MOS: Metal-Oxide-Semiconductor

Similar documents
Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

Thermionic Emission Theory

Solid State Device Fundamentals. MOS Capacitor

EE105 - Spring 2007 Microelectronic Devices and Circuits. Structure and Symbol of MOSFET. MOS Capacitor. Metal-Oxide-Semiconductor (MOS) Capacitor

Section 12: Intro to Devices

Choice of V t and Gate Doping Type

Lecture 8. MOS (Metal Oxide Semiconductor) Structures

MOS CAPACITOR AND MOSFET

MOSFET Models. The basic MOSFET model consist of: We will calculate dc current I D for different applied voltages.

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

EE C245 - ME C218. Fall 2003

ECE 340 Lecture 39 : MOS Capacitor II

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

MOS electrostatic: Quantitative analysis

Lecture 12: MOS Capacitors, transistors. Context

ECE606: Solid State Devices Lecture 22 MOScap Frequency Response MOSFET I-V Characteristics

Lecture 22 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) April 2, 2007

Electrical Characteristics of MOS Devices

Metal-Semiconductor Interfaces. Metal-Semiconductor contact. Schottky Barrier/Diode. Ohmic Contacts MESFET. UMass Lowell Sanjeev Manohar

ECE606: Solid State Devices Lecture 24 MOSFET non-idealities

ECE-305: Fall 2017 Metal Oxide Semiconductor Devices

MOSFET DC Models. In this set of notes we will. summarize MOSFET V th model discussed earlier. obtain BSIM MOSFET V th model

EE 560 MOS TRANSISTOR THEORY

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

an introduction to Semiconductor Devices

6.152J / 3.155J Spring 05 Lecture 08-- IC Lab Testing. IC Lab Testing. Outline. Structures to be Characterized. Sheet Resistance, N-square Resistor

Lecture 22 Field-Effect Devices: The MOS Capacitor

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Vgs Forms a Channel CS/EE MOS Capacitor. N-type Transistor

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

FIELD-EFFECT TRANSISTORS

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

Lecture 6: 2D FET Electrostatics

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

MENA9510 characterization course: Capacitance-voltage (CV) measurements

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Lecture 11: MOS Transistor

Lecture 7 MOS Capacitor

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Section 12: Intro to Devices

ECE Semiconductor Device and Material Characterization

MOS Devices and Circuits

ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices

Lecture 04 Review of MOSFET

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Semiconductor Junctions

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 23 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) April 4, 2007

Lecture 12: MOSFET Devices

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

MOS Capacitors ECE 2204

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Extensive reading materials on reserve, including

CVD-3 MFSIN-HU-2 SiN x Mixed Frequency Process

The Devices: MOS Transistors

CVD-3 MFSIN-HU-1 SiN x Mixed Frequency Process

Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 -

Fabrication and Characterization of Al/Al2O3/p-Si MOS Capacitors

ECE-305: Fall 2017 MOS Capacitors and Transistors

Semiconductor Physics and Devices

CVD-3 SIO-HU SiO 2 Process

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

CHAPTER 5 MOS FIELD-EFFECT TRANSISTORS

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching

Long-channel MOSFET IV Corrections

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor

ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities

4. CMOS Transistor Theory CS755

UT Austin, ECE Department VLSI Design 4. CMOS Transistor Theory

Long Channel MOS Transistors

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Impact of sidewall spacer on gate leakage behavior of nano-scale MOSFETs

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

CVD-3 LFSIN SiN x Process

Semiconductor Physics Problems 2015

MOSFET: Introduction

ECEN 3320 Semiconductor Devices Final exam - Sunday December 17, 2000

55:041 Electronic Circuits

Dept. of Materials Science and Engineering. Electrical Properties Of Materials

Midterm I - Solutions

Integrated Circuit Fundamentals

SUPPLEMENTARY INFORMATION

Lecture 7 - PN Junction and MOS Electrostatics (IV) Electrostatics of Metal-Oxide-Semiconductor Structure. September 29, 2005

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

Leakage Current Through the Ultra Thin Silicon Dioxide

FIELD EFFECT TRANSISTORS:

Transport in Metal-Oxide-Semiconductor Structures

EE 130 Intro to MS Junctions Week 6 Notes. What is the work function? Energy to excite electron from Fermi level to the vacuum level

Appendix 1: List of symbols

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOSFET Capacitance Model

Department of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring Due on March 01, 2018 at 7:00 PM

Week 3, Lectures 6-8, Jan 29 Feb 2, 2001

Transcription:

hapter 5 MOS apacitor MOS: Metal-Oxide-Semiconductor metal ate ate SiO 2 N + SiO 2 N + Si body P-body MOS capacitor MOS tranitor Semiconductor Device for Interated ircuit (. Hu) Slide 5-1

hapter 5 MOS apacitor E c N + polyilicon 3.1 e E c 3.1 e SiO 2 P-Silicon body E c ate 9e body (a) (b) How doe one arrive at thi enery-band diaram for 0? Semiconductor Device for Interated ircuit (. Hu) Slide 5-2

5.1 Flat-band ondition and Flat-band oltae χ SiO2 0.95 e E c E 0 qψ 3.1 e 3.1 e χ Si q ψ χ Si + (E c ) 4.05e E c, N + -poly-si E 0 : acuum level E 0 : Work function E 0 E c : Electron affinity Si/SiO 2 enery barrier 9e SiO 2 4.8 e P-body E c The band i flat at a particular ate voltae. ψ ψ Semiconductor Device for Interated ircuit (. Hu) Slide 5-3

5.2 Surface Accumulation 3.1e E c, E 0 q qφ M O S E c Make <. + φ + φ : urface potential, band bendin : voltae acro the ide φ i neliible when the urface i in accumulation becaue a little band-bendin lead to a lare accumulation chare. Semiconductor Device for Interated ircuit (. Hu) Slide 5-4

< 5.2 Surface Accumulation - - - - - - - + + + + + + + accumulation chare, Q acc P-Si body Gau Law SiO 2 ate Q acc Q / Q / ( ) acc Semiconductor Device for Interated ircuit (. Hu) Slide 5-5

5.3 Surface Depletion ate + + + + + + SiO 2 ------- depletion layer chare, Q dep P-Si body > E c, q q qφ - - - - W dep depletion reion E c Ev M O S (a) (b) Q Q dep qn a W dep qn a 2ε φ Semiconductor Device for Interated ircuit (. Hu) Slide 5-6

5.3 Surface Depletion + φ + + φ + qn a 2ε φ an thi equation be olved to yield φ? Semiconductor Device for Interated ircuit (. Hu) Slide 5-7

5.4 Threhold ondition and Threhold oltae threhold (of inverion) E c threhold : n N a, or (E c ) urface ( ) bulk, or q q t D A qφ Β B E i AB, and D E c, φ t 2φ B kt 2 ln q N n i a M O S qφ B E 2 ( E f E v ) bulk kt q ln N n i v kt q ln N N v a kt q ln N n i a Semiconductor Device for Interated ircuit (. Hu) Slide 5-8

Threhold oltae + + t + 2 φ + B qn a 2ε 2φ B Alternative definition of the threhold condition : φ t t φ B kt N a + 0.45 ln + 0.45 q n + φ + 0.45 + B i 2qN a 2ε ( φ B + 0.45 ) Semiconductor Device for Interated ircuit (. Hu) Slide 5-9

Threhold oltae t (), N + ate/p-body T 20nm t (), P + ate/n-body + for P-body, for N-body: t Body Dopin Denity (cm -3 ) ± 2 φ ± B qn ub 2ε 2φ B Semiconductor Device for Interated ircuit (. Hu) Slide 5-10

5.5 Stron Inverion Beyond Threhold > t W dep W dmax 2ε φt qn a > t - E c ate ++++++++++ SiO 2 - - - - - - - - - - - - - - - E c, q - - - - Ev Q dep P-Si ubtrate Q inv M O S Semiconductor Device for Interated ircuit (. Hu) Slide 5-11

Inverion Layer hare, Q inv (/cm 2 ) t + φ Q t inv Q dep Q inv Q inv + φ t + qn a 2ε φ t ( t Q ) inv > t > t ate ate SiO 2 SiO 2 N + - - - - - - - N + N-Si P-body P-body Semiconductor Device for Interated ircuit (. Hu) Slide 5-12

Review : Baic MOS apacitor Theory φ 2φ t accumulation depletion inverion W dep W dmax W dmax (2ε 2φ Β /qν a ) 1/2 (φ ) 1/2 accumulation depletion t inverion Semiconductor Device for Interated ircuit (. Hu) Slide 5-13

Review : Baic MOS apacitor Theory Q dep qn a W dep (a) accumulation depletion inverion 0 qn a W dep t qna Wdmax total ubtrate chare, Q Q Q + Q + Q acc dep inv Q inv Q (b) accumulation depletion inverion t accumulation reime depletion reime inverion reime lope 0 t Q acc lope Q inv (c) t lope accumulation depletion inverion Semiconductor Device for Interated ircuit (. Hu) Slide 5-14

5.6 MOS haracteritic i cap dq d dq d v ac ~ Meter MOS apacitor Semiconductor Device for Interated ircuit (. Hu) Slide 5-15

5.6 MOS haracteritic dq d dq d Semiconductor Device for Interated ircuit (. Hu) Slide 5-16

haracteritic In the depletion reime: accumulation depletion inverion t 1 1 1 + dep 1 1 2 + 2( qn a ε ) Semiconductor Device for Interated ircuit (. Hu) Slide 5-17

Supply of Inverion hare May be Limited ate + + + + + + + + + Accumulation P-ubtrate ate ------ dep Depletion P-ubtrate W dep ate ate N + Inverion - - - - - - - - D and A P-ubtrate W dmax D A - - - - - - - - - - - - dmax -- Inverion P-ubtrate W dmax In each cae,? Semiconductor Device for Interated ircuit (. Hu) Slide 5-18

apacitor and Tranitor (or HF and LF ) MOS tranitor at any f, LF capacitor, or quai-tatic HF capacitor accumulation depletion inverion t Semiconductor Device for Interated ircuit (. Hu) Slide 5-19

Quai-Static of MOS apacitor t accumulation depletion inverion The quai-tatic i obtained by the application of a low linearramp voltae (< 0.1/) to the ate, while meaurin I with a very enitive D ammeter. i calculated from I d /dt. Thi allow ufficient time for Q inv to repond to the low-chanin. Semiconductor Device for Interated ircuit (. Hu) Slide 5-20

EXAMPLE : of MOS apacitor and Tranitor MOS tranitor, QS HF capacitor Doe the QS or the HF capacitor apply? (1) MOS tranitor, 10kHz. (Anwer: QS ). (2) MOS tranitor, 100MHz. (Anwer: QS ). (3) MOS capacitor, 100MHz. (Anwer: HF capacitor ). (4) MOS capacitor, 10kHz. (Anwer: HF capacitor ). (5) MOS capacitor, low ramp. (Anwer: QS ). (6) MOS tranitor, low ramp. (Anwer: QS ). Semiconductor Device for Interated ircuit (. Hu) Slide 5-21

5.7 Oxide hare A Modification to and t Q /, E c E c, E c 0 + + E c ate ide body ate ide body (a) (b) ψ 0 Q / ψ Q / Semiconductor Device for Interated ircuit (. Hu) Slide 5-22

5.7 Oxide hare A Modification to and t Three type of ide chare: Fixed ide chare, Si + Mobile ide chare, Na + (due to odium contamination) Stre-induced chare-a reliability iue Semiconductor Device for Interated ircuit (. Hu) Slide 5-23

EXAMPLE: Interpret thi meaured dependence on ide thickne. The ate electrode i N + poly-ilicon. 10 nm 20 nm 30 nm 0 T 0.15 0.3 What doe it tell u? Body work function? Dopin type? Other? Solution: ψ ψ Q T / ε Semiconductor Device for Interated ircuit (. Hu) Slide 5-24

from intercept ψ ψ 0.15 E 0, vacuum level ψ ψ ψ + 0.15, E c E c N + -Siate Sibody N-type ubtrate, N d n N c e 0.15 e kt 10 17 cm -3 from lope Q 1.7 10 8 / cm 2 Semiconductor Device for Interated ircuit (. Hu) Slide 5-25

5.8 Poly-Silicon Gate Depletion Effective Increae in T Gau Law W ε / qn P + dpoly P + poly-si poly + + + + + + + + poly 1 + ε T + W 1 dpoly poly / 3 1 T ε W + ε dpoly 1 N-body If W dpoly 15 Å, what i the effective increae in T? Why i a reduction in undeirable? Semiconductor Device for Interated ircuit (. Hu) Slide 5-26

Effect of Poly-Gate Depletion on Q inv Q inv φ ( poly t ) W dpoly E c, How can poly-depletion by minimized? qφ poly E c P + -ate N-ubtrate Semiconductor Device for Interated ircuit (. Hu) Slide 5-27

EXAMPLE : Poly-Silicon Gate Depletion, the voltae acro a 2 nm thin ide, i 1. The P + polyate dopin i N poly 8 10 19 cm -3 and ubtrate N d i 10 17 cm -3. Find (a) W dpoly, (b) φ poly, and (c). Solution: (a) W dpoly ε / qn poly ε 3.9 8.85 10 7 2 10 cm 1.6 10 1.3 nm 14 19 / T qn poly (F/cm) 1 19 8 10 cm 3 Semiconductor Device for Interated ircuit (. Hu) Slide 5-28

EXAMPLE : Poly-Silicon Gate Depletion (b) W dpoly 2ε φ qn poly poly φ dpoly 2 qn polywdpoly / 2ε 0.11 (c) + φ t + + φ poly E kt Nc ln q q Nd 0.95 0.85 1 1.1 0.15 0.11 1.01 0.95 I the lo of 0.11 from the 1.01 inificant? Semiconductor Device for Interated ircuit (. Hu) Slide 5-29

5.9 Inverion and Accumulation hare-layer Thickne Quantum Mechanical Effect Averae inverion-layer location below the Si/SiO 2 interface i called the inverion-layer thickne, T inv. Electron Denity ate poly-si depletion reion SiO 2 Quantum mechanical theory Å -50-40 -30-20 -10 0 10 20 30 40 50 A Phyical T effective T What equation need to be olved to find n(x)? Doe T inv chane with varyin? Semiconductor Device for Interated ircuit (. Hu) Slide 5-30

Electrical Oxide Thickne, T e T e T + Wdpoly / 3 + Tinv / 3 at dd ( + t )/T can be hown to be the averae electric field in the inverion layer. T inv of hole i larer than that of electron becaue of difference in effective ma. Semiconductor Device for Interated ircuit (. Hu) Slide 5-31

Q inv Effective Oxide Thickne and Effective Oxide apacitance e( t T e T + Wdpoly / 3 + Tinv ) / 3 Baic with poly-depletion data with poly-depletion and chare-layer thickne Which i wore in reduction : P + -poly over N-body or N + -poly over P-body? Semiconductor Device for Interated ircuit (. Hu) Slide 5-32

5.10 D Imaer E c - E c - - + E c, E c, (a) Deep depletion, Q inv 0 (b) Expoed to liht Semiconductor Device for Interated ircuit (. Hu) Slide 5-33

3 2 1 D hare Tranfer 1 > 2 3 (a) ide - - - - - - - - - - - - - depletion reion P-Si 1 3 1 2 3 1 2 2 > 1 > 3 (b) - - - - - depletion reion ide - - - P-Si 2 > 1 3 1 2 3 1 2 3 1 (c) - - - - - depletion reion ide - - - P-Si Semiconductor Device for Interated ircuit (. Hu) Slide 5-34

5.11 hapter Summary N-type device: N + -polyilicon ate over P-body P-type device: P + -polyilicon ate over N-body ψ ψ ( Q / T ) + φ + ( + φ poly ) + φ Q / ( + φ poly ) Semiconductor Device for Interated ircuit (. Hu) Slide 5-35

5.11 hapter Summary φ ± 2 or ( φ + 0.45 ) t φ B ± B φ B kt ln q N n ub i t +φ ± t qn ub 2ε φ t + : N-type device, : P-type device Semiconductor Device for Interated ircuit (. Hu) Slide 5-36

5.11 hapter Summary N-type Device (N + -ate over P-ubtrate) P-type Device (P + -ate over N-ubtrate) <0 Flat-band >0 t >0 Threhold t <0 What the diaram like at > t? at 0? Semiconductor Device for Interated ircuit (. Hu) Slide 5-37

5.11 hapter Summary N-type Device (N + -ate over P-ubtrate) QS Tranitor P-type Device (P + -ate over N-ubtrate) apacitor (HF) What i the root caue of the low in the HF branch? Semiconductor Device for Interated ircuit (. Hu) Slide 5-38