Seismic Source Mechanism

Similar documents
Moment tensor inversion of near source seismograms

Earthquakes and Seismotectonics Chapter 5

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II

Earthquake Focal Mechanisms and Waveform Modeling

EARTHQUAKE LOCATIONS INDICATE PLATE BOUNDARIES EARTHQUAKE MECHANISMS SHOW MOTION

Chapter 2. Earthquake and Damage

OCEAN/ESS 410. Lab 12. Earthquake Focal Mechanisms. You can write your answers to all be (e) on this paper.

Source rupture process of the 2003 Tokachi-oki earthquake determined by joint inversion of teleseismic body wave and strong ground motion data

AVERAGE AND VARIATION OF FOCAL MECHANISM AROUND TOHOKU SUBDUCTION ZONE

Widespread Ground Motion Distribution Caused by Rupture Directivity during the 2015 Gorkha, Nepal Earthquake

ON NEAR-FIELD GROUND MOTIONS OF NORMAL AND REVERSE FAULTS FROM VIEWPOINT OF DYNAMIC RUPTURE MODEL

BEYOND TRAVELTIMES AND EARTHQUAKE LOCATION What else can seismograms tell us about the nature of earthquakes on faults?

RELATION BETWEEN RAYLEIGH WAVES AND UPLIFT OF THE SEABED DUE TO SEISMIC FAULTING

Elastic rebound theory

Determining the Earthquake Epicenter: Japan

SUPPLEMENTARY INFORMATION

Mechanics of Earthquakes and Faulting

Case Study 2: 2014 Iquique Sequence

SOURCE PROCESS OF THE 2003 PUERTO PLATA EARTHQUAKE USING TELESEISMIC DATA AND STRONG GROUND MOTION SIMULATION

Once you have opened the website with the link provided choose a force: Earthquakes

LECTURES 10 and 11 - Seismic Sources Hrvoje Tkalčić

Figure Diagram of earth movements produced by (a) P-waves and (b) S-waves.

Spatial and Temporal Distribution of Slip for the 1999 Chi-Chi, Taiwan, Earthquake

Source Characteristics of Large Outer Rise Earthquakes in the Pacific Plate

The seismic wave equation

Tohoku-oki event: Tectonic setting

The Mw 6.2 Leonidio, southern Greece earthquake of January 6, 2008: Preliminary identification of the fault plane.

Empirical Green s Function Analysis of the Wells, Nevada, Earthquake Source

! EN! EU! NE! EE.! ij! NN! NU! UE! UN! UU

C2.2 The physics of Earthquakes

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation.

RELOCATION OF THE MACHAZE AND LACERDA EARTHQUAKES IN MOZAMBIQUE AND THE RUPTURE PROCESS OF THE 2006 Mw7.0 MACHAZE EARTHQUAKE

Fault Length and Direction of Rupture Propagation for the 1993 Kushiro-Oki Earthquake as Derived from Strong Motion Duration

Slide 1. Earth Science. Chapter 5 Earthquakes

Earthquakes and Earth s Interior

Development of a Predictive Simulation System for Crustal Activities in and around Japan - II

Section Forces Within Earth. 8 th Grade Earth & Space Science - Class Notes

Section 19.1: Forces Within Earth Section 19.2: Seismic Waves and Earth s Interior Section 19.3: Measuring and Locating.

Figure Locations of the CWB free-field strong motion stations, the epicenter, and the surface fault of the 1999 Chi-Chi, Taiwan earthquake.

on the earthquake's strength. The Richter scale is a rating of an earthquake s magnitude based on the size of the

Coseismic slip distribution of the 2005 off Miyagi earthquake (M7.2) estimated by inversion of teleseismic and regional seismograms

Earthquake. What is it? Can we predict it?

What is an Earthquake?

Unit 4 Lesson 7 Mountain Building

An intermediate deep earthquake rupturing on a dip-bending fault: Waveform analysis of the 2003 Miyagi-ken Oki earthquake

Magnitude 7.0 PERU. This region of the Andes is a sparsely populated area, there were no immediate reports of injuries or damage.

Spatio-temporal variation in slip rate on the plate boundary off Sanriku, northeastern Japan, estimated from small repeating earthquakes

SEISMOLOGY. - The study of earthquakes waves and how they move through the body and around the surface of the earth.

Waveform inversion in the frequency domain for the simultaneous determination of earthquake source mechanism and moment function

Forces in the Earth s crust

LECTURE #5: Plate Tectonics: Boundaries & Earthquake Science

Earthquakes How and Where Earthquakes Occur

Centroid-moment-tensor analysis of the 2011 off the Pacific coast of Tohoku Earthquake and its larger foreshocks and aftershocks

SPATIAL DISTRIBUTION OF STRONG GROUND MOTION CONSIDERING ASPERITY AND DIRECTIVITY OF FAULT

Actual practices of seismic strong motion estimation at NPP sites

THE SEISMICITY OF THE EARTH

Internal Layers of the Earth

4 Deforming the Earth s Crust

of other regional earthquakes (e.g. Zoback and Zoback, 1980). I also want to find out

NUMERICAL SIMULATION OF TSUNAMI PROPAGATION AND INUNDATION ALONG THE RAKHINE COAST AREAS IN MYANMAR

GEOLOGY MEDIA SUITE Chapter 13

Introduction to Displacement Modeling

Unit 4 Lesson 3 Mountain Building. Copyright Houghton Mifflin Harcourt Publishing Company

Synthetic Near-Field Rock Motions in the New Madrid Seismic Zone

COULOMB STRESS CHANGES DUE TO RECENT ACEH EARTHQUAKES

Magnitude 7.1 SOUTH SANDWICH ISLANDS

4 Associate Professor, DPRI, Kyoto University, Uji, Japan

2C09 Design for seismic and climate changes

Seismic Activity near the Sunda and Andaman Trenches in the Sumatra Subduction Zone

Effects of Fault Dip and Slip Rake Angles on Near-Source Ground Motions: Why Rupture Directivity Was Minimal in the 1999 Chi-Chi, Taiwan, Earthquake

Physical Geography. Tectonics, Earthquakes, and Volcanism. Chapter 12 GEOGRAPHY Earthquakes and Volcanoes. What are Earthquakes?

Lesvos June 12, 2017, Mw 6.3 event, a quick study of the source

Figure Diagram of earth movements produced by (a) P-waves and (b) S-waves.

Outstanding Problems. APOSTOLOS S. PAPAGEORGIOU University of Patras

Earthquakes. Chapter Test A. Multiple Choice. Write the letter of the correct answer on the line at the left.

Lecture Outline Wednesday-Monday April 18 23, 2018

Centroid moment-tensor analysis of the 2011 Tohoku earthquake. and its larger foreshocks and aftershocks

Ground Motions with Static Displacement Derived from Strong-motion Accelerogram Records by a New Baseline Correction Method

SOURCE MODELING OF RECENT LARGE INLAND CRUSTAL EARTHQUAKES IN JAPAN AND SOURCE CHARACTERIZATION FOR STRONG MOTION PREDICTION

LETTER Earth Planets Space, 57, , 2005

Resolving Stress Components and Earthquake Triggering

Earthquakes.

Improved Full Moment Tensor Inversions

Earthquake Lab Introduction: Purpose: Method: Equipment needed: Fundamental Concepts and Key Terms:

Chapter 6: Earthquakes

7 Ground Motion Models

Earthquakes. Earthquake Magnitudes 10/1/2013. Environmental Geology Chapter 8 Earthquakes and Related Phenomena

Numerical Modeling for Earthquake Source Imaging: Implications for Array Design in Determining the Rupture Process

Earthquakes. Photo credit: USGS

Lab 6: Earthquake Focal Mechanisms (35 points)

Dynamic Triggering Semi-Volcanic Tremor in Japanese Volcanic Region by The 2016 Mw 7.0 Kumamoto Earthquake

CHAPTER 1 BASIC SEISMOLOGY AND EARTHQUAKE TERMINOLGY. Earth Formation Plate Tectonics Sources of Earthquakes...

Complicated repeating earthquakes on the convergent plate boundary: Rupture processes of the 1978 and 2005 Miyagi-ken Oki earthquakes

Microseismic Monitoring: Insights from Moment Tensor Inversion

Earthquakes Modified

Source model of the 2005 Miyagi-Oki, Japan, earthquake estimated from broadband strong motions

Module 7: Plate Tectonics and Earth's Structure Topic 4 Content : Earthquakes Presentation Notes. Earthquakes

Earthquakes. Forces Within Eartth. Faults form when the forces acting on rock exceed the rock s strength.

Chapter 4 Near Fault Ground Motion

Preliminary report on the Canterbury Earthquake South Island of New Zealand , M 6.3

Transcription:

Seismic Source Mechanism Yuji Yagi (University of Tsukuba)

Earthquake Earthquake is a term used to describe both failure process along a fault zone, and the resulting ground shaking and radiated seismic energy caused by the slip, or by volcanic or magmatic activity, or other sudden stress changes in the earth. Surface rupture (Taken by Prof. Abe, the University of Tokyo)

2003 Tokachi-oki, Japan earthquake Rupture Process of Large Earthquake

Ground Motion When an earthquake occurs, the ground shakes. The motion of ground is given by displacement u(t), velocity v(t), acceleration a(t), as a function of time, t, in 3 directions, usually, UD, NS, and EW.

Acceleration (unit: gal = cm/s/s) 2003 Tokachi-oki, Japan earthquake station HKD113 (K-net)

Velocity (unit: cm/s) 2003 Tokachi-oki, Japan earthquake station HKD113 (K-net)

Displacement Static Displacement (unit: cm) 2003 Tokachi-oki, Japan earthquake station HKD113 (K-net)

Seismology Seismology is the study of earthquakes and the Earth using seismic waves. Up-Down North-South East-West E.G.) MDJ station for 1999 Turkey earthquake

Seismology for source From recordings of earthquake-generated waves, information about the earthquake source may be derived, including its magnitude, location, time of occurrence, its orientation, and movement on the fault. Surface rupture in 1999 Taiwan, Chi-Chi earthquake (Taken by Prof. Abe, the University of Tokyo)

Earthquake Source When earthquake occur, sudden rupture propagate along faults. Since rupture velocity and slip acceleration rate are high, the large earthquake destroy near cities. To assess at damage of earthquakes, it is important to understand the nature of earthquake. If we can provide damage distribution with government office, it is easy to work out countermeasures. Surface rupture in 1999 Taiwan, Chi-Chi earthquake (Taken by Prof. Abe, the University of Tokyo)

Source Parameters Hypocenter (Latitude, Longitude, Depth) Origin Time (Start time of earthquake) Magnitude (Size of earthquake) Faulting Type (focal mechanism) Faulting Size (Length, Wide and Dislocation) Seismic moment (Size of earthquake) Stress Drop (Shear Stress Change) Source Process (Rupture Process)

Why source mechanism? The source mechanism also guide you in the state of the tectonic stress field and location of the week zone (fault zone). Fault zone Surface rupture in 1999 Taiwan, Chi-Chi earthquake (Taken by Prof. Abe, the University of Tokyo) Tectonic stress loading

this lecture Earthquake Collection seismic waveform Determination of hypocenter and origin time Determination the Focal mechanism The determination method of focal mechanism Using polarity of P-wave fast motion Using waveform inversion Determination the source process

Terms and Fault Plane Parameters Faulting can be classified three type. 1) Strike Slip faulting (right- and left-lateral) 2) Normal faulting 3) Reverse faulting

Strike slip faulting Left-lateral strike slip faulting Right-lateral strike slip faulting Pull left-side block -> Left-lateral strike slip faulting Pull right-side block -> Right-lateral strike slip faulting Strike slip faulting is often observed in intra-plate and transform faulting zone (e.g. the North Anatolian fault zone)

After Barka (1996) (example) The right-lateral strike-slip North Anatolian fault zone 1999 Golcuk-Kocaeli, Turkey, Earthquake

Reverse faulting The hanging-wall block of the fault slips move upward in relation to the foot-wall block. Reveres faulting is often observed in subduction zone (e.g. Japan, Sumatra..etc). We often call the reveres faulting with low angle thrust faulting ).

2002 Sumatra, Indonesia, earthquake

Normal Faulting The hanging-wall block of the fault slips move downward below the foot-wall block. Normal faulting is often observed in intra-plate (e.g. in-slab)

Normal fault (eq. 2007/1/13 Chishima Eq.)

Fault plane parameters To represent fault plane and fault slip, we used (strike, dip) and (rake), respectively. n Strike: The direction of the surface intersection of the fault measured clockwise from north (0 ~ 360) Dip: A slop angle of the foot-wall block measured clockwise from horizontal (0 ~ 90) Rake (or Slip): The direction of fault movement measured counterclockwise from strike and slip direction (-180 ~ 180)

Fault plane parameters tan 180 ( φ s + 90) = n 2 n 1 φ s = arctan n 1 n 2 sin( 90 δ ) = sin( δ 90) = cosδ = n 3 n δ = arccos( n 3 ) s n 3 n 90 n 1 n 2 n

Fault plane parameters v 3 v 3 sin sin( 180 λ) = sin( λ 180) = v 3 sinδ d λ = arcsin v 3 sinδ v 3 sin

Fault plane parameters n = sinδ sinφ s sinδ cosφ s cosδ n ν = cosλ cosφ s + cosδ sinλ sinφ s cosλ sinφ s cosδ sinλ cosφ s sinδ sinλ

Shear Faulting and P-wave Compressional P wave UD comp. up Dilatational P wave Surface time P-wave Compressional P wave Dilatational P wave The polarity of initial P-wave pulse form an earthquake takes either of two opposite polarities: compressional (up or pushed) and dilatational (down or pulled)

Double Couple Model The double couple model has two pairs of single couple. This model don t have total face and torque. Thus this model have net balanced the moment. Intrinsic problem Any time, we can not choose the actual fault plane of two nodal planes with point source. If we want to determine one fault plane, we need to refer to aftershock distribution or tectonic setting.

Radiation Pattern of P-wave The P-wave radiation from a source have four-lobed pattern. We can estimate nodal plane 1,2 using P-wave polarity and/or amplitude.

Radiation Pattern of S-wave The S-wave radiation from a source have four-lobed pattern, while the orientation of the pattern is different form that of P-wave polarity. Since the S-wave polarity is more difficult to identify than the P-wave, seismologist analyze P-wave much more often S-wave motion to determine the focal mechanism.

Focal Mechanism Diagram We use a graphical procedure which enables us to represent the global distribution of polarity data and the two nodal planes on a figure. We call this figure Focal Mechanism Diagram or Focal Mechanism. Image Surround the hypocenter with small sphere (focal sphere), and project polarity of data for each stations on surface of the focal sphere. Location of each stations can be obtained azimuth and take-off angle. If we have enough data, we can divide two area (up-area and down-area), and write two nodal plane.

Focal Mechanism Diagram The focal sphere is three-dimensional body, so the polarity data on the sphere is three dimensional data on a two-dimensional diagram. We projection of focal sphere onto a equatorial plane.

Normal faulting Focal mechanism and faulting type Reverse faulting Strike Slip faulting

Focal Mechanism In Japan

Interpreting focal mechanism diagrams Strike, Dip Strike: The direction of the surface intersection of the fault measured clockwise from north (0~360) Dip: A slop angle of the foot-wall block measured clockwise from horizontal (0-90)

Interpreting focal mechanism diagrams Rake The direction of fault movement measured counterclockwise from strike and slip direction of hanging-wall (from -180 to 180)

Method of focal mechanism determination For Single event Using polarity of first P-wave. Requirement: many stations (depend on station coverage) Using polarity and amplitude of first P-wave. Requirement: Five or more P-wave components Using waveform of P-wave and S-wave. Requirement: Five or more waveform components Using overall waveform. Requirement: One or more waveform stations.

Determining Fault Plane Solution using polarity of P-wave To determine fault plane solution with manual work, 1. Determining the polarity of P-wave first motion. 2. Calculating azimuth and take-off angle for each stations. 3. Plotting the information of polarity of P-wave for each stations on the equal-area projection chart. 4. Selecting one nodal plane (A) 5. Calculating pole of nodal plane (A) that is cross point between the another nodal plane (B) and the additional plane. 6. Selecting the another nodal plane (B).

Determining the polarity of P-wave first motion We can determine the polarity of P-wave first motion. (UD component)

Calculating azimuth Azimuth and delta can be determined using spherical trigonometry. Consider the spherical triangle shown left plate. D1, D2, and Azimuth are the three internal angle of the spherical triangle. L1, L2 and delta are the side of the triangle in degrees measured between radii form an origin in the center of the sphere. If we know the latitude and longitude of epicenter and station, L1 and L2 and D2 are known parameters. Thus, we can determine delta and Azimuth using the below equation.

Calculating take-off angle and Plotting Up-going Down-going Ritsema s curve Takeoff angles can be estimated by using Ritsema s curve. In down-going P-wave case, polarity data can be plotted on the surface of fault sphere. In up-going P-wave case, take-off angle i and the azimuth Φ are replace by 180-i and 180+Φ, respectively.

Calculating take-off angle and Plotting The projection rule is given by a condition of equal area. Then

Selecting nodal plane 1. Selecting one nodal plane (A) 2. Calculating pole of nodal plane (A) 3. Selecting the another nodal plane (B)

Method of focal mechanism determination 1. Using polarity of first P-wave. many stations (depend on station coverage) Using polarity and amplitude of first P-wave. Five or more stations Using waveform of P-wave and S-wave. Five or more components Using overall waveform. One or more stations.

Method of focal mechanism determination Composite P-first motion method: In the case of a sparse local seismic network, P-first motion data may not be enough to determine reasonable solution. If we assume that the focal mechanisms for many earthquakes in close area are identical, the up-down information for each earthquake can be drown in same focal mechanism diagram. Using this focal mechanism diagram, we can determine the composite focal mechanism occurred in special area.

Composite P-first motion method If we assume that the focal mechanisms for many earthquakes in close area are identical, the up-down information for each earthquake can be drown in same focal mechanism diagram. Using this focal mechanism diagram, we can determine the composite focal mechanism occurred in special area.

Moment Tensor Inversion

Introduction Now, we can compute synthetic seismograms that are comparable with observed seismograms. The seismic waveforms contain the information of the focal mechanism and seismic slip area. If we assume earth structure, we can calculate green s function and estimate moment tensor components and location of centroid using waveform inversion scheme.

Forward modeling and Inversion Inversion observation Green s Function Source Model Forward Modeling To estimate source model, we often apply two method. Forward Modeling (try and error) Inversion Input: source model Output: synthetic waveform Input: observation data Output: source model

Observation Equation Linear case Linear Inversion y = f ( x) y: observation; x: model y = Ax A: Kernel Matrix And then, ˆx = ( A T A) 1 A T y We can get model information from observation data.

Double Couple Model The double couple model has two pairs of single couple. This model don t have total face and torque. Thus this model have net balanced the moment. Intrinsic problem Any time, we can not choose the actual fault plane of two nodal planes with point source. If we want to determine one fault plane, we need to refer to aftershock distribution or tectonic setting.

Seismic Moment tensor The moment tensor consists of nine single-couples force in the localsource Cartesian coordinate system. The explosion source described can be modeled by the sum of the three dipole terms, M11 + M22 + M33, with each having equal moment. The seismic moment tensor is always symmetric.

Moment tensor and fault motion Moment tensor and crack M ij = λ 3 k =1 ν k n k δ ij + µ ν i n j + ν j n i ( ) DS Moment tensor and dislication M ij = ( ν i n j + ν j n i )µds = ( ν i n j + ν j n ) i M 0

Moment Tensor and Radiation Pattern Moment tensor and Far-field term U c ( r,γ,t) = R c 1 4πρc 3 r Q( t)* M t r 0 c Q-effect Moment-rate function Radiation Pattern R C = 3 3 i=1 j=1 R P = 2 m ij γ i e Cj P-wave Radiation Pattern 3 i=1 v i γ i 3 j =1 n j γ j

Radiation Pattern in Nuclear Weapons Testing Moment tensor components m ij = δ ij i, j = 1,2,3 P-wave Radiation Pattern R P = 3 3 j=1 δ ij γ i e Pj = δ ij γ i γ j = γ i γ i = 1 i=1 3 i=1 3 j=1 3 i=1 S-wave Radiation Pattern R S = 3 3 j=1 δ ij γ i e Sj = γ i e Si = 0 i=1 3 i=1

Basis Moment Tensor We can treat source and propagation process as linear operators, and the moment tensor can describe doublecouple at any time. It is possible to construct observed waveform by summing the weighted the green s functions for each basis moment tensor. We assume only double-couple model, the number of independent components of moment tensor is five. Kikuchi and Kanamori (1991, BSSA)

Green s Function for each basis moment tensor JB structure model (Moho = 33 km)

Green s Function for each basis moment tensor JB structure model (Moho = 33 km)

Green s Function for each basis moment tensor

Observed seismic waveform of c component at a station j due to seismic moment release in a source volume V u cj Obs. Waveform 6 ( t) = Gcjq ( t,ξ) M q ( t,ξ)dξ + q=1 v Assumption 1: Point source model, in which we assume the seismic waveform to be radiated from one point. with u cj 6 ( t) = Gcjq ( t,ξ c ) M q ( t) + e cj t M q q=1 Moment Tensor Inversion Green s function ( t) = M q ( t,ξ)dξ V Centroid ( ) e cj ( t) Moment-rate function

Assumption 2: One earthquake has one focal mechanism. M q u cj ( t) = m q M 0 ( t) 6 ( ) ( t) = m q M 0 ( t)* G cjq t,ξ c + e cj t q=1 Applying Low-pass filter d cj d cj ( t) = F( t)*u cj ( t) = m q F t with 6 6 6 ( ) ( ) ( )* M 0 ( t) * G t,ξ + e cjq c cj t q=1 ( ) m q F( t)*s( t) * G t,ξ + e cjq c cj t q=1 simple function (e.q. delta function) ( ) ( t) = m q G cjq t,ξ c + e cj t q=1 G cjq ( ) ( t,ξ c ) = G cjq ( t,ξ c )* F( t) ( ) ( )

Vector Form: d = A( ξ c )m + e The solution of the above matrix equation is obtained by least square approach if we assume the centroid location. ˆm = A T ( ξ c )A ξ c ( ) 1 A T ( ξ c )d We can estimate optimal the centroid using the grid-search method, which minimizes normalized L2-norm as d A( ξ c ) ˆm 2 d min 2 L2-norm: N 1/2 2 x 2 = x n n=1

Moment Tensor to the two Fault Planes Transformation from moment tensor to the two fault planes. First we obtain the eigenvectors (t, b, p) of moment tensor. M 11 M 12 M 13 M 21 M 22 M 23 M 31 M 32 M 33 = t b p ( ) M 0 0 0 0 0 0 0 0 M 0 ( t b p ) T Nest, we obtain fault vector (n: unit normal vector to fault plane, d: unit slip vector) form the eigenvectors (t, b, p) using the equation:

Moment tensor inversion for middle earthquake using local seismic network Duration of source time function of middle size < 10 sec If we apply a low pass filter, we can neglect source time function. In my program for local seismic network, we neglect effect of source time function. Grid Search parameter: only location of hypocenter

Moment tensor inversion for middle earthquake using local seismic network Step 1: Step 2: Step 3: Proceeding for near-source data set filtering, re-sampling Calculation of Green's Function Inversion

Moment tensor inversion for middle earthquake using local seismic network If epicenter = horizontal location of centroid of moment release, grid search paramter -> only depth.