ON THE SUM OF EXPONENTIALLY DISTRIBUTED RANDOM VARIABLES: A CONVOLUTION APPROACH

Similar documents
International Journal of Physical Sciences

Some Statistical Properties of Exponentiated Weighted Weibull Distribution

The Burr X-Exponential Distribution: Theory and Applications

Chapter Learning Objectives. Probability Distributions and Probability Density Functions. Continuous Random Variables

On Five Parameter Beta Lomax Distribution

THE WEIBULL GENERALIZED FLEXIBLE WEIBULL EXTENSION DISTRIBUTION

Review for the previous lecture

Review Quiz. 1. Prove that in a one-dimensional canonical exponential family, the complete and sufficient statistic achieves the

Generalized Transmuted -Generalized Rayleigh Its Properties And Application

GENERALISATION OF THE INVERSE EXPONENTIAL DISTRIBUTION: STATISTICAL PROPERTIES AND APPLICATIONS

IE 303 Discrete-Event Simulation

TABLE OF CONTENTS CHAPTER 1 COMBINATORIAL PROBABILITY 1

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER.

Closed book and notes. 120 minutes. Cover page, five pages of exam. No calculators.

The Marshall-Olkin Flexible Weibull Extension Distribution

CHAPTER 3 ANALYSIS OF RELIABILITY AND PROBABILITY MEASURES

The Inverse Weibull Inverse Exponential. Distribution with Application

Step-Stress Models and Associated Inference

Probability Distributions Columns (a) through (d)

COPYRIGHTED MATERIAL CONTENTS. Preface Preface to the First Edition

Exponential Pareto Distribution

Two Weighted Distributions Generated by Exponential Distribution

Glossary availability cellular manufacturing closed queueing network coefficient of variation (CV) conditional probability CONWIP

Topic 4: Continuous random variables

STAT 509 Section 3.4: Continuous Distributions. Probability distributions are used a bit differently for continuous r.v. s than for discrete r.v. s.

Chapter 3 Common Families of Distributions

The Geometric Inverse Burr Distribution: Model, Properties and Simulation

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3)

Properties a Special Case of Weighted Distribution.

INVERTED KUMARASWAMY DISTRIBUTION: PROPERTIES AND ESTIMATION

(Ch 3.4.1, 3.4.2, 4.1, 4.2, 4.3)

International Journal of Scientific & Engineering Research, Volume 6, Issue 2, February-2015 ISSN

Topic 4: Continuous random variables

Transmuted distributions and extrema of random number of variables

Institute of Actuaries of India

The Compound Family of Generalized Inverse Weibull Power Series Distributions

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER.

Gumbel Distribution: Generalizations and Applications

Moments of the Reliability, R = P(Y<X), As a Random Variable

STAT 3610: Review of Probability Distributions

An Extended Weighted Exponential Distribution

MARSHALL-OLKIN EXTENDED POWER FUNCTION DISTRIBUTION I. E. Okorie 1, A. C. Akpanta 2 and J. Ohakwe 3

Characterizations of Weibull Geometric Distribution

Contents 1. Contents

The Kumaraswamy-Burr Type III Distribution: Properties and Estimation

Probability and Stochastic Processes

Introduction of Shape/Skewness Parameter(s) in a Probability Distribution

A Marshall-Olkin Gamma Distribution and Process

PROPERTIES AND DATA MODELLING APPLICATIONS OF THE KUMARASWAMY GENERALIZED MARSHALL-OLKIN-G FAMILY OF DISTRIBUTIONS

Size Biased Lindley Distribution Properties and its Applications: A Special Case of Weighted Distribution

Distributions of Functions of Random Variables. 5.1 Functions of One Random Variable

Transmuted Exponentiated Gumbel Distribution (TEGD) and its Application to Water Quality Data

A Quasi Gamma Distribution

Beta-Linear Failure Rate Distribution and its Applications

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

Transmuted distributions and extrema of random number of variables

WEIBULL BURR X DISTRIBUTION PROPERTIES AND APPLICATION

Products and Ratios of Two Gaussian Class Correlated Weibull Random Variables

THE FIVE PARAMETER LINDLEY DISTRIBUTION. Dept. of Statistics and Operations Research, King Saud University Saudi Arabia,

0, otherwise. U = Y 1 Y 2 Hint: Use either the method of distribution functions or a bivariate transformation. (b) Find E(U).

Applied Statistics and Probability for Engineers. Sixth Edition. Chapter 4 Continuous Random Variables and Probability Distributions.

Chapter 4 Continuous Random Variables and Probability Distributions

Closed book and notes. 60 minutes. Cover page and four pages of exam. No calculators.

Subject CS1 Actuarial Statistics 1 Core Principles

Statistics for Engineers Lecture 4 Reliability and Lifetime Distributions

Solutions. Some of the problems that might be encountered in collecting data on check-in times are:

Examining the accuracy of the normal approximation to the poisson random variable

Estimation of Stress-Strength Reliability for Kumaraswamy Exponential Distribution Based on Upper Record Values

Parameter addition to a family of multivariate exponential and weibull distribution

The Distributions of Sums, Products and Ratios of Inverted Bivariate Beta Distribution 1

Burr Type X Distribution: Revisited

10 Introduction to Reliability

Paper-V: Probability Distributions-I Unit-1:Discrete Distributions: Poisson, Geometric and Negative Binomial Distribution (10)

0, otherwise, (a) Find the value of c that makes this a valid pdf. (b) Find P (Y < 5) and P (Y 5). (c) Find the mean death time.

Some Theoretical Properties and Parameter Estimation for the Two-Sided Length Biased Inverse Gaussian Distribution

PROBABILITY DISTRIBUTIONS

A NOTE ON SOME RELIABILITY PROPERTIES OF EXTREME VALUE, GENERALIZED PARETO AND TRANSFORMED DISTRIBUTIONS

SPRING 2007 EXAM C SOLUTIONS

Contents. Preface to Second Edition Preface to First Edition Abbreviations PART I PRINCIPLES OF STATISTICAL THINKING AND ANALYSIS 1

Northwestern University Department of Electrical Engineering and Computer Science

2 On the Inverse Gamma as a Survival Distribution

Things to remember when learning probability distributions:

THE MODIFIED EXPONENTIAL DISTRIBUTION WITH APPLICATIONS. Department of Statistics, Malayer University, Iran

ST495: Survival Analysis: Maximum likelihood

Survival Analysis. Lu Tian and Richard Olshen Stanford University

Weighted Marshall-Olkin Bivariate Exponential Distribution

A THREE-PARAMETER WEIGHTED LINDLEY DISTRIBUTION AND ITS APPLICATIONS TO MODEL SURVIVAL TIME

Lecture 17: The Exponential and Some Related Distributions

Lecture 4 - Survival Models

Optimal Cusum Control Chart for Censored Reliability Data with Log-logistic Distribution

Chapter 3.3 Continuous distributions

IE 230 Probability & Statistics in Engineering I. Closed book and notes. 120 minutes.

Time-varying failure rate for system reliability analysis in large-scale railway risk assessment simulation

HANDBOOK OF APPLICABLE MATHEMATICS

Continuous random variables

Continuous Univariate Distributions

Weighted Exponential Distribution and Process

On q-gamma Distributions, Marshall-Olkin q-gamma Distributions and Minification Processes

Plotting data is one method for selecting a probability distribution. The following

Frailty Modeling for clustered survival data: a simulation study

Transcription:

ON THE SUM OF EXPONENTIALLY DISTRIBUTED RANDOM VARIABLES: A CONVOLUTION APPROACH Oguntunde P.E 1 ; Odetunmibi O.A 2 ;and Adejumo, A. O 3. 1,2 Department of Mathematics, Covenant University, Ota, Ogun State, Nigeria. 3 Department of Statistics, University of Ilorin, Ilorin, Nigeria. ABSTRACT: In this paper, Exponential distribution as the only continuous statistical distribution that exhibits the memoryless property is being explored by deriving another twoparameter model representing the sum of two independent exponentially distributed random variables, investigating its statistical properties and verifying the memoryless property of the resulting model. KEYWORDS: Exponential, Independent, Memoryless, Convolution, Hazard, Cumulant. INTRODUCTION Exponential distribution is a continuous probability model that is similar in one way to the geometric distribution (the duo are the only probability models that exhibit memoryless property). It is the only continuous probability distribution that has a constant failure rate (Garcia-Ortega, 2005 and Montgomery and Runger, 2003). It has been used severally for the analysis of Poisson processes and it is perhaps the most widely used statistical distribution for problems in reliability. It has been established in literatures that if are independently and identically distributed Exponential random variables with a constant mean or a constant parameter (where is the rate parameter), the probability density function (pdf) of the sum of the random variables results into a Gamma distribution with parameters n and. In this article, it is of interest to know the resulting probability model of Z, the sum of two independent random variables and, each having an Exponential distribution but not with a constant parameter. That is, and. Besides, we seek to know if the resulting model will still exhibit the memoryless property of the Exponential distribution and to investigate some of the statistical properties of the new model. The technique of Convolution of random variables which has notably been used to derive the Convoluted Beta-Weibull distribution (Nadarajah and Kotz, 2006; Sun, 2011) and Convoluted Beta-Exponential distribution (Mdziniso, 2012; Shitu et al., 2012) shall be adopted. 1

METHODOLOGY If and are iid Exponential random variables with parameters and respectively, Then, Let, then, By the concept of Convolution of random variables, 1 2 1z 2z f ( z) e e 2 1 (1) The model in Equation (1) above represents the probability model for the sum of two iid Exponential random variables. Validity of the model For the model to be a valid model, it suffices that Cumulative Density Function (CDF) By definition, the cdf is derived by; (2) We can deduce from Equation (2) that 2.3 Shape of the model 2

Differentiating in Equation (1) with respect to z and equating the result to zero; Solving for z, This value indicates that the model has one mode (Unimodal) The graph in Fig. 1 shows the shape of the distribution for and Fig. 1: Graph for the pdf of variable Z (where A1= and A2= ) It can be deduced from Fig. 1 that the parameters and are both shape parameters. Increase in the value of results in increase in the peak of the graph and increase in the value of results in increase in the width of the graph. Parameter Estimation Let denote random sample from n independent and identically distributed random variables each having the pdf derived in Equation (1) above. Using the method of maximum likelihood estimation, the likelihood function is given by; Let 3

(3) (4) Setting and to zero and solving for and gives the maximum likelihood estimates of the parameters. Hazard Function By definition, the hazard function for a random variable Z is defined by; Fig. 2 shows the graph of the hazard rate function for the model (5) Fig. 2: Graph for the hazard function It can be deduced from Fig. 2 that the hazard rate decreases at variable Z increases and remains at a constant value at some points. The meaning is that, the model in Equation (1) will be appropriate model events whose risk is high at the early stage, the risk get reduced with time and remains constant at a point. Asymptotic Behavior We seek to investigate the behavior of our model in Equation (1) as and as. This involves considering and 4

These results confirm further that the model in Equation (1) has only one mode (Uni-modal) Moment Generating Function The moment generating function (m.g.f) of a random variable Z is denoted by. where, From the properties of m.g.f, where and are the moment generating functions for a convoluted exponential distribution with parameters and respectively. Hence, (6) Equation (6) can be re-written as The Characteristic function From the result in Equation (6), we can confidently generalize that if are independently and identically distributed random variables, each having Exponential distribution with parameter, the moment generating function of the sum can be expressed as (7) Moments The rth raw moment of a random variable, say Z is given by; As derived in Equation (6), are derived below as;. Therefore, the first four moments Hence, we can make the following generalizations; 5

(1) The mean of the sum of n independent Exponential distribution is the sum of individual means. That is, if, then, (8) (2) The rth moment of Z can be expressed as; (9) Cumulant generating function By definition, the cumulant generating function for a random variable Z is obtained from, By expansion using Maclaurin series, (10) From the definition of cumulants, the cumulant of a random variable Z are obtained from the coefficients of In Equation (10). Hence, (11) The first four cumulants are given below as; The following can be deduced from the results above; (1) The first cumulant is the mean of the random variable Z (2) The second cumulant is the variance of Z (3) (4) 6

Memoryless Property We say that an Exponential distribution exhibits memoryless property because the condition below holds; Given that a bulb has survived s units of time, the probability that it survives a further t units of time is the same as that of a fresh bulb surviving t unit of time. That is, where X is a random variable. (12) That is, Let us now consider the distribution of the sum of two independent Exponential distributions given in Equation (1); From Equation (12), Where Hence, we can infer that the memoryless property does not hold for the distribution of the sum of two independent Exponential distributions CONCLUSION In this article, we used the concept of convolution to derive a two-parameter distribution representing the sum of two independent Exponential distributions. Some of its statistical properties were also investigated. It was observed that the distribution is positively skewed and has only one mode. Based on the behavior of the hazard function, the model would be appropriate in fitting data of stock returns, death roll in insurgencies, survival of sickle cell 7

patients and survival of a new product in the market among others. It was also observed that the memoryless property does not hold for this model. REFERENCES Douglas C. Montgomery & George C. Runger (2003). Applied Statistics & Probability for Engineers. Third Edition Fraile R., Garcia-Ortega E. (2005) Fitting an Exponential Distribution, Journal of Applied Metereology Volume 44, 1620-1625. Mdziniso, Nonhle Channon. (2012). The Quotient of the beta-weibull Distribution. Theses, Dissertations and Capstones. Paper 233 Nadarajah, S. and Kotz, S (2006) The Beta- Exponential Distribution. Reliability Engineering and System Safety, 91(1): 689-697. Olanrewaju I. Shittu, Kazeem A. Adepoju and OlaOluwa S. Yaya (2012). On the Convoluted Beta-Exponential Distribution, Journal of Modern Mathematics and Statistics 6 (3-6): 14-22. Sun J. (2011), Statistical Properties of a Convoluted Beta-Weibull Distribution. Master s Theses, Marshal University. 8