Chapter. Integration. 1. Antidifferentiation: The Indefinite Integral. 2. Integration by Substitution. 3. Introduction to Differential Equations

Similar documents
2 Integration by Substitution

41. The ancient Babylonians (circa 1700 B.C.) approximated N by applying the formula. x n x n N x n. with respect to output

Math 142 (Summer 2018) Business Calculus 6.1 Notes

MAC 2233, Survey of Calculus, Exam 3 Review This exam covers lectures 21 29,

Math 611b Assignment #6 Name. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

3. Find the slope of the tangent line to the curve given by 3x y e x+y = 1 + ln x at (1, 1).

Chapter 3 The Integral Business Calculus 197

Math 1314 Lesson 7 Applications of the Derivative

Math 1314 Test 2 Review Lessons 2 8

Section 11.3 Rates of Change:

Average rates of change May be used to estimate the derivative at a point

Lecture 2. Derivative. 1 / 26

Marginal Propensity to Consume/Save

Business and Life Calculus

Final Exam Review. MATH Intuitive Calculus Fall 2013 Circle lab day: Mon / Fri. Name:. Show all your work.

(MATH 1203, 1204, 1204R)

MATH 236 ELAC FALL 2017 CA 9 NAME: SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

3.1 Derivative Formulas for Powers and Polynomials

Antiderivatives and Indefinite Integrals

3. (1.2.13, 19, 31) Find the given limit. If necessary, state that the limit does not exist.

Math Practice Final - solutions

ANSWERS, Homework Problems, Spring 2014 Now You Try It, Supplemental problems in written homework, Even Answers R.6 8) 27, 30) 25

APPLICATIONS OF DIFFERENTIATION

Purdue University Study Guide for MA Credit Exam

Business and Life Calculus

ANSWERS, Homework Problems, Fall 2014: Lectures Now You Try It, Supplemental problems in written homework, Even Answers. 24x + 72 (x 2 6x + 4) 4

Chapter 2 Derivatives And Their Uses

Calculus. Applications of Differentiations (IV)

x C) y = - A) $20000; 14 years B) $28,000; 14 years C) $28,000; 28 years D) $30,000; 15 years

Unit #6 Basic Integration and Applications Homework Packet

2.2. THE PRODUCT AND QUOTIENT RULES 179. P dv dt + V dp. dt.

Sample Mathematics 106 Questions

Section 11.7 The Chain Rule

Calculus I 5. Applications of differentiation

AP Calculus AB Unit 6 Packet Antiderivatives. Antiderivatives

Doug Clark The Learning Center 100 Student Success Center learningcenter.missouri.edu Overview

Midterm Study Guide and Practice Problems

(x! 4) (x! 4)10 + C + C. 2 e2x dx = 1 2 (1 + e 2x ) 3 2e 2x dx. # 8 '(4)(1 + e 2x ) 3 e 2x (2) = e 2x (1 + e 2x ) 3 & dx = 1

MAT 210 TEST 2 REVIEW (Ch 12 and 13)

Section K MATH 211 Homework Due Friday, 8/30/96 Professor J. Beachy Average: 15.1 / 20. ), and f(a + 1).

Introduction to Calculus

Foothill High School. AP Calculus BC. Note Templates Semester 1, Student Name.

Marginal Functions and Approximation

MATH 1325 Business Calculus Guided Notes

MATH 122 FALL Final Exam Review Problems

Review for the Final Exam

MATH150-E01 Test #2 Summer 2016 Show all work. Name 1. Find an equation in slope-intercept form for the line through (4, 2) and (1, 3).

3.1 Day 1: The Derivative of a Function

4.1 Exponential Functions. For Formula 1, the value of n is based on the frequency of compounding. Common frequencies include:

Sec 4.1 Limits, Informally. When we calculated f (x), we first started with the difference quotient. f(x + h) f(x) h

MATH 236 ELAC FALL 2017 CA 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Final Exam Study Guide

Chapter 2: Differentiation 1. Find the slope of the tangent line to the graph of the function below at the given point.

UNIT 2 DERIVATIVES 2.1 EXPONENTIAL AND LOGARITHMIC FUNCTION APPLICATIONS. Pre-Class:

Name: Practice A, Math Final Exam December 11, 2018

MAC 2233 Chapter 3 Practice for the Test

MATH 121: EXTRA PRACTICE FOR TEST 2. Disclaimer: Any material covered in class and/or assigned for homework is a fair game for the exam.

DIFFERENTIATION: BASIC CONCEPTS

Purdue University Study Guide for MA for students who plan to obtain credit in MA by examination.

Math 116: Business Calculus Chapter 4 - Calculating Derivatives

Math 2413 General Review for Calculus Last Updated 02/23/2016

4x 2-5x+3. 7x-1 HOMEWORK 1-1

Section 3.1 Homework Solutions. 1. y = 5, so dy dx = y = 3x, so dy dx = y = x 12, so dy. dx = 12x11. dx = 12x 13

Fall 2009 Math 113 Final Exam Solutions. f(x) = 1 + ex 1 e x?

Sections 2.7, 2.8 Rates of Change Part III Rates of Change in the Natural and Social Sciences

Integration by Substitution

Functions. A function is a rule that gives exactly one output number to each input number.

SHOW WORK! Chapter4Questions. NAME ID: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Please read for extra test points: Thanks for reviewing the notes you are indeed a true scholar!

CHAPTER 2 Differentiation

Practice problems from old exams for math 132 William H. Meeks III

Lecture 6: Sections 2.2 and 2.3 Polynomial Functions, Quadratic Models

CALCULUS. Berkant Ustaoğlu CRYPTOLOUNGE.NET

MA 181 Lecture Chapter 7 College Algebra and Calculus by Larson/Hodgkins Limits and Derivatives

Math 142 Week-in-Review #11 (Final Exam Review: All previous sections as well as sections 6.6 and 6.7)

Unit #4 : Interpreting Derivatives, Local Linearity, Marginal Rates

Math 1501 Calc I Fall 2013 Lesson 9 - Lesson 20

Intermediate Algebra Final Exam Review

Final Exam Review Packet

Final Exam Review Packet

Study guide for the Math 115 final Fall 2012

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above.

Math 120 Final Exam Practice Problems, Form: A

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

Section 2.1 Limits: Approached Numerically and Graphically

Higher-Order Derivatives

3. On the grid below, sketch and label graphs of the following functions: y = sin x, y = cos x, and y = sin(x π/2). π/2 π 3π/2 2π 5π/2

Calculus with Applications Good Problems. Justin M. Ryan. Mathematics Department Butler Community College Andover, Kansas USA

f(x 0 + h) f(x 0 ) h slope of secant line = m sec

3. Go over old quizzes (there are blank copies on my website try timing yourself!)

Final Exam Study Aid

Applied Calculus I Practice Final Exam Solution Notes

Section 1.3 Rates of Change and Behavior of Graphs

Lecture 26: Section 5.3 Higher Derivatives and Concavity

Chapter 6: Messy Integrals

REVIEW: LESSONS R-18 WORD PROBLEMS FALL 2018

Applications of the definite integral to rates, velocities and densities

The questions listed below are drawn from midterm and final exams from the last few years at OSU. As the text book and structure of the class have

Section 1: The Definite Integral

Transcription:

Integration Chapter. Antidifferentiation: The Indefinite Integral 2. Integration by Substitution 3. Introduction to Differential Equations 4. Integration by Parts Chapter Summary and Review Problems

Antidifferentiation: The Indefinite Integral 372 Chapter 5 Integration In many problems, the derivative of a function is known, and the goal is to find the function itself. For example, a sociologist who knows the rate at which the population is growing may wish to use this information to predict future population levels; a physicist who knows the speed of a moving body may wish to calculate the future position of the body; an economist who knows the rate of inflation may wish to estimate future prices. The process of obtaining a function from its derivative is called antidifferentiation or indefinite integration. Antiderivative A function F(x) for which F(x) f(x) for every x in the domain of f is said to be an antiderivative of f(x). Note Sometimes we will write the equation F(x) f(x) as df f(x). Later in this section, you will learn techniques you can use to find antiderivatives. Once you have found what you believe to be an antiderivative of a function, you can always check your answer by differentiating. You should get the original function back. Here is an example. EXAMPLE. Verify that F(x) x 3 5x 2 is an antiderivative of f(x) x 2 5. 3 Solution F(x) is an antiderivative of f(x) if and only if F(x) f(x). Differentiate F and you will find that F(x) 3 3x2 5 as required. x 2 5 f(x)

Chapter 5 Section Antidifferentiation: The Indefinite Integral 373 THE GENERAL ANTIDERIVATIVE OF A FUNCTION A function has more than one antiderivative. For example, one antiderivative of the function f(x) 3x 2 is F(x) x 3, since F(x) 3x 2 f(x) but so are x 3 2 and x 3 5 and x 3, since d (x 3 2) 3x 2 d, (x 3 5) 3x 2 d, (x 3 ) 3x 2 In general, if F is one antiderivative of f, then any function G of the general form G(x) F(x) C for constant C is also an antiderivative of f. Conversely, it can be shown that if F and G are both antiderivatives of f, then G(x) F(x) C, for some constant C (see Problem 45). To summarize: Fundamental Property of Antiderivatives If F(x) is an antiderivative of the continuous function f(x), then any other antiderivative of f(x) has the form G(x) F(x) C for some constant C. There is a simple geometric interpretation for the fact that any two antiderivatives of the same continuous function f differ by at most a constant. When we say that F and G are both antiderivatives of f, we mean that F(x) G(x) f(x), so the slope (that is, the derivative) of the curve y F(x) for each value of x is the same as the slope of y G(x) at x. In other words, the graph of G(x) is a vertical translation of the graph of F(x), as indicated in Figure 5. for the antiderivative of f(x) 3x 2. y y = x 3 + π y = x 3 y = x 3 5 x FIGURE 5. Some antiderivatives of f(x) 3x 2.

374 Chapter 5 Integration THE INDEFINITE INTEGRAL Store the function F(x) x 3 into Y of the equation editor in bold graphing style. Generate a family of vertical transformations Y c, for c 4, 2, 2, 4, placed into Y2 to Y5, with the window [4, 4] by [5, 5]. At x, what do you observe about the slopes for all of these curves? You have just seen that if F(x) is one antiderivative of the continuous function f(x), then all such antiderivatives are characterized by F(x) C for constant C. We will represent the family of all antiderivatives of f(x) by using the symbolism which is called the indefinite integral of f. In this context, the symbol f(x) F(x) C is called the integral sign, f(x) is called the integrand, indicates that the antidifferentiation process is with respect to the variable x, and C is called the constant of integration. For instance, the indefinite integral of f(x) 3x 2 is The integral symbol 3x 2 x 3 C resembles an elongated s, which stands for sum. In Chapter 6, you will see a surprising connection between antiderivatives and sums that is so important it is known as the fundamental theorem of calculus. To check an antidifferentiation calculation, differentiate your answer F(x) C. If the derivative equals f(x), your calculation is correct, but if it is anything other than f(x), you ve made a mistake. This connection between differentiation and antidifferentiation enables us to use familiar rules for derivatives to establish the following analogous rules for antiderivatives. Rules for Integrating Common Functions The constant rule: k kx C for constant k The power rule: x n n xn C for all n The logarithmic rule: ln x C x for all x 0 The exponential rule: e kx k ekx C for constant k 0

Chapter 5 Section Antidifferentiation: The Indefinite Integral 375 To verify the power rule, it is enough to show that the derivative of is x n n : For the logarithmic rule, if x 0, then x x and If x 0, then x 0 and ln x ln (x), and it follows from the chain rule that Thus, for all x 0, so d n xn n (n ) xn ] x n d (ln x ) d (ln x) x d (ln x ) d [ln (x)] (x) () x d (ln x ) x ln x C x You are asked to verify the constant rule and exponential rule in Problem 46. x n Note Notice that the logarithm rule fills the gap in the power rule; namely, the case where n. You may wish to blend the two rules into the following combined form: x n x n n C ln x C if n if n EXAMPLE.2 Find the following integrals: (a) 3 (b) x (c) 7 (d) e 3x x

376 Chapter 5 Integration Solution Graph the function F(x) ln x in bold and f(x) /x in regular graphing style, using the decimal window [4.7, 4.7] by [3., 3.]. Confirm that at any point x 0, the derivative of F(x) is identical in value to f(x) at that particular point. (a) Use the constant rule with k 3: 3 3x C (b) Use the power rule with n 7: x 7 8 x8 C (c) Use the power rule with n : Since n, 2 2 x x /2 (/2) x/2 C 2x C (d) Use the exponential rule with k 3: e 3x (3) e3x C Example.2 illustrates how certain basic functions can be integrated, but what about combinations of functions, such as the polynomial x 5 2x 3 7 or an expression like 5e x x? The following algebraic rules enable you to handle such expressions in a natural fashion. Algebraic Rules for Indefinite Integration The constant multiple rule: kf(x) k f(x) for constant k The sum rule: [f(x) g(x)] f(x) g(x) The difference rule: [ f(x) g(x)] f(x) g(x) df To prove the constant multiple rule, note that if f(x), then d df [kf(x)] k kf(x) which means that

Chapter 5 Section Antidifferentiation: The Indefinite Integral 377 kf(x) k f(x) The sum and difference rules can be established in a similar fashion. Find the following integrals: (a) (b) EXAMPLE.3 (2x 5 8x 3 3x 2 5) x3 2x 7 x (c) (3e 5t t) dt Solution (a) By using the power rule in conjunction with the sum and difference rules and the multiple rule, you get (2x 5 8x 3 3x 2 5) 2x 5 8x 3 3x 2 5 2 x 6 6 8 x4 4 3 x3 5x C 3 3 x6 2x 4 x 3 5x C (b) There is no quotient rule for integration, but you can still divide the denominator into the numerator and then integrate using the method in part (a): x3 2x 7 x x2 2 7 x 3 x3 2x 7 ln x C (c) (3e 5t t ) dt (3e 5t t /2 ) dt 3 5 e5t (3/2) t3/2 C 3 5 e5t 2 3 t3/2 C

378 Chapter 5 Integration EXAMPLE.4 Graph in bold the function f(x) 3x 2 from Example.4, along with the family of antiderivatives F(x) x 3 x L, where L is a list of integer values from 5 to 5. Use the window [0, 2.35].5 by [2, 2]. Which of these antiderivatives passes through (2, 6)? Repeat this exercise for f(x) 3x 2 2. Find the function f(x) whose tangent has slope 3x 2 for each value of x and whose graph passes through the point (2, 6). Solution The slope of the tangent at each point (x, f(x)) is the derivative f(x). Thus, and so f(x) is the antiderivative f(x) 3x 2 f(x) f(x) (3x 2 ) x 3 x C To find C, use the fact that the graph of f passes through (2, 6). That is, substitute x 2 and f(2) 6 into the equation for f(x) and solve for C to get 6 (2) 3 2 C or C 4 That is, the desired function is f(x) x 3 x 4. PRACTICAL APPLICATIONS Here are three problems in which the rate of change of a quantity is known and the goal is to find an expression for the quantity itself. Since the rate of change is the derivative of the quantity, you find the expression for the quantity itself by antidifferentiation. EXAMPLE.5 A manufacturer has found that marginal cost is 3q 2 60q 400 dollars per unit when q units have been produced. The total cost of producing the first 2 units is $900. What is the total cost of producing the first 5 units? Solution Recall that the marginal cost is the derivative of the total cost function C(q). Thus, and so C(q) must be the antiderivative C(q) 3q 2 60q 400 C(q) C(q) dq (3q 2 60q 400) dq q 3 30q 2 400q K for some constant K. (The letter K was used for the constant to avoid confusion with the cost function C.)

Chapter 5 Section Antidifferentiation: The Indefinite Integral 379 The value of K is determined by the fact that C(2) 900. In particular, 900 (2) 3 30(2) 2 400(2) K or K 22 Hence, C(q) q 3 30q 2 400q 22 and the cost of producing the first 5 units is C(5) (5) 3 30(5) 2 400(5) 22 $,587 EXAMPLE.6 Graph the function P(x) from Example.6, using the window [0, 47]5 by [4,000, 7,000]500. Display the population 9 months from now. When will the population hit 6,000 people? It is estimated that x months from now the population of a certain town will be changing at the rate of 2 6x people per month. The current population is 5,000. What will be the population 9 months from now? Solution Let P(x) denote the population of the town x months from now. Then the rate of change of the population with respect to time is the derivative dp 2 6x It follows that the population function P(x) is an antiderivative of 2 6x. That is, P(x) dp (2 6x) 2x 4x 3/2 C for some constant C. To determine C, use the fact that at present (when x 0) the population is 5,000. That is, 5,000 2(0) 4(0) 3/2 C or C 5,000 Hence, P(x) 2x 4x 3/2 5,000 and the population 9 months from now will be P(9) 2(9) 4(27) 5,000 5,26 EXAMPLE.7 A retailer receives a shipment of 0,000 kilograms of rice that will be used up over a 5-month period at the constant rate of 2,000 kilograms per month. If storage costs are cent per kilogram per month, how much will the retailer pay in storage costs over the next 5 months?

380 Chapter 5 Integration Solution Let S(t) denote the total storage cost (in dollars) over t months. Since the rice is used up at a constant rate of 2,000 kilograms per month, the number of kilograms of rice in storage after t months is 0,000 2,000t. Therefore, since storage costs are cent per kilogram per month, the rate of change of the storage cost with respect to time is It follows that S(t) is an antiderivative of That is, ds dt monthly cost number of 0.0(0,000 2,000t) per kilogramkilograms 0.0(0,000 2,000t) 00 20t S(t) ds dt dt (00 20t) dt 00t 0t 2 C for some constant C. To determine C, use the fact that at the time the shipment arrives (when t 0) there is no cost, so that 0 00(0) 0(0) 2 C or C 0 Hence, S(t) 00t 0t 2 and the total storage cost over the next 5 months will be S(5) 00(5) 0(5) 2 $250 MOTION ALONG A LINE Recall from Section 2 of Chapter 2 that if an object moves along a straight line with ds dv displacement s(t), then its velocity is given by v and its acceleration by a. dt dt If the acceleration of the object is given, then its velocity and displacement can be found by integration. Here is an example. EXAMPLE.8 After its brakes are applied, a certain car decelerates at the constant rate of 22 feet per second per second. If the car is traveling at 45 miles per hour (66 feet per second) when the brakes are applied, how far does it travel before coming to a complete stop? Solution Let s(t) denote the displacement (position) of the car t seconds after the brakes are

Chapter 5 Section Antidifferentiation: The Indefinite Integral 38 Refer to Example.8. Change the variable t to x and graph the position function s(x) using the window [0, 9.4] by [0, 200]0. Locate the stopping time and the corresponding position on the graph. Work the problem again for v(0) 60 mph (88 feet per second). What is happening at the 3-second mark? applied. Inasmuch as the car decelerates at 22 feet per second, it follows that a(t) 22 (the negative sign indicates that the car is slowing down), and Integrating, you find that the velocity at time t is given by To evaluate C, note that v 66 when t 0 so that 66 v(0) 22(0) C and C 66. Thus, the velocity at time t is v(t) 22t 66. Next, to find the displacement s(t), begin with the fact that and use integration to show that dv a(t) 22 dt v(t) 22 dt 22t C ds v(t) 22t 66 dt s(t) (22t 66) dt t 2 66t C 2 Since s(0) 0 (do you see why?), it follows that C 2 0 and s(t) t 2 66t Finally, to find the stopping distance, note that the car stops when v(t) 0, and this occurs when v(t) 22t 66 0 Solving this equation, you find that the car stops after 3 seconds of deceleration, and in that time it has traveled s(3) (3) 2 66(3) 99 feet P. R. O. B. L. E. M. S 5. P. R. O. B. L. E. M. S 5. In Problems through 20, find the indicated integral. Check your answers by differentiation.. x 5 2. x 3/4

382 Chapter 5 Integration 3. 2 4. t dt x 5. 5 6. 3e x 7. (3t 2 5t 2) dt 8. 3y 2 y 3 y dy 2 xx 9. 0. 2y 2 y 2 y 3 dy. ex 2. x3 2x 2 3. 3u 3 2u 2 e2 u 2 du 4. 2e 6 u ln 2 du 5. 6. x 3x 2 x2 2x x 2 x 7. (x 3 2x 2 ) 8. x 5 (x /2 3x 2/3 6) y 3 2y y dy 9. t(t 2 ) dt 20. x(2x ) 2 POPULATION GROWTH DISTANCE AND VELOCITY DISTANCE AND VELOCITY 2. Find the function whose tangent has slope 4x for each value of x and whose graph passes through the point (, 2). 22. Find the function whose tangent has slope 3x 2 6x 2 for each value of x and whose graph passes through the point (0, 6). 23. Find the function whose tangent has slope x 3 2 2 for each value of x and x 2 whose graph passes through the point (, 3). 24. Find a function whose graph has a relative minimum when x and a relative maximum when x 4. 25. It is estimated that t months from now the population of a certain town will be changing at the rate of 4 5t 2/3 people per month. If the current population is 0,000, what will be the population 8 months from now? 26. An object is moving so that its velocity after t minutes is v(t) 4t 3t 2 meters per minute. How far does the object travel during the third minute? 27. An object is moving so that its velocity after t minutes is v(t) 3 2t 6t 2 meters per minute. How far does the object travel during the second minute?

Chapter 5 Section Antidifferentiation: The Indefinite Integral 383 LAND VALUES ADMISSION TO EVENTS STORAGE COST WATER POLLUTION AIR POLLUTION MARGINAL COST MARGINAL PROFIT MARGINAL PROFIT MARGINAL REVENUE FLOW OF BLOOD 28. It is estimated that t years from now the value of a certain parcel of land will be increasing at the rate of V(t) dollars per year. Find an expression for the amount by which the value of the land will increase during the next 5 years. 29. The promoters of a county fair estimate that t hours after the gates open at 9:00 A.M., visitors will be entering the fair at the rate of N(t) people per hour. Find an expression for the number of people who will enter the fair between :00 A.M. and :00 P.M. 30. A retailer receives a shipment of 2,000 pounds of soybeans that will be used at a constant rate of 300 pounds per week. If the cost of storing the soybeans is 0.2 cent per pound per week, how much will the retailer have to pay in storage costs over the next 40 weeks? 3. It is estimated that t years from now the population of a certain lakeside community will be changing at the rate of 0.6t 2 0.2t 0.5 thousand people per year. Environmentalists have found that the level of pollution in the lake increases at the rate of approximately 5 units per,000 people. By how much will the pollution in the lake increase during the next 2 years? 32. An environmental study of a certain community suggests that t years from now the level of carbon monoxide in the air will be changing at the rate of 0.t 0. parts per million per year. If the current level of carbon monoxide in the air is 3.4 parts per million, what will be the level 3 years from now? 33. A manufacturer has found that marginal cost is 6q dollars per unit when q units have been produced. The total cost (including overhead) of producing the first unit is $30. What is the total cost of producing the first 0 units? 34. A manufacturer estimates marginal revenue to be 00q /2 dollars per unit when the level of production is q units. The corresponding marginal cost has been found to be 0.4q dollars per unit. Suppose the manufacturer s profit is $520 when the level of production is 6 units. What is the manufacturer s profit when the level of production is 25 units? 35. The marginal profit (the derivative of profit) of a certain company is 00 2q dollars per unit when q units are produced. If the company s profit is $700 when 0 units are produced, what is the company s maximum possible profit? 36. Suppose it has been determined that the marginal revenue associated with the production of x units of a particular commodity is R(x) 240 4x dollars per unit. What is the revenue function R(x)? You may assume R(0) 0. What price will be paid for each unit when the level of production is x 5 units? 37. One of Poiseuille s laws for the flow of blood in an artery says that if v(r) is the velocity of flow r cm from the central axis of the artery, then the velocity decreases at a rate proportional to r. That is, v(r) ar

384 Chapter 5 Integration where a is a positive constant.* Find an expression for v(r). Assume v(r) 0, where R is the radius of the artery. R r Artery PROBLEM 37 TREE GROWTH 38. An environmentalist finds that a certain type of tree grows in such a way that its height h(t) after t years is changing at the rate of h(t) 0.2t 2/3 t ft/yr ENDANGERED SPECIES EFFECT OF A TOXIN LEARNING CURVE If the tree was 2 feet tall when it was planted, how tall will it be in 27 years? 39. A conservationist finds that the population P(t) of a certain endangered species is growing at the rate of P(t) 0.5e 0.03t, where t is the number of years after records began to be kept. (a) If the population is P 0 500 now (at time t 0), what will it be in 0 years? (b) Read an article on endangered species and write a paragraph on the use of mathematical models in studying populations of such species. 40. A toxin is introduced to a bacterial colony, and t hours later, the population P(t) of the colony is changing at the rate dp dt (ln 3)34t If there were million bacteria in the colony when the toxin was introduced, what is P(t)? [Hint: Recall that 3 x e x ln 3.] 4. Let f(x) represent the total number of items a subject has memorized x minutes after being presented with a long list of items to learn. Psychologists refer to the graph of y f(x) as a learning curve and f(x) as the learning rate. The time of peak efficiency is the time when the learning rate is maximized. Suppose the learning rate is f(x) 0.(0 2x 0.6x 2 ) for 0 x 25 (a) What is the learning rate at peak efficiency? (b) What is f(x)? (c) What is the largest number of items memorized by the subject? * E. Batschelet, Introduction to Mathematics for Life Scientists, 2nd ed., Springer-Verlag, New York, 976, pages 0 03. You may wish to begin your research with the journal Ecology.

Chapter 5 Section Antidifferentiation: The Indefinite Integral 385 ENERGY EXPENDITURE SPY STORY MARGINAL PROPENSITY TO CONSUME 42. In a paper written in 97, * V. A. Tucker and K. Schmidt-Koenig investigated the relationship between the velocity v (km/hr) of a bird in flight and the energy E(v) expended by the bird. Their studies showed that for a certain kind of parakeet, the rate of change of the energy with respect to velocity is given by de dv 0.074v2 2.65 v 2 v 0 Suppose it is known that when the parakeet flies at the most economical velocity (the velocity that minimizes E), the energy expended is E min 0.6 (calorie per gram mass per kilometer). What is E(v)? 43. Our spy, intent on avenging the death of Siggy Leiter (Problem 43 in Exercise Set 4.2), is driving a sports car toward the lair of the fiend who killed his friend. To remain as inconspicuous as possible, he is traveling at the legal speed of 60 mph (88 feet per second) when suddenly, he sees a camel in the road, 99 feet in front of him. It takes him 00.7 seconds to react to the crisis; then he hits the brakes, and the car decelerates at the constant rate of 28 ft/sec 2 (28 feet per second, per second). Does he stop before hitting the camel? 44. Suppose the consumption function for a particular country is c(x), where x is national disposable income. Then the marginal propensity to consume is c(x). Suppose c(x) 0.9 0.3x and consumption is 0 billion dollars when x 0. Find c(x). 45. If H(x) 0 for all real numbers x, what must be true about the graph of H(x)? Explain how your observation can be used to show that if F(x) G(x) for all x, then F(x) G(x) C. 46. (a) Prove the constant rule: k kx C. (b) Prove the exponential rule: e kx k ekx C. 47. What is b x for base b (b 0, b )? [Hint: Recall that b x e x ln b.] 48. It is estimated that x months from now, the population of a certain town will be changing at the rate of P(x) 2.5x people per month. The current population is 5,000. * E. Batschelet, Introduction to Mathematics for Life Scientists, 2nd ed., Springer-Verlag, New York, 976, pages 0 03.

386 Chapter 5 Integration 2 Integration by Substitution (a) Find a function P(x) that satisfies these conditions. Use the graphing utility of your calculator to graph this function. (b) Use trace and zoom to determine the level of population 9 months from now. When will the population be 7,590? (c) Suppose the current population were 2,000 (instead of 5,000). Sketch the graph of P(x) with this assumption. Then sketch the graph of P(x) assuming current populations of 4,000 and 6,000. What is the difference between the graphs? 49. A car traveling at 67 ft/sec decelerates at the constant rate of 23 ft/sec 2 when the brakes are applied. (a) Find the velocity v(t) of the car t seconds after the brakes are applied. Then find its distance s(t) from the point where the brakes are applied. (b) Use the graphing utility of your calculator to sketch the graphs of v(t) and s(t) on the same screen (use [0, 5] by [0, 200]0). (c) Use trace and zoom to determine when the car comes to a complete stop and how far it travels in that time. How fast is the car traveling when it has traveled 45 feet? Recall (from Section 2.5) that according to the chain rule, the derivative of the function (x 2 3x 5) 9 is [(x 2 3x 5) 9 ] 9(x 2 3x 5) 8 (2x 3) Notice that the derivative is a product and that one of its factors, 2x 3, is the derivative of an expression, x 2 3x 5, which occurs in the other factor. More precisely, the derivative is a product of the form g(u) where, in this case, g(u) 9u 8 and u x 2 3x 5. du You can integrate many products of the form g(u) by applying the chain rule in reverse. Specifically, if G is an antiderivative of g, then since, by the chain rule, To summarize: d du g(u) du G(u) C d du du [G(u)] G(u) g(u)