arxiv: v1 [math.ct] 8 Sep 2009

Similar documents
On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

arxiv: v1 [math.ca] 21 Aug 2018

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Hyers-Ulam stability of Pielou logistic difference equation

Pre-Lie algebras, rooted trees and related algebraic structures

Lecture 1 - Introduction and Basic Facts about PDEs

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

TOPIC: LINEAR ALGEBRA MATRICES

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

ON LEFT(RIGHT) SEMI-REGULAR AND g-reguar po-semigroups. Sang Keun Lee

DIFFERENCE BETWEEN TWO RIEMANN-STIELTJES INTEGRAL MEANS

CHENG Chun Chor Litwin The Hong Kong Institute of Education

Algebra in a Category

Part 4. Integration (with Proofs)

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

Properties of Different Types of Lorentz Transformations

Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates

Linearly Similar Polynomials

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

KENDRIYA VIDYALAYA IIT KANPUR HOME ASSIGNMENTS FOR SUMMER VACATIONS CLASS - XII MATHEMATICS (Relations and Functions & Binary Operations)

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

A Study on the Properties of Rational Triangles

arxiv:math/ v2 [math.ct] 21 Feb 2007

DEFORMATIONS OF ASSOCIATIVE ALGEBRAS WITH INNER PRODUCTS

Electromagnetic-Power-based Modal Classification, Modal Expansion, and Modal Decomposition for Perfect Electric Conductors

Arrow s Impossibility Theorem

Discrete Structures Lecture 11

Bisimulation, Games & Hennessy Milner logic

Dong-Myung Lee, Jeong-Gon Lee, and Ming-Gen Cui. 1. introduction

Introduction to Olympiad Inequalities

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1. 1 [(y ) 2 + yy + y 2 ] dx,

On the Co-Ordinated Convex Functions

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

Arrow s Impossibility Theorem

Linear Algebra Introduction

Project 6: Minigoals Towards Simplifying and Rewriting Expressions

The study of dual integral equations with generalized Legendre functions

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

Functions. mjarrar Watch this lecture and download the slides

The Inspherical Gergonne Center of a Tetrahedron

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

More Properties of the Riemann Integral

f (x)dx = f(b) f(a). a b f (x)dx is the limit of sums

Electromagnetism Notes, NYU Spring 2018

16z z q. q( B) Max{2 z z z z B} r z r z r z r z B. John Riley 19 October Econ 401A: Microeconomic Theory. Homework 2 Answers

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

Two Triads of Congruent Circles from Reflections

A Functorial Query Language

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

INTEGRATION. 1 Integrals of Complex Valued functions of a REAL variable

MA10207B: ANALYSIS SECOND SEMESTER OUTLINE NOTES

Symmetrical Components 1

Contents. Outline. Structured Rank Matrices Lecture 2: The theorem Proofs Examples related to structured ranks References. Structure Transport

Semigroup of generalized inverses of matrices

The Double Integral. The Riemann sum of a function f (x; y) over this partition of [a; b] [c; d] is. f (r j ; t k ) x j y k

Some integral inequalities of the Hermite Hadamard type for log-convex functions on co-ordinates

Mathematical Journal of Okayama University

Dorf, R.C., Wan, Z. T- Equivalent Networks The Electrical Engineering Handbook Ed. Richard C. Dorf Boca Raton: CRC Press LLC, 2000

The Riemann and the Generalised Riemann Integral

MATH 409 Advanced Calculus I Lecture 22: Improper Riemann integrals.

Lecture Notes No. 10

arxiv: v1 [math.ra] 1 Nov 2014

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

(a) A partition P of [a, b] is a finite subset of [a, b] containing a and b. If Q is another partition and P Q, then Q is a refinement of P.

Congruent Contiguous Excircles

Reference : Croft & Davison, Chapter 12, Blocks 1,2. A matrix ti is a rectangular array or block of numbers usually enclosed in brackets.

Line Integrals and Entire Functions

Relations between a dual unit vector and Frenet vectors of a dual curve

The Word Problem in Quandles

Conneted sum of representations of knot groups

An introduction to groups

s the set of onsequenes. Skeptil onsequenes re more roust in the sense tht they hold in ll possile relities desried y defult theory. All its desirle p

Well Centered Spherical Quadrangles

On the free product of ordered groups

Chapter 3. Vector Spaces. 3.1 Images and Image Arithmetic

2. Topic: Summation of Series (Mathematical Induction) When n = 1, L.H.S. = S 1 = u 1 = 3 R.H.S. = 1 (1)(1+1)(4+5) = 3

(h+ ) = 0, (3.1) s = s 0, (3.2)

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

f (z) dz = 0 f(z) dz = 2πj f(z 0 ) Generalized Cauchy Integral Formula (For pole with any order) (n 1)! f (n 1) (z 0 ) f (n) (z 0 ) M n!

Consistent Probabilistic Social Choice

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

CS 573 Automata Theory and Formal Languages

1.9 C 2 inner variations

Notes on the bicategory of W*-bimodules

HW3, Math 307. CSUF. Spring 2007.

5. Every rational number have either terminating or repeating (recurring) decimal representation.

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

F / x everywhere in some domain containing R. Then, + ). (10.4.1)

Abstraction of Nondeterministic Automata Rong Su

Solutions to Assignment 1

The Regulated and Riemann Integrals

Self-similarity and symmetries of Pascal s triangles and simplices mod p

Coalgebra, Lecture 15: Equations for Deterministic Automata

Section 1.3 Triangles

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

6.1 Definition of the Riemann Integral

Logic Synthesis and Verification

Integral points on the rational curve

Transcription:

On the briding of n Ann-tegory rxiv:0909.1486v1 [mth.ct] 8 Sep 2009 September 8, 2009 NGUYEN TIEN QUANG nd DANG DINH HANH Dept. of Mthemtis, Hnoi Ntionl University of Edution, Viet Nm Emil: nguyenqung272002@gmil.om ddhnhdhsphn@gmil.om Abstrt A brided Ann-tegory A is n Ann-tegory A together with the briding suh tht (A,,,, (I,l, r)) is brided tensor tegory, nd is omptible with the distributivity onstrints. The pper shows the dependene of the left (or right) distributivity onstrint on other xioms. Hene, the pper shows the reltion to the onepts of distributivity tegory due to M. L. Lplz nd ring-like tegory due to A. Frohlih nd C.T.C Wll. The enter onstrution of n lmost strit Ann-tegory is n exmple of n unsymmetri brided Ann-tegory. Mthemtis Subjet Clssifitions (2000): 18D10. Key words: Brided Ann-tegory, brided tensor tegory, distributivity onstrint, ring-like tegory. 1 Introdution The onept of brided tensor tegory is introdued by André Joyl nd Ross Street [2] whih is neessry extension of symmetri tensor tegory, sine the enter of tensor tegory is brided tensor tegory but unsymmetri. The se of brided group tegories ws onsidered in the bove work like struture lift of the onept of group tegory [1]. In 1972, M.L. Lplz introdued the onept of distributivity tegory [4]. After tht, in [1], A. Frohlih nd C.T.C Wll introdued the onept of ring-like tegory, with the xiomtis whih is sserted to be simplier thn the one of M.L. Lplz. These two onepts re tegoriztion of the onept of ommuttive rings, s well s generliztion of the tegory of modules on ommuttive ring R. In order to hve desriptions on strutures, nd ohomologil lssify them, N. T. Qung hs introdued the onept of Ann-tegories 1

On the briding of n Ann-tegory 2 [5], s tegoriztion of the onept of rings (unneessrily ommuttive), with requirements of invertibility of objets nd morphisms of the ground tegory, similr to of group tegories (see [1]). With these requiments, we n prove tht eh ongruene lss of Ann-tegories is ompletely defined by the invrints: the ring R, the R bimodule M nd n element in the M Lne ohomology group HML 3 (R, M) (see [8]). The onept of brided Ann-tegory is nturl development of the onept of n Ann-tegory. The xioms of this onept presents nturl reletions between the onstrints respet to,. After tht, we hve proved the dependene of some xioms between the briding nd the distributivity onstrints: thnks to the briding, the distributivity onstrint n be defined by only one side (right or left). Conurrently, the pper shows tht eh symmetri Ann-tegory (whih the briding is symmetri) stisfies the xiomtis due to M. L. Lplz [4] nd the xiomtis due to A. Frohlih nd C.T.C Wll [1]. Moreover, s orrolry, the pper shows redued system xiomtis of the one due to M. L. Lplz, nd prove tht this xiomtis is equivlent to the one due to A. Frohlih nd C. T. C Wll. In the lst setion, we present the enter onstrution of n lmost strit Ann-tegory, s n extension of the enter onstrution of tensor tegory due to Andr Joyl nd Ross Street. This enter onstrution is n exmple of the onept of brided, but unsymmetri Ann-tegory. In this pper, we sometimes denote XY insted of X Y of two objets X, Y. 2 The definition of brided Ann-tegory Firstly, let us rell the definition of brided tensor tegory ording to [2]. A briding for tensor tegory V onsists of nturl olletion of isomorphisms = A,B : A B B A in V suh tht the two digrms (B1) nd (B2) ommute: id (A B) C (B A) C 1 B (A C) 1 id A (B C) (B C) A 1 B (C A) (B1) id A (B C) A (C B) (A C) B id (A B) C C (A B) (C A) B (B2)

On the briding of n Ann-tegory 3 If is briding, so is given by A,B = ( B,A) 1, sine (B2) is just obtined from (B1) by repling with. A symmetry is briding whih stisfies =. A brided tensor tegory is pir (V, ) onsisting of tensor tegory V nd briding. Definition 1. [5, 7, 8] An Ann-tegory onsists of: i) A tegory A together with two bifuntors, : A A A. ii) A fixed objet 0 A together with nturlity onstrints +, +, g, d suh tht (A,, +, +, (0, g, d)) is symmetri tegoril group. iii) A fixed objet 1 A together with nturlity onstrints, l, r suh tht (A,,, (1, l, r)) is monoidl A-tegory. iv) Nturl isomorphisms L, R L A,X,Y : A (X Y ) (A X) (A Y ) R X,Y,A : (X Y ) A (X A) (Y A) suh tht the following onditions re stisfied: (Ann-1) For eh A A, the pirs (L A, LA ), (R A, RA ) defined by reltions: L A = A L A X,Y = L A,X,Y R A = A RA X,Y = R X,Y,A re -funtors whih re omptible with + nd +. (Ann-2) For ll A, B, X, Y A, the following digrms: id A L (AB)(X Y ) A(B(X Y )) B A,B,X Y A(BX BY ) L AB L A (AB)X (AB)Y A,B,X A,B,Y A(BX) A(BY ) (1) X Y,B,A (X Y )(BA) ((X Y )B)A R B id A (XB Y B)A R BA X(BA) Y (BA) R A (2) X,B,A Y,B,A (XB)A (Y B)A (A(X Y ))B A,X Y,B id A R B A((X Y )B) A(XB Y B) L A id B L A R (AX AY )B B (AX)B (AY )B A(XB) A(Y B) (3) (A B)X (A B)Y L (A B)(X Y ) R A(X Y ) B(X Y ) R X R Y L A L B v (AX BX) (AY BY ) (AX AY ) (BX BY ) (4)

On the briding of n Ann-tegory 4 ommute, where v = v U,V,Z,T : (U V ) (Z T) (U Z) (V T) is the unique morphism built from +, +, id in the symmetri tegoril group (A, ). (Ann-3) For the unity objet 1 A of the opertion, the following digrms: ommute. L 1(X Y ) 1 R 1X 1Y (X Y )1 1 X1 Y 1 l X Y r X Y l X l Y r X r Y X Y (5.1) X Y (5.2) Definition 2. A brided Ann-tegory A is n Ann-tegory A together with briding suh tht (A,,,, (I, l, r)) is brided tensor tegory, nd mkes the following digrm A.(X Y ) L A X,Y A.X A.Y R A X,Y (X Y ).A XA Y A (6) ommutes nd stisfies the ondition: 0,0 = id. A brided Ann-tegory is lled symmetri Ann-tegory if the briding is symmetri. 3 Some remrks on the xiomtis of brided Ann-tegory In the xiomtis of brided Ann-tegory, we n see tht the digrm (6) llows us to determine the right distributivity onstrint R thnks to the left distributivity onstrint nd the briding. So, we must onsider the dependene or independene of the xioms whih re relted to the right distributivity onstrint R, s well s the dependene of some other onditions in our xiomtis. Fristly, let us rell result whih hs known. Proposition 3.1 (Proposition 2[7]). In the xiomtis of n Ann-tegory A, the omptibility of the funtors (L A, L A ), (R A, R A ) with the ommuttivity onstrint + n be dedued from the other xioms. For the xiomtis of brided Ann-tegory, we hve the following result: Proposition 3.2. In the xiomtis of brided Ann-tegory A, the omptibility of the funtor (R A, R A ) [resp. (L A, L A )] with the ssoitivity onstrint + n be dedued from the omptibility of the funtor (L A, L A ) [resp. (R A, R A )] with the onstrint + nd the digrm (6).

On the briding of n Ann-tegory 5 Proof. To prove the omptibility of funtor (R A, R A ) with the ssoitivity onstrint +, let us onsider the following digrm: A((X Y ) Z) L A(X Y ) AZ L id (AX AY ) AZ ((X Y ) Z)A id + (I) + id (II) R (X Y )A ZA (IV) (III) R id ( ) (XA Y A) ZA + (VII) + (X (Y Z))A R XA (Y Z)A id R XA (Y A ZA) (V) (VI) ( ) A(X (Y Z)) L AX A(Y Z) id L AX (AY AZ) In tht bove digrm, the region (I) ommutes thnks to the nturlity of, the regions (II), (VIII), (IX) ommute thnks to the digrm (6); the first omponent of the region (III) ommutes thnks to the digrm (6), the seond omponent one ommutes thnks to the omposition of morphisms, so the region (III) ommutes; the first omponent of the region (VI) ommutes thnks to the omposition of morphisms, the seond omponent one ommutes thnks to the digrm (6), so the region (VI) ommutes; the region (VII) ommutes thnks to the nturlity of the isomorphism +, the perimeter ommutes sine (L A, L A ) is omptible with ssoitivity onstrint +. Therefore, the region (IV) ommutes, i.e., (R A, R A ) is omptible with +. Proposition 3.3. In brided Ann-tegory, the ommuttivity of the digrms (2) nd (3) n be dedued from the other xioms. Proof. To prove tht the digrm (3) ommutes, we onsider the following di-

On the briding of n Ann-tegory 6 grm: A((X Y )B) id R A(XB Y B) L A(XB) A(Y B) id A(B(X Y )) (I) id ( ) id L A(BX BY ) (II) L id id A(BX) A(BY ) (VIII) (AB)(X Y ) (III) L (IX) (AB)X (AB)Y id (BA)(X Y ) (IV) L (V) id id (BA)X (BA)Y B(A(X Y )) id L B(AX AY ) L B(AX) B(AY ) (VI) (VII) (A(X Y ))B L id (AX AY )B R (AX)B (AY )B In the bove digrm, the regions (I) nd (V) ommute thnks to the digrm (6), the regions (II) nd (IV) ommute thnks to the nturlity of L, the regions (III) nd (V) ommute thnks to the digrm (1), the region (VI) ommutes thnks to the nturlity of, the regions (VIII) nd (IX) ommute thnks to the digrm (B2). Therefore, the perimeter ommutes, i.e., the digrm (3) ommutes. To prove tht the region (2) ommutes, we onsider the following digrm:

On the briding of n Ann-tegory 7 L (AB)(X Y ) id L A(B(X Y )) A(BX BY ) id A((X Y )B) (II) id ( ) id R A(XB Y B) (VIII) (X Y )(AB) R X(AB) Y (AB) (AB)X (AB)Y (I) id R id ((X Y )A)B (V) (A(X Y ))B (XA Y A)B R (IV) (XA)B (Y A)B (VII) L id ( ) id (VI) id id (III) (AX AY )B R (AX)B (AY )B id id L A(XB) A(Y B) (IX) A(BX) A(BY ) L In the bove digrm, the regions (I) nd (VII) ommute sine (A, ) is brided tensor tegory; the regions (II), (IV) nd (VIII) ommute thnks to the digrm (6); the region (III) ommutes thnks to Proposision 3.2; the region (VI) ommutes thnks to the nturlity of L; the perimeter ommutes thnks to the digrm (1). Therefore, the digrm (VI) ommutes, i.e., the digrm

On the briding of n Ann-tegory 8 (2) ommutes. Proposition 3.4. In the brided Ann-tegory A, the ommuttivity of the digrm (5.2) n be dedued from the digrms (5.1), (6) nd the omptibility of with the unitivity onstrint (I, l, r). Proof. Consider the digrm: R (X Y ).1 X.1 Y.1 r (III) r r (I) X Y (IV) l (II) l l 1.(X Y ) 1.X 1.Y L In the bove digrm, the regions (I) nd (IV) ommute thnks to the omptibility of with the unitivity onstrint (I, l, r); the region (II) ommutes thnks to the digrm (5.1); the perimeter ommutes thnks to the digrm (6). Therefore, the region (III) ommutes, i.e., the digrm (5.2) ommutes. Remrk 1. Aording to Proposition 3.1-3.4, in the xiomtis of brided Ann-tegory, we n omit the digrms (2), (3), (5.2) nd the omptibility of the funtors (R A, R A ) with the onstrints +, + of the opertor. 4 The objet O In n Ann-tegory, the objet O hs importnt properties whih is used to define the Π 0 -struture bimodule on Π 1 = Aut(0), where Π 0 is the ring of ongruene lsses of objets. Proposition 4.1 (Proposition 1 [7]). In the Ann-tegory A, there exist uniquely the isomorphisms: ˆL A : A 0 A, ˆRA : 0 A A suh tht (L A, L A, ˆL A ), (R A, R A, ˆR A ) re the funtors whih re omptible with the unitivity onstrints of the opertor (lso lled U-funtors). A prt from some properties of the objet 0 in n Ann-tegory (see [9]), we hve the following proposition. Proposition 4.2. In brided Ann-tegory, the following digrm X.0 0.X ˆL 0 ˆR (7)

On the briding of n Ann-tegory 9 ommutes. Proof. Firstly, we n esily prove the following remrk: Let (F, F), (G, Ğ) : C C be -funtors whih re omptible with the unitivity onstrints nd ˆF : F(0) 0, Ĝ : G(0) 0 re isomorphisms, respetively. If α : F G is n -morphism suh tht α 0 is n isomorphism, then the following digrm F0 ˆF α 0 0 G0 Ĝ ommutes. We now pply the bove remrk to the two funtors F : A, G : A. The morphism α : F G is defined by α X = A,X : A X X A is n -morphism thnks to the digrm (6). Sine α 0 = A,0 is n isomorphism, rording to the bove remrk the digrm (7) ommutes. 5 The reltion between symmetri Ann-tegory nd distributivity tegory due to Miguel L. Lplz Following, we will estblish the reltion between symmetri Ann-tegory nd distributivity tegory due to [4], nd dedue the oherene in symmetri Ann-tegory [4]. A distributivity tegory A onsists of: i) Two bifuntors, : A A A; ii) Two fixed objets O nd 1 of A, lled null nd unit objets; iii) Nturl isomorphisms: A,B,C : A (B C) (A B) C, + A,B,C : A (B C) (A B) C, + l A : 1 A A, g A : O A A, ˆL A : A O O, A,B : A B B A A,B : A B B A r A : A 1 A d A : A O A ˆRA : O A O nd nturl isomorphisms: L A,B,C : A (B C) (A B) (A C) R A,B,C : (A B) C (A C) (B C)

On the briding of n Ann-tegory 10 for ll A, B, C of A. These nturl isomorphisms stisfy the oherene onditions for {,, l, r} nd { +, +, g, d}; the funtors (L A, L A ), (R A, R A ) (similr s in the onept of n Ann-tegory) re omptible with the ssoitivity, ommuttivity onstrints of the opertor, nd stisfy the ommuttive digrms (1), (2), (3), (4), (5.1), (5.2), (6) nd 13 following digrms: ˆL O = ˆR O : O O O O(A B) L OA OB (L1) ˆR A B ˆR A ˆR B (L2) O g O O O d O (ˆL A ˆL B )R A,B,O = ˆL A B : (A B)O O r 1 = g O : 1 O O l 1 = d O : O 1 O ˆL A = ˆR A. A,O : A O O (L3) (L4) (L5) (L6) O(AB) O,A,B (OA)B ˆR AB O ˆR B O B ˆR A id B (L7) A(OB) A,O,B (AO)B id A ˆR B ˆL A id B (L8) ˆL AO A O ˆR B OB ˆL AB A,O,B = ˆL A (id A ˆL B ) : A(BO) O (L9) A(O B) L A,O,B AO AB id A g B AB gab O AB ˆL A id AB (L10) g BA ( ˆR A id BA )R O,B,A = g B id A : (O B)A BA d AB (id AB ˆL A )L A,B,O = id A d B : A(B O) AB d AB (id AB ˆR B )R A,O,B = d A id B : (A O)B AB (L11) (L12) (L13)

On the briding of n Ann-tegory 11 Proposition 5.1. Eh symmetri Ann-tegory is distributivity tegory. Proof. Let A be symmetri Ann-tegory. From the definitions of symmetri Ann-tegory nd distributivity tegory, we just must prove tht A stisfies the onditions (L1)-(L13). Aording to Proposition 3.4 [9], the digrms (L2), (L3) ommute. Aording to Proposition 3.5 [9], we hve the equtions (L4), (L5). Aording to Proposition 4.2, the digrm (L6) ommutes. Aording to Proposition 3.3 [9], the digrms (L7), (L8), (L9) ommute. Aording to Proposition 3.1 [9], the digrms (L10), (L11), (L12), (L13) ommute. From the ondition 0,0 = id nd Proposition 4.2, we obtin ˆL o = ˆR o, i.e., the ondition (L1) is stisfied. So, eh symmetri Ann-tegory is distributivity tegory. In the bove proof, only proof of the ondition (L6) is relted to the groupoid property of the ground tegory, so we hve Corrolry 5.2. In the xiomtis of distributivity tegory, the xioms (L1)- (L5), (L7)-(L13) re dependent. Corrolry 5.3. Let A be tegory. A is symmetri Ann-tegory iff A stisfies the two following onditions: (i) A is distributivity tegory; (ii) Objets of tegory (A, ) re ll invertible nd the ground tegory of (A, ) is groupoid. Proof. The neessry ondition n be dedued from the definition of symmetri Ann-tegory nd Proposition 5.1. The suffiient ondition is obvious. We remrk tht the ommuttion of the digrms in symmetri Anntegory A is independent of the invertibility of objets nd morphisms in the tegory (A, ). Therefore, from the oherene theorem in distributivity tegory [4], we hve: Corrolry 5.4. (Coherene theorem) In symmetri Ann-tegory, eh morphism built from +, +, g, d,,, l, r, L, R is just depent on the soure nd the trget. The oherene theorem for brided Ann-tegory is still n open problem. 6 The reltion between symmetri Ann-tegory nd ring-like tegory Frohlih nd C. T. C Wll hve presented the onept of ring-like tegory s generliztion of the tegory of modules on ommuttive ring R (see [1]).

On the briding of n Ann-tegory 12 Aording to [1], ring-like tegory onsists of: i) Two monoidl strutures, given by the two funtor:, ; ii) The distributivity isomorphisms: L : A (B C) A B A C suh tht the onstrints +, +,,, L stisfy the oherene onditions, nd the pirs (L A, L A ) re the omptible with ssoitivity, ommuttivity onstrints of the opertor, stisfying the digrm (1) nd the following digrm (8): (A B).(X Y ) (X Y ).(A B) L (A B)X (A B)Y X(A B) Y (A B) L (X Y ).A (X Y ).B A.(X Y ) B.(X Y ) L L (AX AY ) (BX BY ) v L L (XA XB) (Y A Y B) ( ) ( ) (AX BX) (AY BY ) Digrm (8) Proposition 6.1. Eh symmetri Ann-tegory is ring-like tegory. Proof. Aording to the definition of symmetri Ann-tegory nd the definition of ring-like tegory, we just prove tht in symmetri Ann-tegory, the digrm (8) ommutes. Indeed, we onsider the following digrm: (X Y )(A B) L (X Y )A (X Y )B (A B)(X Y ) (I) R A(X Y ) B(X Y ) (A B)X (A B)Y L X(A B) Y (A B) (II) R R (III) L L (AX AY ) (BX BY ) (AX BX) (AY BY ) v L L ( ) ( ) (XA XB) (Y A Y B) Digrm (9) In the bove digrm, the region (I) ommutes thnks to the digrm (6), the region (II) ommutes thnks to the digrm (4); ording to the digrm

On the briding of n Ann-tegory 13 (6), eh omponent of the region (III) ommutes, so does the region (III). Then, the perimeter ommutes, i.e., the digrm (8) ommutes. Proposition 6.2. Let A be tegory. Then, A is symmetri Ann-tegory iff it stisfies the following onditions: i) A is ring-like tegory; ii) All objets of the tegory (A, ) re invertible nd the ground of the (A, ) is groupoid. Proof. The neessry ondition n be implied from the definition of symmetri Ann-tegory nd Proposition 6.1. The suffiient ondition n be implied from the definition of ring-like tegory nd the following Proposition 6.3. In the setion 2, we hve proved: In symmetri Ann-tegory, the digrms (2), (3), (4) nd (5.2) n be omitted. Now, we prove tht we n omit the right distributivity onstrint. Proposition 6.3. Let A be tegory nd two bi-funtors, : A A A. Then, A is symmetri Ann-tegory iff the following onditions re stisfied: (i) There is n objet O A nd nturlity isomorphisms +, +, g, d suh tht (A,, +, +, (O, g, d)) is symmetri tegoril group. (ii) There is n objet 1 A together with nturlity onstrints,, l, r suh tht (A,,,, (1, l, r)) is symmetri monoidl tegory. (iii) There is nturlity isomorphism L : A (X Y ) (A X) (A Y ) suh tht (L A = A, L A X,Y = L A,X,Y ) re -funtors whih re omptible with + nd +, nd the digrms (1), (8), (5.1) ommute. Proof. The neessry ondition is obviously. The suffiient ondition: Let A be tegory stisfying ll onditions in the bove proposition. The right distributivity onstrint in A is defined by R : (X Y ) A X A Y A thnks to the ommuttive digrm (6). Then, ording to Propositions 3.2 3.4, to prove tht A is symmetri Ann-tegory, it remins to prove tht the digrm (4) ommutes. We onsider the digrm (9). In this digrm, the regions (I) nd (III) ommute thnks to the definition of the distributivity onstrint R, the perimeter ommutes thnks to the digrm (8). Hene, the region (II) of the digrm (9) ommutes, i.e., the digrm (4) ommutes. The proposition hs been poved. A. Frohlih nd C. T. C Wll ommented tht the xiomtis of distributivity tegory due to M. L. Lplz [4] is omplited (see [1]). So, they presented the definition of ring-like tegory in order to present redued version. However, in [1], uthors hve not show the reltion between these two definitions. As orollry of the Propositions 5.3, 6.2, we hve the following result:

On the briding of n Ann-tegory 14 Proposition 6.4. The two onepts of: distributivity tegory nd ring-like tegory re equivlent. Proof. Let A be distributivity tegory. From the definition of distributivity tegory nd ring-like tegory, it remins to show tht in ring-like tegory, the digrm (8) ommutes. Consider the digrm (9). Sine, in distributivity tegory, the digrms (4) nd (6) ommute, so from the proof of Proposition 6.1, we imply tht the perimeter of the digrm (9) ommutes, i.e., the digrm (8) ommutes. Inversely, let A be ring-like tegory. In A, we put R : (X Y )A XA Y A. It is nturlity onstrint whih is defined by the ommuttive digrm (6). Then, we prove similrly s Propositions 3.1, 3.2, 3.3, in ring-like tegory, we dedued tht the digrms (2), (3) ommute nd we dedued tht the funtors (R A, R A ) re omptible with the ssoitivity, ommuttivity of the opertor of the. Finlly, it remins tht the digrm (4) ommutes. We onsider the digrm (9). Sine, in ring-like tegory, the digrms (6) nd (8) ommute, ording to the proof of Proposition 6.1, we obtin the region (II) of the digrm (9) ommutes, i.e., the digrm (4) ommutes. So, eh ring-like tegory is distributivity tegory. 7 The enter of n lmost strit Ann-tegory André Joyl nd Ross Street [2] hve built brided tensor L V of strit tensor tegory (V, ). C. Kssel [3] hs presented one for n rbitrry tensor tegory. Aording to [3], the enter L V of the tensor tegory V is tegory whose objets re pirs (A, u), where A Ob(V) nd u X : A X X A is nturlity trnsformtion stisfying following ommuttive digrms: A I r u I A l I A (A X) Y 1 u X Y A (X Y ) (X Y ) A u X id Y 1 (X A) Y 1 id X u Y X (A Y ) X (Y A)

On the briding of n Ann-tegory 15 A morphism f : (A, u) (B, m) in L V is morphism f : A B stisfies the ondition m X (f id) = (id f) u Y (10) for ll X V. The tensor produt of two objets in L V is defined: (A, u) (B, m) = (A B, u m) in whih u m is morphism defined by the following ommuttive digrm: (A B) X A (B X) A (X B) (11) X (A B) (X A) B ux id (A X) B (u m) X id m X Then L V is brided tensor tegory with the briding defined by (A,u),(B,m) = u B : (A, u) (B, m) (B, m) (A, u). Now, we will build the tener of n Ann-tegory A nd the min result of this setion is Theorem 7.3. Firstly, let us rell tht eh Ann-tegory is Annequivlent to the redued one of the type (R, M). Moreover, eh Ann-tegory of the type (R, M) is equivlent to n lmost strit Ann-tegory on it (see [6]), nd in this tegory, the fmily of morphisms i X : X X O is identity (n Ann-tegory is lled lmost strit if ll its nturl onstrints, exept for the ommuttivity onstrint of the opertion nd the left distributivity onstrint, re identities). So, in this setion, we lwys ssume tht A is n lmost strit Ann-tegory nd the morphisms i X : X X O re identity. Definition 3. The enter of n Ann-tegory A, denoted by C A, is tegory in whih objets re pirs (A, u), with A Ob(A) nd u X : A X X A is nturl trnsformtion stisfying the three onditions (C1) : u I = id (C2) : u X Y = (id X u Y ) (u X id Y ) (C3) : u X Y = (u X u Y ) L A,X,Y. The morphism f : (A, u) (B, m) of C A is morphism f : A B of A stisfying the ondition (10). Proposition 7.1. The enter of n lmost strit Ann-tegory A is symmetri tegoril group with the sum of two objets re defined by (A, u) + (B, m) = (A B, u + m)

On the briding of n Ann-tegory 16 in whih: 1 (u + m) X = L X,A,B (u X m X ) nd the sum of two morphisms of C A is the sum of morphisms in A. Proof. Firstly, we prove tht for two objets (A, u), (B, m) of C A then (A B, u + m) defined bove is n objet of C A. Indeed, sine u 1 = id, m 1 = id, L 1,A,B = id, we hve (u + m) 1 = id. On the other hnd, we hve (u + m) XY 1 = L XY,A,B (u XY m XY ) = (id X L Y,A,B ) 1 1 L X,Y A,Y B (id X u Y id X m Y ) (u X id Y m X id Y ) (ording to the definition of n Ann-tegory) = (id X L Y,A,B ) 1 1 (id X (u Y m Y )) L X,AY,BY (u X id Y m X id Y ) (thnks to the nturlity of L) = (id X L Y,A,B ) 1 1 (id X (u Y m Y )) L X,AY,BY ((u X m X ) id Y ) 1 = (id X (u + m) Y ) L X,AY,BY ((u X m X ) id Y ) (thnks to the definition of u + m) = (id X (u + m) Y ) ( L X,A,B id Y ) 1 ((u X m X ) id Y ) = (id X (u + m) Y ) ((u + m) X id Y ) (thnks to the definition of u + m) So, u + m stisfies the ondition (C2). Next, we verify tht the morphism u + m stisfies the ondition (C3). = = = (u + m) X Y L 1 X Y,A,B (u X Y m X Y ) 1 L X Y,A,B [(u X m X ) (u Y m Y )]( L A,X,Y L B,X,Y ) (sine u, m stisfy the ondition (C3)) 1 L X Y,A,B v 1 XA,Y A,XB,Y B [(u X m X ) (u Y m Y )] v AX,AY,BX,BY [ L A,X,Y L B,X,Y ] (thnks to the nturlity of the isomorphism v) = ( L X,A,B L Y,A,B ) 1 ((u X m X ) (u Y m Y )) L A B,X,Y (thnks to the definition of n Ann-tegory) = ((u + m) X (u + m) Y ) L A B,X,Y (thnks to the definition of u + m) So u + m stisfies the ondition (C3), i.e., (A B, u + m) is n objet of C A. Now, we ssume tht f : (A, u) (B, m), g : (A, u ) (B, m ) re morphisms of C A. From the definition of the sum of two objets, the sum of morphisms in C A, nd the nturlity of the isomorphism L, nd R = id, we n

On the briding of n Ann-tegory 17 verify tht f + g = f g is morphism of the tegory C A. Furthermore, we n verify tht id : ((A, u) + (B, m)) + (C, w) (A, u) + ((B, m) + (C, w)) is the ssoitivity onstrint of the tegory C A, ((O, θ X = unitivity onstrint of C A, nd + A,B : (A, u) + (B, m) (B, m) + (A, u) 1 ˆL X ), id, id) is the is the ommuttivity onstrint of C A. Finlly, we prove tht eh objet of C A is invertible. Let (A, u) be n objet of the tegory C A. Aording to the Ann-tegory A, there exists A Ob(A) suh tht A A = O. We define nturl trnsformtion u X : A X XA s follows: Then, we hve (u + u ) X = u X + u X = L X,A,A θ X L 1 X,A,A (u X + u X ) = θ X. We n esily verify tht u stisfies the onditions (C1) nd (C2). Now, we will verify tht the morphism u stisfies the ondition (C3). u X Y + u X Y = L X Y,A,A θ X Y (thnks to the definition of u ) = v 1 XA,Y A,XA,Y A ( L X,A,A L Y,A,A ) (θ X Y ) (ording to the definition of n Ann-tegory ) = v 1 XA,Y A,XA,Y A ( L X,A,A L Y,A,A ) (θ X θ Y ) (sine A A = O) = v 1 XA,Y A,XA,Y A ( L X,A,A L Y,A,A ) ((u X u X ) (u Y u Y )) (thnks to the definition of u nd u + u = θ) = ((u X u Y ) (u X u Y )) v AX,A X,AY,A Y (thnks to the nturlity of v) = ((u X u Y ) (u X u Y )) ( L A,X,Y L A,X,Y ) (thnks to the definition of n Ann-tegory). Together with the eqution u X Y = (u X u Y ) L A,X,Y, we hve: u X Y = (u X u Y ) L A,X,Y So (A, u ) is n objet of the tegory C A nd it is the invertible objet of (A, u) respet to the opertor +. Proposition 7.2. The C A is brided tensor tegory where the tensor produt of two objets is defined by (A, u) (B, m) = (A B, u m)

On the briding of n Ann-tegory 18 in whih u m is the morphism given by the digrm (11), nd the tensor produt of two morphisms in C A is indeed the tensor produt in A. Proof. Let (A, u), (B, m) be objets of C A. Aording to A. Joyl nd R. Street [2], u m stisfies the two onditions (C1) nd (C2). On the other hnd, u m stisfies the ondition (C3), sine: (u m) X Y = (u X Y id B ) (id A m X Y ) = ((u X u Y ) id B ) ( L A,X,Y id B ) (id A m X Y ) (sine u stisfies the ondition (C3)) = ((u X u Y ) id B ) ( L A,X,Y id B ) (id A (m X m Y )) (id A L B,X,Y ) (sine m stisfies the ondition (C3)) = (u X id B u Y id B ) ( L A,X,Y id B ) (id A (m X m Y )) (id A L B,X,Y ) (thnks to the definition of the Ann-tegory A nd R = id) = (u X id B u Y id B ) L A,XB,Y B (id A (m X m Y )) (id A L B,X,Y ) (ording to the definition of n Ann-tegory) = ((u X id B ) (u Y id B )) (id A m A id A m Y ) L A,BX,BY (id A L B,X,Y ) = ((u m) X (u m) Y ) L A,BX,BY (id A L B,X,Y ) (thnks to the definition of u + m) = ((u m) X (u m) Y ) L A B,X,Y (sine L is nturl) So (A B, u m) is n objet of the tegory C A. Assume tht f : (A, u) (B, m), g : (A, u ) (B, m ) re two morphisms of C A. Aording to [2], the morphism f g = f g : (A, u) (A, u ) (B, m) (B, m ) stisfies the ondition (10), i.e., f g is morphism of C A. Aording to [2], C A hs n ssoitivity onstrint s follows: id : ((A, u) (B, m)) (, w) (A, u) ((B, m) (C, w)). We n esily vrify tht (I, id) is n objet of C A nd it together with the identity onstrints l = id, r = id is the unitivity onstrint respet to the opertor of C A. Finlly, ording to [2], C A is brided tensor tegory with the briding given by: (A,u),(B,m) = u B : (A, u) (B, m) (B, m) (A, u). Theorem 7.3. C A is brided Ann-tegory.

On the briding of n Ann-tegory 19 Proof. Aording to Proposition 7.1, (C A, +) is symmetri tegoril group. Aording to Proposition 7.2, (C A, ) is brided tensor tegory. Moreover, we n verify tht C A hs distributivity onstrints: L (A,u),(B,m),(C,w) = L A,B,C, R(A,u),(B,m),(C,w) = id. Sine A is n Ann-tegory, so is C A. On the other hnd, eh objet (A, u) of C A, nturl isomorphism u stisfies the ondition (C3), so the onstrints L, R = id, of the tegory C A stisfy the digrm (6). Sine id 0 = id, (0,id),(0,id) = id. So C A is brided Ann-tegory. When A is n lmost strit Ann-tegory of the type (R, M), we n desribe more detil the enter of A. Let I be n lmost strit Ann-tegory of the type (R, M). Then, the enter C I of I is tegory whose objets re pirs (, u), with R, u(x) : x x is nturl trnsformtion stisfying the onditions (C1), (C2), (C3). Firstly, sine u(x) : x x is morphism of tegory of the type (R, M), so we hve x = x x R So Z(R). Next, sine u stisfies the ondition (C1), we hve u(1) = 0. The morphism u stisfies the ondition (C2), we hve: u(xy) = xu(y) + yu(x). Finlly, u stisfies the ondition (C3), i.e., λ(, x, y) = u(x) u(x + y) + u(y) So, eh objet of I is pir (, u), in whih Z(R) nd u : R M is funtion stisfying the three bove onditions. Let f : (, u) (b, m) be morphism of the tegory C I. Sine f : b is morphism of I, we hve = b. The morphism f stisfies the ondition (10), i.e., m(x) + (, f) (0, x) = (0, x) (, f) + u(x) m(x) + xf = xf + u(x) So u = m, i.e., morphisms of C I re ll edomorphisms.

On the briding of n Ann-tegory 20 Referenes [1] A. Frohlih nd C.T.C Wll, Grded monoidl tegories, Compositio Mthemtil, tome 28, N o 3 (1974), 229-285. [2] Andr Joyl nd Ross Street, Brided Tensor tegories, Advnes in Mthemtis 102 (1993), 20-78. [3] Christin Kssel, Quntum Groups, Grdute texts in mthemtis, Vol. 155(1995), Springer-Verlg, Berlin/ New York. [4] M. L. Lplz, Coherene for distribution, Leture Notes in Mth. 281 (1972), 29-65. [5] N. T. Qung, Dotorl disserttion, Hnoi, Vietnmese, 1988. [6] N. T. Qung, Struture of Ann-tegories of Type (R, N), Vietnm Journl of Mthemtis 32: 4 (2004). [7] N. T. Qung, D. D. Hnh nd N. T. Thuy, On the xiomtis of Anntegories, JP Journl of Algebr, Number Theory nd pplitions, Vol 11, N o 1, 2008, 59-72. [8] N. T. Qung, Struture of Ann-tegories, rxiv. 0805. 1505 v4 [mth. CT] 20 Apr 2009. [9] N. T. Qung, N. T. Thuy nd C. T. K. Phung, Reltion between Anntegories nd ring tegories, rxiv: 0904.1099v1[mth CT] 7 Apr 2009.