Assessment.mcd. Comparison frequency at phase detector. Margin sought compared to ideal phase detector noise floor, db

Similar documents
2 nd Order PLL Design and Analysis

Fundamentals of PLLs (III)

Behavior of Phase-Locked Loops

+ v i F02E2P2 I. Solution (a.) The small-signal transfer function of the stages can be written as, V out (s) V in (s) = g m1 /g m3.

Homework Assignment No. 3 - Solutions

A New Method For Simultaneously Measuring And Analyzing PLL Transfer Function And Noise Processes

Introduction to CMOS RF Integrated Circuits Design

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Quartz Crystal Oscillators and Phase Locked Loops. Dominik Schneuwly Yves Schwab

Systems Analysis and Control

LECTURE 3 CMOS PHASE LOCKED LOOPS

ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design

Boost Charge Pump Current PLL

Spurious-Tone Suppression Techniques Applied to a Wide-Bandwidth 2.4GHz Fractional-N PLL. University of California at San Diego, La Jolla, CA

Reciprocal Mixing: The trouble with oscillators

Discrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture

Fundamentals: Frequency & Time Generation

Lecture 120 Filters and Charge Pumps (6/9/03) Page 120-1

LECTURE 090 FILTERS AND CHARGE PUMPS

Systems Analysis and Control

ALLAN VARIANCE ESTIMATED BY PHASE NOISE MEASUREMENTS

EE C128 / ME C134 Fall 2014 HW 8 - Solutions. HW 8 - Solutions

An On-Chip All-Digital Measurement Circuit to Characterize Phase-Locked Loop Response in 45-nm SOI

Chapter 9: Controller design

Understanding Data Sheet Jitter Specifications for Cypress Timing Products

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Voltage-Controlled Oscillator (VCO)

Notes on DPLL. Haiyun Tang Most of material is derived from Chistian s report[4]

CDS 101/110 Homework #7 Solution

LINEAR CONTROL SYSTEMS. Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Section 4. Nonlinear Circuits

Carrier Synchronization

24.2: Self-Biased, High-Bandwidth, Low-Jitter 1-to-4096 Multiplier Clock Generator PLL

Last Name _Di Tredici_ Given Name _Venere_ ID Number

Tutorial on Dynamic Analysis of the Costas Loop. 12

Latency, Bandwidth, and Control Loop Residual Relationships

Charge-Pump Phase-Locked Loops

9. Two-Degrees-of-Freedom Design

MEM 355 Performance Enhancement of Dynamical Systems

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier II Multi-Stage Designs

Homework Assignment 11

A New Approach for Computation of Timing Jitter in Phase Locked Loops

Design of CMOS Adaptive-Bandwidth PLL/DLLs

MAS107 Control Theory Exam Solutions 2008

Phase Noise in Oscillators

Outline. Classical Control. Lecture 1

Frequency Dependent Aspects of Op-amps

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS

Microwave Oscillators Design

Mobile Radio Communications

Oversampling Converters

Homework 7 - Solutions

Intro to Frequency Domain Design

Digital Communications

MAE 142 Homework #5 Due Friday, March 13, 2009

Control for. Maarten Steinbuch Dept. Mechanical Engineering Control Systems Technology Group TU/e

Final Exam. 55:041 Electronic Circuits. The University of Iowa. Fall 2013.

Optoelectronic Applications. Injection Locked Oscillators. Injection Locked Oscillators. Q 2, ω 2. Q 1, ω 1

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method

7.2 Controller tuning from specified characteristic polynomial

E08 Gyroscope Drive Design

Exercises for lectures 13 Design using frequency methods

Charge Pump. Loop Filter. VCO Divider

An Efficient Bottom-Up Extraction Approach to Build the Behavioral Model of Switched-Capacitor. ΔΣ Modulator. Electronic Design Automation Laboratory

EE C245 ME C218 Introduction to MEMS Design Fall 2007

MAE 142 Homework #2 (Design Project) SOLUTIONS. (a) The main body s kinematic relationship is: φ θ ψ. + C 3 (ψ) 0 + C 3 (ψ)c 1 (θ)

ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques

Feedback Transimpedance & Current Amplifiers

SWITCHED CAPACITOR AMPLIFIERS

Introduction to Phase Locked Loop (PLL) DIGITAVID, Inc. Ahmed Abu-Hajar, Ph.D.

Pipelined multi step A/D converters

EE 435. Lecture 16. Compensation Systematic Two-Stage Op Amp Design

III. Spherical Waves and Radiation

Design of crystal oscillators

Active Control? Contact : Website : Teaching

Dallas Semiconductor 17

Tracking of Spread Spectrum Signals

Modeling All-MOS Log-Domain Σ A/D Converters

Sinusoids. Amplitude and Magnitude. Phase and Period. CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

Linear Phase-Noise Model

Systematic Design of Operational Amplifiers

Problem 1: Ship Path-Following Control System (35%)

CMPT 889: Lecture 2 Sinusoids, Complex Exponentials, Spectrum Representation

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1BVW S/08

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Filters

Oscillator Phase Noise

2.010 Fall 2000 Solution of Homework Assignment 7

III. The STM-8 Loop - Work in progress

SERIALLY PROGRAMMABLE CLOCK SOURCE. Features

AMME3500: System Dynamics & Control

Driven RLC Circuits Challenge Problem Solutions

Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: Student ID number... Signature...

ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.

Sinusoidal Steady-State Analysis

Electronic Circuits Summary

Performance of Coherent Binary Phase-Shift Keying (BPSK) with Costas-Loop Tracking in the Presence of Interference

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.

Control Systems I Lecture 10: System Specifications

Transcription:

U029 PLL Synthesizer Phase Noise PLL Synthesizer Phase Noise FLO 9400 6 ω n 2π3000 Nominal loop natural frequency ζ 0.8 F ref 0 5 K v 2π500 6 0.005 K d 2π Nominal loop damping factor Comparison frequency at phase detector VCO tuning sensitivity Phase detector gain, A/rad Margin db 4 Margin sought compared to ideal phase detector noise floor, db N nom floor FLO F ref N nom = 9.4 0 3 Phase Detector Noise Floor 2 L pd F pd, F in 20log ( N nom ) L pd F ref, FLO = 77.537 L pd F ref, FLO + 20log F in 0log F pd = 57 Phase detector noise floor, dbc/hz, @ Fout + Margin db Loop Parameters C R 2 ω n N nom 2ζ ω n C K d K v C = 2.246 0 7 R = 377.996 Phase Detector Noise Floor L pdx L pd ( F ref, FLO) L pdx = 77.537

U029 PLL Synthesizer Phase Noise 2 VCO Parameters for Leeson s Model F 4 Q L 5 R 2 2000floor f corner k.380 23 L vco ( f) 0log FkT 2P o 8ω n 2π F o FLO 0R 000 C 2 f corner 2 π R 2 + + T 290 P o 0.00 F o 2Q L f R 2 = 8 0 3 Corner frequency for LPF into VCO 2 C 2 = 8.289 0 0 PLL Architecture for Loop Filter ------------------------------R2-----------------> VCO C3 R C2 C = 9.504 = 7.504 = 0.047 = 05.484 = 09.006 L vco 0000 L vco 000 L vco 30000 L vco 50000 L vco 75000 Internal node capacitance (estimate) looking into VCO Tune Port adds to C2 C 2 C 2 Want C3 to act with R R2 to mimic a zero-order sample hold response for best speed performance. Also, in speed-up mode with LMX2332, loop bandwidth is doubled so this needs to be reflected in stability considerations. T ref F ref T ref C 3 R x 4 R x R R 2 R + R 2 R x = 360.942 C 3 = 6.926 0 9 G OL ( s, N ) K d K v N s R 2 sr 2 C ( + sr 2 C 2 ) + + sr 2 C 3 + sr C

U029 PLL Synthesizer Phase Noise 3 Examine open-loop gain function ii 0.. 256 0 + ii 257 7 fw ii 0 R = 377.996 C = 2.246 0 7 C 3 = 6.926 0 9 C 2 = 8.289 0 0 R 2 = 8 0 3 jx w s 2π F ref sw ii jx fw ii 2π ksum 3.. 3 GStar ii ksum G OL sw ii + jx ksum w s, N nom G ii G OL ( sw ii, N nom ) 2 GMag ii 0log GStar ii GAng ii 80 arg GStar ii π

U029 PLL Synthesizer Phase Noise 4 Open-Loop Gain and Phase 00 Open Loop Gain and Phase 50 Gain (db) / Phase (deg) 0 50 00 50 00. 0 3. 0 4. 0 5. 0 6. 0 7 Frequ ency, H z G ii T fii T dbfii 0log T fii + G ii 2 Closed-Loop Transfer Functions T 2fii T 2dBfii 0log T 2fii + G ii 2

U029 PLL Synthesizer Phase Noise 5 Closed-Loop Gain Functions for Stability Investigation 0 Closed-Loop Gains 0 0 Gain, db 20 30 40 50 60 0 00. 0 3. 0 4. 0 5. 0 6. 0 7 Frequ ency, H z Predict Phase Noise Performance of PLL External Reference Phase Noise (SSD200 0 MHz Std) kt 0.. 5 0 7 00 26 000 43 F xo 0000 L xo F 48 Lxokt log F xokt 0 5 50 0 6 50

U029 PLL Synthesizer Phase Noise 6 F tcxo 00 6 L tcxo ( f) linterp F Lxo, L xo, log ( f ) k.380 23 Boltzman T 290 Temperature L refii 20 log F tcxo L tcxo fw ii F ref + 20log ( N nom ) L refii 0 log 0 0. L 0.L refii pdx + 0 Add noise from Phase Detector floor and Reference TCXO P dbii L refii + T dbfii 0.P dbii P fii 0 30 Plot of Phase Noise Spectrum Due to Reference Noise at PLL Output Main PLL Ref N oise Contribu tion 40 50 60 Phase Noise, dbc/ Hz 70 80 90 00 0 20 30 0 00. 0 3. 0 4. 0 5. 0 6 Frequ ency Offset, H z

U029 PLL Synthesizer Phase Noise 7 P 2dBfii L vco ( fw ii ) + T 2dBfii 0.P 2dBfii P 2fii 0 Phase Noise Contribution from VCO Self-Noise to PLL Output Spectrum 60 Main PLL VCO N oise Contribu tion 70 80 90 Phase Noise, dbc/ Hz 00 0 20 30 40 50 60 0 00. 0 3. 0 4. 0 5. 0 6. 0 7 Frequ ency Offset, H z

U029 PLL Synthesizer Phase Noise 8 Compute Phase Noise Arising from R in PLL Y ( s) Z a ( s) Z b ( s) R + Y ( s) + sc 3 sc R 2 + sc 2 pn ii 4k Z b ( jx 2 πfw ii ) Z a jx 2 πfw ii TR Z a jx 2 πfw ii + K v + jx 2πfw ii R 2 C 2 jx 2πfw ii G ii 2 2 P 3dBfii 0log pn ii + T dbfii P 3fii 0 0.P 3dBfii R = 377.996 R 2 = 8 0 3 K v 2π =.5 0 8 Phase Noise Contribution at PLL Output Due to R 80 Main PLL R Contribution at Output 90 00 Phase Noise, dbc/ Hz 0 20 30 40 50 60 0 00. 0 3. 0 4. 0 5. 0 6. 0 7 Frequ ency Offset, H z

U029 PLL Synthesizer Phase Noise 9 Compute Phase Noise Arising from R2 in Loop Filter Z x ( s) pn2 ii R + sc 4k TR 2 + sc 3 jx 2 π fw ii C ( ) 2 jx 2 π fw ii C ( ) 2 + R 2 + Z x jx 2 πfw ii K v jx 2πfw ii G ii 2 2 P 4dBfii 0log pn2 ii + T dbfii 0.P 4dBfii P 4fii 0 Phase Noise Contribution at PLL Output Due to R2 80 Main PLL R2 Contribution at Output 90 00 Phase Noise, dbc/ Hz 0 20 30 40 50 60 0 00. 0 3. 0 4. 0 5. 0 6. 0 7 Frequ ency Offset, H z

U029 PLL Synthesizer Phase Noise 0 PSDx ii 0log P fii + P 2fii + P 3fii + P 4fii (,, 500) = 76.22 (,, 000) = 73.883 (,, 2000) = 70.388 (,, 3000) = 69.057 = 69.68 linterp fw, PSDx, 4000 = 69.99 linterp fw, PSDx, 5000 (,, 7000) = 72.256 (,, 0000) = 75.622 (,, 5000) = 80.347 (,, 8750) = 83.3 = 84.95 linterp fw, PSDx, 20000 = 90.756 linterp fw, PSDx, 3250 (,, 43500) = 95.85 (,, 50000) = 97.999 (,, 75000) = 04.094 (,, 00000) = 08.02 = 6.397 linterp fw, PSDx, 200000 = 3.45 linterp fw, PSDx, 000000

U029 PLL Synthesizer Phase Noise Composite Phase Noise Output Spectrum for Output 50 Main Synthesizer Phase N oise 60 70 80 Phase Noise, dbc/ Hz 90 00 0 20 30 0 00. 0 3. 0 4. 0 5. 0 6 Frequ ency Offset, H z Spectrum, dbc/ Hz Reference Contribu tion VCO Contribu tion R Contribution R2 Contribution

U029 PLL Synthesizer Phase Noise 2 ku 0.. 200 6 ku 200 Fx ku 0 S outku linterp fw, PSDx, Fx ku LogFx ku log Fx ku Integrated Phase Noise Out to FH Offset: F H 320 3 PhaseNoise F L df ( F H F L ) N 80 π 2 0 ix = 0 df F L + ix+ F L + ix df 0 0. linterp LogFx, S out, log ( fx ) dfx PhaseN oise( 5000) =.668 degrees rms Phase Change Over Time PhaseAccu m u lation ( τ) df 20000 3 N 80 π 8 0 ix = 0 2τ 2τ + ( ix+ ) df + ix df 0 0. linterp LogFx, S out, log ( fx ) sin ( πfxτ) 2 dfx PhaseAccumulation 3.20 6 3 = 0.237 degrees rms Dat S ku, outku Dat Fx ku, 0 ku

U029 PLL Synthesizer Phase Noise 3 Residual FM ResidualFM F L, F H df ( F H F L ) N 2 0 ix = 0 df F L + ix+ F L + ix df fx 2 0.linterp 0 LogFx (, S out, log ( fx ) ) dfx Resid u alfm ( 00, 00000) = 387.024 Hertz rms

U029 PLL Synthesizer Phase Noise 4 Basic Type-II PLL Parameters Phase error at phase detector (radians) output due to a frequency step change θ pd t, ω n, ζ, F step ζω 2πF n t step e if ζ sinh ω n ζ 2 t ω,, sinω n ζ 2 t n ζ 2 Peak phase error for a frequency-step input occurs for T fstep ( ω n, ζ) ω n ζ 2 atan2 ζ, ζ 2 3 db Closed-Loop Bandwidth, Hz BW 3dBClosed ( ω n, ζ) ω n 2π + 2ζ 2 + 2 ζ 4 + ζ 2 + 0.5 0 db Open-Loop Band Bandwidth, Hz BW 0dBOpen ( ω n, ζ) ω n 2π 2ζ 2 + 4ζ 4 + System Phase Margin PhaseMargin ω n, ζ atan 2 BW 0dBOpen ( ω n, ζ) 2 ω n π Peak Frequency Overshoot with Frequency Step Input 2π ω error t, ω n, ζ, F F e ζ ω n t cos ζ 2 ω n t ζ ζ 2 sin ζ 2 ω n t