which depends on latent heat and heat capacity (see T&S 4-17) F.Nimmo EART16 Spring 10

Earth (cont d) Predicted m.b.l. thickness 90 km This underestimates continental m.b.l. thickness by a factor of ~ The main reason is that (oceanic) plates are thinner near spreading centres, and remove more heat than the continents Our technique would work better on planets without plate tectonics 100 km 00 km crust Mantle heat flux 18 mwm - Michaut & Jaupart, GRL 004 This figure shows continental geotherms based on P,T data from nodules. The geotherm is clearly conductive. Note the influence of the crust. The mantle heat flux is lower than our estimate on the previous slide, and the m.b.l. thicker. F.Nimmo EART16 Spring 10

Peclet Number It would be nice to know whether we have to worry about the advection of heat in a particular problem One way of doing this is to compare the relative timescales of heat transport by conduction and advection: ~ L L a ul t cond t k adv ~ Pe ~ u k The ratio of these two timescales is called a dimensionless number called the Peclet number Pe and tells us whether advection is important High Pe means advection dominates diffusion, and v.v.* E.g. lava flow, u~1 m/s, L~10 m, Pe~10 7 \ advection is important * Often we can t ignore diffusion even for large Pe due to stagnant boundary layers F.Nimmo EART16 Spring 10

Power = force x velocity Viscous Heating Viscous flow involves shear stresses potential source of power (heat) dz u(z) We can find the power dissipated per unit volume P a P u z Note the close resemblance to the equation on the earlier slide (substitute =/ ) Is viscous heating important in the Earth s mantle? Can you think of a situation in which it might be important? F.Nimmo EART16 Spring 10