Reactive Empirical Force Fields

Similar documents
Reactive potentials and applications

Charge equilibration

Reactive Force Field & Molecular Dynamics Simulations (Theory & Applications)

Reactive Force Fields in Particular ReaxFF and Application Possibilities

Structural Bioinformatics (C3210) Molecular Mechanics

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

ReaxFF force fields. Development of a transferable empirical method for atomic-scale simulations of chemical reactions

Coupling ReaxFF and DREIDING to Model Enzymatic Reactions. Li Tao, Markus J. Buehler and William A. Goddard

Molecular Mechanics / ReaxFF

Thermal decomposition of RDX from reactive molecular dynamics

Formation of water at a Pt(111) surface: A study using reactive force fields (ReaxFF)

Water models in classical simulations

Development of a ReaxFF Reactive Force Field for Glycine and Application to Solvent Effect and Tautomerization

k θ (θ θ 0 ) 2 angles r i j r i j

Potentials, periodicity

CE 530 Molecular Simulation

T6.2 Molecular Mechanics

Introduction to Molecular Dynamics

Atomic and molecular interaction forces in biology

All-atom Molecular Mechanics. Trent E. Balius AMS 535 / CHE /27/2010

Report on Atomistic Modeling of Bonding in Carbon-Based Nanostructures

Bioengineering 215. An Introduction to Molecular Dynamics for Biomolecules

The Pennsylvania State University. The Graduate School. Department of Mechanical and Nuclear Engineering

Additional Comparison of QM and ReaxFF Data Included in the ReaxFF Training Set

Application to modeling brittle materials

Lecture 11: Potential Energy Functions

CE 530 Molecular Simulation

Force Fields in Molecular Mechanics

PCCP PAPER. ReaxFF reactive molecular dynamics on silicon pentaerythritol tetranitrate crystal validates the mechanism for the colossal sensitivity

Interatomic Potentials. The electronic-structure problem

Multiscale Materials Modeling

Machine learning the Born-Oppenheimer potential energy surface: from molecules to materials. Gábor Csányi Engineering Laboratory

Computational Methods. Chem 561

Supplementary Materials

Hyeyoung Shin a, Tod A. Pascal ab, William A. Goddard III abc*, and Hyungjun Kim a* Korea

Heidelberg Molecular Modelling Summer School The Challenges of Transition Metal Systems

The Potential Energy Surface (PES) And the Basic Force Field Chem 4021/8021 Video II.iii

The split-charge method:

Force fields in computer simulation of soft nanomaterials

3rd Advanced in silico Drug Design KFC/ADD Molecular mechanics intro Karel Berka, Ph.D. Martin Lepšík, Ph.D. Pavel Polishchuk, Ph.D.

Computer Simulation of Shock Waves in Condensed Matter. Matthew R. Farrow 2 November 2007

From Atoms to Materials: Predictive Theory and Simulations

Reactive Dynamics Study of Hypergolic Bipropellants: Monomethylhydrazine and Dinitrogen Tetroxide

Biochemistry,530:,, Introduc5on,to,Structural,Biology, Autumn,Quarter,2015,

Molecular Mechanics. Yohann Moreau. November 26, 2015

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Module17: Intermolecular Force between Surfaces and Particles. Lecture 23: Intermolecular Force between Surfaces and Particles

Electronic structure and transport in silicon nanostructures with non-ideal bonding environments

Tools for QM studies of large systems

arxiv: v1 [cond-mat.stat-mech] 6 Jan 2014

Molecular Mechanics, Dynamics & Docking

Enduring Understandings & Essential Knowledge for AP Chemistry

Introduction. Monday, January 6, 14

New Models for Aqueous Systems: Construction of Vibrational Wave Functions for use in Monte Carlo Simulations.

PuReMD-GPU: A Reactive Molecular Dynamic Simulation Package for GPUs

An introduction to Molecular Dynamics. EMBO, June 2016

Site dependent hydrogenation in Graphynes: A Fully Atomistic Molecular Dynamics Investigation

Fundamental Interactions: 6 Forces

ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation

Introduction to ReaxFF: Reactive Molecular Dynamics

Electronic excitations in conjugated. Many-Body Green's Functions. Behnaz Bagheri Varnousfaderani. Behnaz Bagheri Varnousfaderani

Amalendu Chandra. Department of Chemistry and Computer Centre.

Biomolecular modeling I

Material Surfaces, Grain Boundaries and Interfaces: Structure-Property Relationship Predictions

Kirkwood-Buff Integrals for Aqueous Urea Solutions Based upon the Quantum Chemical Electrostatic Potential and Interaction Energies

Chem 1140; Molecular Modeling

Developing Monovalent Ion Parameters for the Optimal Point Charge (OPC) Water Model. John Dood Hope College

arxiv: v1 [cond-mat.mtrl-sci] 29 Jan 2015

Interatomic potentials with error bars. Gábor Csányi Engineering Laboratory

Force fields and molecular modelling

Using Web-Based Computations in Organic Chemistry

Fragmentation methods

Atomistics of the Lithiation of Oxidized Silicon. Dynamics Simulations

PhET Interactive Chemistry Simulations Aligned to an Example General Chemistry Curriculum

The Pennsylvania State University. The Graduate School. College of Engineering DEVELOPMENT AND APPLICATION OF THE REAXFF POTENTIAL FOR

Molecular Dynamics Simulations. Dr. Noelia Faginas Lago Dipartimento di Chimica,Biologia e Biotecnologie Università di Perugia

Molecular Dynamics Simulation of a Nanoconfined Water Film

Scuola di Chimica Computazionale

Environment Dependent Charge Potential for Water

Chapter 2 Experimental sources of intermolecular potentials

Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel

Polypeptide Folding Using Monte Carlo Sampling, Concerted Rotation, and Continuum Solvation

Why study protein dynamics?

Controlled healing of graphene nanopore

Molecular dynamics simulation. CS/CME/BioE/Biophys/BMI 279 Oct. 5 and 10, 2017 Ron Dror

Homology modeling. Dinesh Gupta ICGEB, New Delhi 1/27/2010 5:59 PM

Aqueous solutions. Solubility of different compounds in water

Self assembly of Carbon Atoms in Interstellar Space and Formation Mechanism of Naphthalene from Small Precursors: A Molecular Dynamics Study

ReaxFF MgH Reactive Force Field for Magnesium Hydride Systems

Biomolecules are dynamic no single structure is a perfect model

VALENCE Hilary Term 2018

The chemical bond The topological approach

Chemical Bonding. The Octet Rule

BAE 820 Physical Principles of Environmental Systems

Molecular Simulation II. Classical Mechanical Treatment

Lecture February 8-10, NiCHx

Why Is Molecular Interaction Important in Our Life

Dihedral Angles. Homayoun Valafar. Department of Computer Science and Engineering, USC 02/03/10 CSCE 769

Development and Application of Combined Quantum Mechanical and Molecular Mechanical Methods

Detailed Temperature-dependent Study of n-heptane Pyrolysis at High Temperature

Transcription:

Reactive Empirical Force Fields Jason Quenneville jasonq@lanl.gov X-1: Solid Mechanics, EOS and Materials Properties Applied Physics Division Los Alamos National Laboratory Timothy C. Germann, Los Alamos Alejandro Strachan, Purdue Adri C. T. van Duin, Caltech William A. Goddard III, Caltech Alexei A. Stuchebrukhov, UC Davis 2006 Summer School on Computational Materials Science July 31 - August 11, 2006 University of Illinois

Motivation Empirical force fields are used in biology, chemistry, physics and materials science to calculate the potential energy surface and atomic forces. Most, like CARMM and AMBER, assume the same atomic connectivity (molecular composition) throughout simulation. No Chemistry!!! Straightforward solution: ab initio or QM/MM (up to 300 atoms for QM system) For materials simulation, we may want 10s of 1000s to millions of atoms and as much as a nanosecond of simulation time. Need a more efficient method!!!

Empirical Force Fields Empirical force fields contain potential energy functions for each atomic interaction in a molecular system. ()2stretch012RVkRR= Bond Stretch: ()2bend012Vkθθθ= Bond Bending: Bond Torsion: ()torsion1cos; 1nVVsnsφ=+=± Parameters can be taken from experiment (e.g., vibrational spectroscopy) or from ab initio quantum chemistry calculations.

Empirical Force Fields Non-Bonded potentials give the intermolecular interactions: Coulomb: 2CoulombijijqqeVR= van der Waals: Lennard-Jones126ijijijijACVRR= 126; 4; 4ijijiiiijijiiiAAAACCC Parameters obtained through ab initio quantum chemistry and liquid simulations. e.g. OPLS (optimized potentials for liquid simulations, W. L. Jorgensen and J. Tirado- Rives, J. Am. Chem. Soc. 110, 1657 (1988). )

Empirical Valence Bond (EVB) EVB attempts to combine empirical potential energy functions with valence bond ideas to describe chemical reactions efficiently and accurately. EVB Applications Proton transport in aqueous acid (CPL, 284, 71 ( 98); JPCB, 102, 5547 ( 98)) Aqueous acid-base reactions (JPCA, 105, 2814 ( 01)) Enzyme catalysis (Warshel) Nucleophilic substitution reactions Good Introduction: Computer Modeling of Chemical Reactions in Enzymes and Solutions, A. Warshel Wiley-Interscience (02/01/1997)

EVB: introduction EVB starts with a N N potential energy matrix: diabatic states N diabatic states (diagonal) N(N-1) couplings (off-diagonal) coupling term Each diabatic state looks like a configuration in a standard non-reactive force field. Off-diagonal coupling elements: interaction between each diabatic state and the N-1 remaining states. Diagonalize V adiabatic states. The minimal value is the ground state. adiabatic ground state

Calculation of Forces Diagonalizing the N N EVB matrix yields the ground state as a linear combination of diabatic states. If a n is the set of corresponding coefficients, the forces can be calculated using the ellman-feynman theorem: 0022nnmnnmnnmFRVaaaRR = ΨΨ

EVB: diagonal matrix elements Because we need to treat bond breaking and formation, the Bond Stretch should be anharmonic: ()2stretch012RVkRR= ()()2stretch01expeVDRRβ = Bending and Torsional potentials can be as before: ()2bend012Vkθθθ= ()torsion1cos; 1nVVsnsφ=+=± System-environment interactions treated with standard non-bonding potentials: 2CoulombijijqqeVR= Lennard-Jones126ijijijijACVRR= 126; 4; 4ijijiiiijijiiiAAAACCC

Interaction between EVB States System-system non-bonding interactions more complicated due to the potential for chemical reaction. A functional form more flexible than Coulomb + Lennard-Jones is required. The intermolecular interactions (part of the diagonal element) and the coupling terms (off-diagonal) must be parametrized together in order to describe the reaction correctly. In the activated complex, the favorable interaction between the two states is controlled by the intermolecular interaction. It is normally written in terms of the distance between the two reactant centers. The reaction barrier is controlled by coupling term. This term is generally a function of the reaction coordinate.

Application: Proton Transfer in Water 0.97 Å 116 0.96 Å 1.2 Å 103 0.97 Å 1.2 Å 118 118 1.22 Å 114 0.97 Å 1.22 Å 101 116 103 0.96 Å 0.97 Å 109 Optimized geometries of the { 2 O O 2 } + (left) and {O O} (right) complexes, obtained from first principles (MP2/aug-cc-pVTZ).

EVB of 3 O + 2 O Proton Transfer Diabatic States: O O O O Adiabatic State: O O

3 O + 2 O Proton Transfer: Diagonal Elements ()()()22222222OOOOO-intra0122OO-O-011exp12e ()()()++++3333++3332OOOOO-intra0132OO-O-011exp1 ()()()()3233333332234O/OOinterdamp4O-O11O-O,OO-OO-OO-O00O-O,OO-O,OO-,OO-O-O-

3 O + 2 O Proton Transfer: Coupling Elements ()()OOOO,XYXYIJVPRQRρ = ()OO12tXYRRRρ= vvv O ρ O ()()()OO(1)(1)OOOO(1)2--------0----(2)(2)OOOO(2)2--------0----,expexpXYXYXYXYXYXYXYX ()(){}OOOOOO----tanh,011tanh,2XYXYXYXYQRRRη =+

EVB vs Ab Initio for 3 O + / 2 O 2.8 Å 2.6 Å 2.4 Å EVB MP2/aug-cc-pVTZ

EVB Summary Very good for systems with small number of possible reactions Reaction barriers are treated explicitly Offers an empirical description of chemical reactions Gives mixing of diabatic states during reaction Can be difficult to parametrize intermolecular potentials and couplings Limitation on number of states due to diagonalization (cubic scaling)

ReaxFF Bond-Order potential, developed at CalTech by Adri van Duin and Bill Goddard Potential parametrized using ab initio calculations (B3LYP/6-31G**) on a training set of reactions Why bond-order based? non-reactive potentials have atom-types that define connectivity N N N N + 2 Applications: igh Explosives, Propellants, Catalysis, Fuel Cells, Corrosion, Friction, etc.

Background References Bond Order/Bond Length relationship Pauling, J. Am. Chem. Soc., 69, 542 (1947). Reactive Empirical Bond Order (REBO) Johnston, Adv. Chem. Phys., 3, 131 (1960). Johnston, Parr, J. Am. Chem. Soc., 85, 2544 (1963). Other Bond-Order Potentials Tersoff, Phys. Rev. Lett., 56, 632 (1986); Tersoff, Phys. Rev. Lett., 61, 2879 (1988). Brenner, Phys. Rev. B, 42, 9458 (1990). Brenner, et al, J. Phys.: Condens. Matter, 14, 783 (2002). ReaxFF van Duin, Dasgupta, Lorant, Goddard, J. Phys. Chem. A, 105, 9396 (2001). Strachan, Kober, van Duin, Oxgaard, Goddard, J. Chem. Phys., 122, 054502 (2005). User Manual: http://www.wag.caltech.edu/home/duin/reax_um.pdf

ReaxFF Potential Energy Function ReaxFF allows for computationally efficient simulation of materials under realistic conditions, i.e. bond breaking and formation with accurate chemical energies. Due to the chemistry, ReaxFF has a complicated potential energy function: ()()bondvalency angletooverpotentialunderpenaltylone pairconjugationrsion-bondvdwaa Charge equilibration: EEM (Mortier, et al, JACS, 108, 4315, ( 86).)

Bond Order, Bond Energy 000BOexpexpexpijijijijrrrrrrβββπππσπππσπππααα = + + Bond Order CC Example: Acetylene Bond Order goes smoothly from 0 1 2 3 as C-C Bond Length shortens from large distance to 1.0 Å C-C Distance / Å ()be,1bondebe,1boexp1bopijijedp = not explicitly a function of bond distance

Bond Order Corrections Bond orders adjusted to get rid of unphysical bonds. Over- and under-coordination of atoms must be avoided. Energy penalty added to the potential energy function for the case where an atom has more bonds than its valence allows. e.g., Carbon can t have more than 4 bonds; ydrogen no more than 1 If an atom is under-coordinated, the stabilization of π bonding should be used if possible.

Bond Angles, Bond Torsion Bond Angles and Torsions are intimately tied to the bond types. CC 120 CC = 180 With a bond order potential, angles and torsions must be written in terms of the bond order. angle(,,)ijkijjlefboboθ= torsion(,,,)ijklijjkklefboboboφ= Angle and torsion energy terms must 0 as B.O. 0. See J. Phys. Chem. A, 105, 9396 (2001) for full potential form.

Lone Pair Electrons, Conjugation bondangletorsionlone pairconjugation-bondvdwaalscoulombeeeeeeeee=+++++++14444 implicit in AMBER/CARMM-like potentials through atom type The creation or reaction of lone-pair electrons should be assigned an energy term. E lone pair corresponds to an energy penalty for having too many lone pairs on an atom (i.e., overcoordination) Conjugated systems should have added stabilization. E conj has maximum contribution when successive bonds have bond-order values of 1.5.

ydrogen Bonding ydrogen bonding extremely important in biological systems but also in many organic solids. X Y ydrogen bonds are calculated between group X- and Y, where X and Y are atoms known to form -bonds (e.g., N, O) The -bond energy term is written in terms of the bond-order of X-, the distance between and Y, as well as the X--Y angle. anglexyxy(,,)θ =EfBOR Can be an expensive part of the calculation because many acceptor (Y) atoms could be available for any given X- group. All interactions must be calculated out to a cutoff distance (~10 Å) in order to remain consistent from timestep to timestep.

Non-Bonded Interactions - Short-range Pauli Repulsion - Long-range attraction (dispersion) - Coulomb forces van der Waals and Coulomb terms are included for all atom pairs (whether bonded or non-bonded)! This avoids changing the potential when chemistry occurs. Such alterations, which are natural in the EVB formalism, would be awkward in ReaxFF. Shielding included for both Coulomb and van der Waals in order to avoid excessive interaction between atoms sharing bond and/or bond angle. Energy / kcal mol -1 Interatomic Distance / Å

Charge Equilibration The charge on an atom depends on the molecular species: N N N N + 2 Atomic charges are adjusted with respect to connectivity and geometry. Many QEq methods available. ReaxFF uses Electronegativity Equalization Method (EEM: Mortier, et al, JACS, 108, 4315, ( 86).) The desired charge distribution is that which minimizes, ()212χ<=++ ijiiiiijiijqqeqjqr Final Coulomb energy from screened potential all atom-pairs calculated Coulomb1/333(1/)ijijijqqECrγ = +

ReaxFF/Ab Initio Comparison ReaxFF can decribe a wide variety of chemical reactions. e.g., unimolecular decomposition of RDX Strachan, et al, JCP, 122, 054502 ( 05).

Application: E at igh T, P Interested in chemical reaction dynamics of high explosives (E) under shock conditions 768 atoms (32 molecules, 2 2 4 unit cells) TATB Want as big a system (10 5 to 10 6 atoms) as possible in order to study the spread of reactions, temperature distribution, carbonclustering, etc. 103,680 atoms (4320 molecules, 12 12 15 unit cells) 256 processors

Decomposition of TATB at igh T T initial = 1700 K T final = ~3200 K 2 O TATB N 2 CO 2

ReaxFF in Parallel GRASP (General Reactive Atomistic Simulation Program) developed at Sandia National Lab by Aidan P. Thompson. Objective: Parallel scalable MD code (C++) which enables implementation of a wide range of force field types, particularly reactive force fields, including ReaxFF. CPU Time per timestep: serial code: 2.8 seconds parallel code: 0.6 seconds (32 CPUs) System size limits: serial code: 5000 atoms parallel code: 500,000 atoms (510 CPUs) ASC Flash: 2.0-Gz procs 8 GB memory per node

ReaxFF Summary Can simulate chemistry for a wide range of materials significantly faster than ab initio and semi-empirical methods Accuracy similar to semi-empirical methods ydrocarbons, CNO explosives, silicon oxides, etc. Main limitation is governed by the size of reaction training set Time/Iteration (seconds) Used extensively for explosives under extreme conditions - many possible reactions Simulation sizes up to a half million atoms N atoms