J. N. R E DDY ENERGY PRINCIPLES AND VARIATIONAL METHODS APPLIED MECHANICS

Similar documents
As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

BASIC ALGEBRA OF VECTORS

(read nabla or del) is defined by, k. (9.7.1*)

Stress, Cauchy s equation and the Navier-Stokes equations

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

Vectors, Vector Calculus, and Coordinate Systems

2 Governing Equations

Vector d is a linear vector function of vector d when the following relationships hold:

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

University Physics (PHY 2326)

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

SUPPLEMENTARY MATERIAL CHAPTER 7 A (2 ) B. a x + bx + c dx

Physics 235 Chapter 5. Chapter 5 Gravitation

Vectors, Vector Calculus, and Coordinate Systems

Liquid gas interface under hydrostatic pressure

1 Spherical multipole moments

DonnishJournals

Review: Electrostatics and Magnetostatics

Chapter 2: Basic Physics and Math Supplements

PROBLEM SET #1 SOLUTIONS by Robert A. DiStasio Jr.

CHAPTER 25 ELECTRIC POTENTIAL

3 VECTOR CALCULUS I. 3.1 Divergence and curl of vector fields. 3.2 Important identities

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

Electric field generated by an electric dipole

MAGNETIC FIELD INTRODUCTION

dq 1 (5) q 1 where the previously mentioned limit has been taken.

B. Spherical Wave Propagation

The Divergence Theorem

AP-C WEP. h. Students should be able to recognize and solve problems that call for application both of conservation of energy and Newton s Laws.

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible)

TUTORIAL 9. Static magnetic field

4. Electrodynamic fields

Electrostatics (Electric Charges and Field) #2 2010

Physics 2212 GH Quiz #2 Solutions Spring 2016

Lecture 23. Representation of the Dirac delta function in other coordinate systems

2. Plane Elasticity Problems

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

Cartesian Coordinate System and Vectors

1 MathematicalPreliminaries

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

PHYS 1444 Section 501 Lecture #7

Module 05: Gauss s s Law a

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

7.2.1 Basic relations for Torsion of Circular Members

1 Equations of linear elasticity

CALCULUS II Vectors. Paul Dawkins

B da = 0. Q E da = ε. E da = E dv

Math 124B February 02, 2012

Physics Tutorial V1 2D Vectors

Gauss Law. Physics 231 Lecture 2-1

IX INDUCTANCE AND MAGNETIC FIELDS

Final Review of AerE 243 Class

ELECTRODYNAMICS: PHYS 30441

EM Boundary Value Problems

Math 2263 Solutions for Spring 2003 Final Exam

PHYS 1444 Lecture #5

Voltage ( = Electric Potential )

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

Chapter 3 Optical Systems with Annular Pupils

Vector Calculus Identities

Review for Midterm-1

INTRODUCTION. 2. Vectors in Physics 1

Flux. Area Vector. Flux of Electric Field. Gauss s Law

[Griffiths Ch.1-3] 2008/11/18, 10:10am 12:00am, 1. (6%, 7%, 7%) Suppose the potential at the surface of a hollow hemisphere is specified, as shown

Newton s Laws, Kepler s Laws, and Planetary Orbits

3D-Central Force Problems I

1 Fundamental Solutions to the Wave Equation

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

Physics 122, Fall October 2012

Chapter 21: Gauss s Law

Transformation of the Navier-Stokes Equations in Curvilinear Coordinate Systems with Maple

A Tutorial on Multiple Integrals (for Natural Sciences / Computer Sciences Tripos Part IA Maths)

A dual-reciprocity boundary element method for axisymmetric thermoelastodynamic deformations in functionally graded solids

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

Math Notes on Kepler s first law 1. r(t) kp(t)

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics

3. Magnetostatic fields

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e.,

6 Vector Operators. 6.1 The Gradient Operator

TheWaveandHelmholtzEquations

arxiv: v1 [physics.pop-ph] 3 Jun 2013

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS

Lecture 8 - Gauss s Law

Electrostatics. 1. Show does the force between two point charges change if the dielectric constant of the medium in which they are kept increase?

Chapter 13 Gravitation

FREE Download Study Package from website: &

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Section 1: Main results of Electrostatics and Magnetostatics. Electrostatics

Supplementary material for the paper Platonic Scattering Cancellation for Bending Waves on a Thin Plate. Abstract

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

Math 259 Winter Handout 6: In-class Review for the Cumulative Final Exam

POISSON S EQUATION 2 V 0

Welcome to Physics 272

Transcription:

J. N. E DDY ENEGY PINCIPLES AND VAIATIONAL METHODS IN APPLIED MECHANICS T H I D E DI T IO N

JN eddy - 1 MEEN 618: ENEGY AND VAIATIONAL METHODS A EVIEW OF VECTOS AND TENSOS ead: Chapte 2 CONTENTS Physical vecto Axioms of mathematical vecto Scala and vecto poducts Tiple poducts of vectos Components of vectos Summation convention Second-ode tensos Tansfomation of components The del opeato and calculus of vectos and tensos Cylindical and spheical coodinates systems J. N. eddy VECTOS&TENSOS -

JN eddy - 2 A EVIEW OF VECTOS AND TENSOS Much of the mateial included heein is taken fom the instucto s two books exhibited hee (both published by the Cambidge Univesity Pess) J. N. eddy VECTOS&TENSOS - 2

JN eddy - 3 PHYSICAL VECTOS Physical vecto: A diected line segment with an aow head. Examples: foce, displacement, velocity, weight Unit vecto along a given vecto A: A The unit vecto, ê A ( A 0) A is that vecto which has the same P A ê A Q diection as A but has a magnitude that is unity. J. N. eddy VECTOS&TENSOS - 3

JN eddy - 4 MATHEMATICAL VECTOS ules o Axioms Vecto addition: (i) A + B = B+A (commutative) (ii) (A + B)+C = A+(B+C) (associative) (iii) A+0=A (zeo vecto) (iv) A+( A) = 0 (negative vecto) Scala multiplication of a vecto: (i) α(βa)= αβ (A) (associative) (ii) (α + β)a = α A+ βa (distibutive w..t. scala addition) (iii) α (A+B)=αA+αB (distibutive w..t. vecto addition) (iv) 1. A=A. 1 A B B A A+B=B+A J. N. eddy VECTOS&TENSOS - 4

JN eddy - 5 VECTOS (continued) Wok done Magnitude of the foce multiplied by the magnitude of the displacement in the diection of the foce: F u WD F cosu F u WD F u cos J. N. eddy VECTOS&TENSOS - 5

JN eddy - 6 VECTOS (continued) Inne poduct (o scala poduct) of two vectos is defined as A B A B cos AB cos A = A A = A B = B A A J. N. eddy VECTOS&TENSOS - 6

JN eddy - 7 VECTOS (continued) Moment of a foce Magnitude of the foce multiplied by the magnitude of the pependicula distance to the action of the foce: M F, M sinf M F F e M F O P θ M O θ sin sin J. N. eddy VECTOS&TENSOS - 7

JN eddy - 8 VECTOS (continued) Vecto poduct of two vectos is defined as AB A B sin e ˆ AB sin AB AB A AB B J. N. eddy VECTOS&TENSOS - 8

JN eddy - 9 PLANE AEA AS A VECTO The magnitude of the vecto C = A B is equal to the aea of the paallelogam fomed by the vectos A and B. C = A B B ê θ S A S S nˆ In fact, the vecto C may be consideed to epesent both the magnitude and the diection of the poduct of A and B. Thus, a plane aea in space may be looked upon as possessing a diection in addition to a magnitude, the diectional chaacte aising out of the need to specify an oientation of the plane aea in space. epesentation of an aea as a vecto has many uses in mechanics, as will be seen in the sequel. ˆn J. N. eddy VECTOS&TENSOS - 9

JN eddy - 10 SCALA TIPLE PODUCT The poduct A. (B C) is a scala and it is temed the scala tiple poduct. It can be seen fom the figue that the poduct A. (B C), except fo the algebaic sign, is the volume of the paallelepiped fomed by the vectos A, B, and C. B C A C B A. (B C) J. N. eddy VECTOS&TENSOS -10

JN eddy - 11 EXECISES ON VECTOS 1. If two vectos ae such that what can we conclude? 2. If two vectos ae such that what can we conclude? 3. Pove that ABCABC AB0 AB0 4. If thee vectos ae such that ABC 0 what can we conclude? 5. The velocity vecto in a flow field is v 2 i ˆ 3 ˆ j (m/ s). Detemine (a) the velocity vecto nomal to the plane 3 ˆ v n n i-4ˆ k passing though the point, (b) the angle between v and v n, (c) tangential velocity vecto on the plane, and (d) The mass flow ate acoss the plane though an aea 2 3 3 A 0. 15 m if the fluid density is 10 kg/ m and the flow is unifom. J. N. eddy VECTOS&TENSOS -11

JN eddy - 12 COMPONENTS OF VECTOS Components of a vecto e ˆ e z ˆ3 e ˆ e ˆ y 2 ˆ e x ˆ1 e z x 3 A x x 1 y x 2 1, 0, 0, 1 1 1 2 1 3 1, 0, 1, 2 2 2 3 3 3 0,,, 1 1 1 2 3 2 1 3,, 2 3 1 3 1 2 1 3 2 A A A A x x y y z z A A A 1 1 2 2 3 3 n ˆ n n n x x y y z z n n n 1 1 2 2 3 3 z x 3 A A 1 A 2 A 3 i x x 1 y x 2 A A i J. N. eddy VECTOS&TENSOS -12

JN eddy - 13 SUMMATION CONVENTION Omit the summation sign and undestand that a epeated index is to be summed ove its ange: A A A A 1 1 2 2 3 3 3 i1 A A (summation convention) i i i i Dummy index A A A Dummy indices Scala poduct i i j j A ˆ B ˆ AB e e AB i i j j i j i j AB AB i j ij i i 0, if i 1, if i ij i j J. N. eddy VECTOS&TENSOS -13 j j

JN eddy - 14 Vecto poduct SUMMATION CONVENTION (continued) AB AB sin A B AB AB AB i i j j i j i j i j ijk k AB 1 2 3 A A A 1 2 3 B B B 1 2 3 ijk 2 i j j k k i i j ijk k 0, if any twoindicesaethesame 1, if i j k, and they pemute inanatual ode 1, if i j k,and they pemute opposite toanatual ode ijk i j k i j k 1 J. N. eddy VECTOS&TENSOS -14

JN eddy - 15 SUMMATION CONVENTION (continued) Contaction of indices: The Konecke delta ij modifies (o contacts) the subscipts in the coefficients of an expession in which it appeas: A A, AB AB AB, i ij j i j ij i i j j ij ik jk Coect expessions: F ABC, G H ( 23AB) PQF i i j j k k i i j j k Fee indices Incoect expessions: A BC, A B and F ABC i j k i j k i j k J. N. eddy VECTOS&TENSOS -15

JN eddy - 16 SUMMATION CONVENTION (continued) One must be caeful when substituting a quantity with an index into an expession with indices o solving fo one quantity with index in tems of the othes with indices in an equation. Fo example, conside the equations It is coect to wite p abc and c deq i i j j k i i k but it is incoect to wite pi bc j j ai which has a totally diffeent meaning bc a i pi bc p p p i 1 2 3 j j ai a1 a2 a3 J. N. eddy VECTOS&TENSOS -16 j j p

JN eddy - 17 SUMMATION CONVENTION (continued) The pemutation symbol and the Konecke delta pove to be vey useful in establishing vecto identities. Since a vecto fom of any identity is invaiant (i.e., valid in any coodinate system), it suffices to pove it in one coodinate system. The following identity is useful: - Identity: ijk imn jm kn jn km J. N. eddy VECTOS&TENSOS -17

JN eddy - 18 EXECISES ON INDEX NOTATION Execise-1: Check which one of the following expessions ae valid: (a) abc( df); (b) abc( df) m s m m s m s s (c) a bc( d f); (d) x x i j i i i m m (e) a 3; (f)? i ij jk ki Execise-2: Pove A A A 1 2 3 ABCijkABC i j k B B B C C C 1 2 3 1 2 3 Execise-3: Simplify the expession ( AB)( CD) Execise-4: Simplify the expession A( BC) Execise-5: ewite the expession in vecto fom ABC D J. N. eddy VECTOS&TENSOS -18 2 ê mni i j m n j

JN eddy - 19 SECOND-ODE TENSOS A second-ode tenso is one that has two basis vectos standing next to each othe, and they satisfy the same ules as those of a vecto (hence, mathematically, tensos ae also called vectos). A second-ode tenso and its tanspose can be expessed in tems of ectangula Catesian base vectos as T S S ee ˆˆ S ee ˆˆ; S S ee ˆˆ S ee ˆˆ ij i j ji j i ji i j ij j i A second-ode tenso is symmetic only if SS T Sij Sji Second-ode identity tenso has the fom I ij ˆ i e j J. N. eddy VECTOS&TENSOS -19

JN eddy - 20 SECOND-ODE TENSOS We note that ST T S tensos) because (whee S and T ae second-ode ST S ee ˆˆ T ST STee ˆˆ ij i j kl k l ij kl i j k l ij jl i l TS T ee ˆˆ S TS STee ˆˆ ij i j kl k l ij kl i j k l jl ij i l We also note that (whee S and T ae second-ode tensos and A is a vecto) ST S ee ˆˆ T ST ST ee ˆˆ ij i j kl k l ij kl i j k l ij kl jkp i p l SA Sˆ e A SA SA ij i j k k ij k i j k ij j i SA See ˆˆ A SA SA ee ˆˆ ij i j k k ij k i j k ij k jkp i p J. N. eddy VECTOS&TENSOS -20

JN eddy - 21 CAUCHY STESS TENSO Stess tenso is a good example of a second-ode tenso. The two basis vectos epesent the diection and the plane on which they act. The Cauchy stess tenso is defined by the Cauchy fomula (to be established): t 1 x 1 t 3 σ ê 1 x 3 ê 3 T ˆ ˆ o ti ij nj t n n σ ê 2 t2 x 2 t i j ji ji j 13 t ee ˆˆ ee ˆˆ t 3 1 13 2 23 3 33 33 32 23 t ˆ ˆ ˆ 2 e112 e222 e332 i i ji j i ij i j J. N. eddy VECTOS&TENSOS -21 31 21 11 22 12 t 1 1 11 2 21 3 31

JN eddy - 22 CAUCHY S FOMULA t at1 a1t2 a2t3 a3ρ vf ρ va anˆ a ˆ ˆ ˆ 1e1a2e2a3e3 0 a ( nˆ) a, a ( nˆ) a 1 1 2 2 h a ˆ ˆ 3 ( e3n) a, v a 3 F 1 F 2 t ( 2) F 3 a 2 = t2 h t t1( 1nˆ) t2( 2nˆ) t3( 3nˆ) ( af) 3 As h 0, we obtain 2 x 1 t ˆn t Inteio of the body x 3 ê 3 ê ê 2 1 t t1( 1nˆ) t2( 2nˆ) t3( 3nˆ) t nˆ nˆ i i 3 ˆn On the bounday a t 1 t 2 a 1 ( 1) t = t 1 t t ( 3) a 3 = t ˆn 3 1 ( nˆ ) x 3 x 2 t t 3 ˆn x 2 x 1 J. N. eddy VECTOS&TENSOS -22

JN eddy - 23 HIGHE-ODE TENSOS A n th -ode tenso is one that has n basis vectos standing next to each othe, and they satisfy the same ules as those of a vecto. A n th -ode tenso T can be expessed in tems of ectangula Catesian base vectos as T T ˆˆ e e ijkp i j k p ; C ε n subs eee ˆˆˆ eee ˆˆˆ base vectos The pemutation tenso is a thid-ode tenso J. N. eddy VECTOS&TENSOS -23 n ijk i j k The elasticity tenso is a fouth-ode tenso C ijkl i j k l

JN eddy - 24 TANSFOMATION OF TENSO COMPONENTS A second-ode Catesian tenso S (i.e., tenso with Catesian components) may be epesented in baed ( x and unbaed Catesian coodinate 1, x2, x3) ( x1, x2, x3) systems as S s ee ˆ ˆ s ij i j mn m n The unit base vectos in the unbaed and baed systems ae elated by and, j ij i i ij j ij i j Thus the components of a second-ode tenso tansfom accoding to s s ij im jn mn J. N. eddy VECTOS&TENSOS -24

THE DEL OPEATO AND ITS POPETIES IN ECTANGULA CATESIAN SYSTEM JN eddy - 25 Del opeato: i xi x x x Laplace opeato: 2 xixi x x x Gadient opeation: 1 2 3 1 2 3 F F ê i, whee F isa scala function x i 2 2 2 2 2 2 2 1 2 3 Gad F defines both the diection and magnitude of the maximum ate of incease of F at any point. J. N. eddy VECTOS&TENSOS -25

THE DEL OPEATO AND ITS POPETIES IN ECTANGULA CATESIAN SYSTEM JN eddy - 26 F F nˆ, whee nˆ isa unit vecto nomal n to the suface F constant F F We also have nˆ and nˆ F F n Divegence opeation: Gi G i jg j, whee Gisavecto function x x i The divegence of a vecto function epesents the volume density of the outwad flux of the vecto field. i J. N. eddy VECTOS&TENSOS -26

THE DEL OPEATO AND ITS POPETIES IN ECTANGULA CATESIAN SYSTEM JN eddy - 27 Cul opeation: Gj G i jg j ijk k, x ε x i whee Gisavecto function. The cul of a vecto function epesents its otation. If the vecto field is the velocity of a fluid, cul of the velocity epesents the otation of the fluid at the point. i J. N. eddy VECTOS&TENSOS -27

JN eddy - 28 CYLINDICAL COODINATE SYSTEM 0 cos sin x sin cos 0 y 0 0 1 z z 0 x cos sin sin cos 0 y 0 0 1 z z A A A A z z Del opeato in cylindical coodinates 1 z z J. N. eddy VECTOS&TENSOS -28 x z θ y, z z x ê 2 2 2 z y

JN eddy - 29 CYLINDICAL COODINATE SYSTEM 1 ( A ) A A z A z 1 1 z 2 2 2 2 2 1Az A A A z 1( A) A A z z A A 1 A Az A A ee ˆ ˆ ee ˆ ˆ A ee ˆ ˆ ee ˆ ˆ ee ˆ ˆ z 1 A 1A A ee ˆ ˆ ee ˆ ˆ J. N. eddy VECTOS&TENSOS -29 z z z Hee A is a vecto: A A A A Veify these elations to youself A z z z ee ˆ ˆ A z ee ˆ ˆ z z z z z z

JN eddy - 30 SPHEICAL COODINATE SYSTEM sin cos sin sin cos x cos cos cos sin sin y sin cos 0 z x sincos coscos sine ˆ y sinsin cossin cos z cos sin 0 A A A A Del opeato 1 1 sin J. N. eddy VECTOS&TENSOS -30 x z 2 2 2 x y z 2 2 Line paallel to ê θ y, sin, cos sin z θ x ê ê cos y Line paallel to ê

JN eddy - 31 SPHEICAL COODINATE SYSTEM 1 1 1 sin sin 2 2 2 sin 2 2 2 2A 1 ( sin ) A A 1 A A sin sin 1 (sin A ) A 1 1 ( ) 1 ( A ) A A A A sin sin A A 1 A A 1 A A sin A A sin 1 A 1 A 1 A A ee ˆ ˆ ee ˆ ˆ cos ee ˆ ˆ A sin 1 A A sin cos ee ˆ ˆ A sin J. N. eddy VECTOS&TENSOS -31

JN eddy - 32 EXECISES ON VECTO CALCULUS Establish the following identities (using ectangula Catesian components and index notation): 1. ( ) n 2. ( ) n n2 3. ( F ) 0 4. ( FG) 0 5. 6. 7. 2 A A A ( ) ( ) AB ABBA A( A) ( AA) AA. 1 2 J. N. eddy VECTOS&TENSOS -32

JN eddy - 33 Execise: Check appopiate box Quantity Vecto Scala Nonsense ( f ) ( F) ( f ) ( F) ( F) ( f ) f scala; F vecto J. N. eddy VECTOS&TENSOS -33

JN eddy - 34 INTEGAL THEOEMS involving the del opeato d nˆ ds Ad nˆ Ads Ad nˆ Ads y ˆj y ˆi n yˆ j nˆ n xˆ i ds x (Gadient theoem) (Divegence theoem) (Cul theoem) nˆ n ˆin ˆj x J. N. eddy VECTOS&TENSOS -34 n n x y n x x y y n 1 1 2 2

J. N. eddy VECTOS&TENSOS -35 EXECISES ON INTEGAL IDENTITIES 2 1 1 6 3 2 2 2 2 4 2 2 2 2 1 2 3 4 5 n n ˆ ˆ. volume ( ).... ( ) d d d d n d d n d d n n d d n n Establish the following identities using the integal theoems: JN eddy - 35