Semiconductor Physical Electronics

Similar documents
Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Semiconductor Physical Electronics

Semiconductor Physical Electronics

The Physics of Semiconductors

Electronic and Optoelectronic Properties of Semiconductor Structures

1.9.5 Stoichiometry, Nonstoichiometry, and Defect Structures 75

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

EE 3329 Electronic Devices Syllabus ( Extended Play )

Current mechanisms Exam January 27, 2012

Index. buried oxide 35, 44 51, 89, 238 buried channel 56

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Appendix 1: List of symbols

ET3034TUx Utilization of band gap energy

Semiconductor Module

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping

Basic Semiconductor Physics

Physics of Semiconductors 8 th

Solid Surfaces, Interfaces and Thin Films

junctions produce nonlinear current voltage characteristics which can be exploited

CONTENTS. vii. CHAPTER 2 Operators 15

Nature of Lesson (Lecture/Tutorial) H3 WK No. Day/ Date. Remarks. Duration. 4.00pm 6.30pm ALL. 2.5 hours. Introduction to Semiconductors Lecture 01

Schottky diodes. JFETs - MESFETs - MODFETs

Semiconductor Physics fall 2012 problems

Introduction to Semiconductor Integrated Optics

8.1 Drift diffusion model

8. Schottky contacts / JFETs

Schottky Diodes (M-S Contacts)

Conductivity and Semi-Conductors

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

MTLE-6120: Advanced Electronic Properties of Materials. Semiconductor p-n junction diodes. Reading: Kasap ,

Semiconductor device structures are traditionally divided into homojunction devices

Schottky Rectifiers Zheng Yang (ERF 3017,

3. Two-dimensional systems

Classification of Solids

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

Chapter 1 Overview of Semiconductor Materials and Physics

Concepts & Equations. Applications: Devices

Chemistry Instrumental Analysis Lecture 8. Chem 4631

ECE335F: Electronic Devices Syllabus. Lecture*

Single Photon detectors

Course overview. Me: Dr Luke Wilson. The course: Physics and applications of semiconductors. Office: E17 open door policy

Lecture 15: Optoelectronic devices: Introduction

Fundamentals of Semiconductor Physics

Session 5: Solid State Physics. Charge Mobility Drift Diffusion Recombination-Generation

Luminescence Process

Lecture 8. Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination

EE 6313 Homework Assignments

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

Quantum Phenomena & Nanotechnology (4B5)

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr.

Physics of Semiconductors

9. Semiconductor Devices /Phonons

3.1 Introduction to Semiconductors. Y. Baghzouz ECE Department UNLV

UNIT I: Electronic Materials.

PHOTOVOLTAICS Fundamentals

Electronic Properties of Materials An Introduction for Engineers

CHAPTER 4: P-N P N JUNCTION Part 2. M.N.A. Halif & S.N. Sabki

Chapter 7. The pn Junction

Session 6: Solid State Physics. Diode

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

NANO/MICROSCALE HEAT TRANSFER

EE 5344 Introduction to MEMS CHAPTER 5 Radiation Sensors

Review of Semiconductor Physics

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

The pn junction. [Fonstad, Ghione]

KATIHAL FİZİĞİ MNT-510

Metal Semiconductor Contacts

Electronic Devices & Circuits

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Semiconductor Physics fall 2012 problems

Calculating Band Structure

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

UNIT - IV SEMICONDUCTORS AND MAGNETIC MATERIALS

Theory of Electrical Characterization of Semiconductors

Surfaces, Interfaces, and Layered Devices

Semiconductor Physics and Devices

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

ECEN 3320 Semiconductor Devices Final exam - Sunday December 17, 2000

Semiconductor Physics Problems 2015

Minimal Update of Solid State Physics

Semiconductor Physics. Lecture 3

An Overview of the analysis of two dimensional back illuminated GaAs MESFET

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

QUANTUM WELLS, WIRES AND DOTS

smal band gap Saturday, April 9, 2011

Unit IV Semiconductors Engineering Physics

Introduction to Power Semiconductor Devices

Solid State Electronics. Final Examination

Effective masses in semiconductors

CHAPTER 2 PHYSICS OF LEDS

Spring Semester 2012 Final Exam

The photovoltaic effect occurs in semiconductors where there are distinct valence and

Surfaces, Interfaces, and Layered Devices

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc.

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

Chapter 3 Properties of Nanostructures

Transcription:

Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London

Contents CHAPTER 1. Classification of Solids and Crystal Structure 1.1. Introduction 1 1.2. The Bravais Lattice 2 1.3. The Crystal Structure 5 1.4. Miller Indices and the Unit Cell 6 1.5. The Reciprocal Lattice and Brillouin Zone 8 1.6. Types of Crystal Bindings 11 1.7. Defects in a Crystalline Solid 13 1.7.1. Vacancies and Interstitials 13 1.7.2. Line and Surface Defects 16 Problems 18 Bibliography 18 CHAPTER 2. Lattice Dynamics 2.1. Introduction 21 2.2. The One-Dimensional Linear Chain 22 2.3. Dispersion Relation for a Three-Dimensional Lattice 27 2.4. Concept of Phonons 29 2.5. The Density of States and Lattice Spectrum 30 2.6. Lattice Specific Heat 32 2.7. Elastic Constants and Velocity of Sound 35 Problems 37 References 39 Bibliography 39 CHAPTER 3. Semiconductor Statistics 3.1. Introduction 41 3.2. Maxwell-Boltzmann (M-B) Statistics 42 3.3. Fermi-Dirac (F-D) Statistics 45 vii

vffi CONTENTS 3.4. Bose-Einstein (B-E) Statistics 50 3.5. Statistics in the Shallow-Impurity States 52 Problems 53 Bibliography 54 CHAPTER 4. Energy Band Theory 4.1. Introduction 55 4.2. The Bloch-Floquet Theorem 56 4.3. The Kronig-Penney Model 57 4.4. The Nearly-Free Electron Approximation 62 4.5. The Tight-Binding (LCAO) Approximation 68 4.5.1. The Simple Cubic Lattice 71 4.5.2. The Body-Centered Cubic Lattice (the s-like states) 72 4.6. Energy Band Structures for Semiconductors 73 4.7. The Effective Mass Concept 78 4.8. Energy Band Structure and Density of States in a Superlattice 80 Problems 83 References 85 Bibliography 85 CHAPTER 5. Equilibrium Properties of Semiconductors 5.1. Introduction 87 5.2. Densities of Electrons and Holes in a Semiconductor 88 5.3. Intrinsic Semiconductors 94 5.4. Extrinsic Semiconductors 96 5.5. Ionization Energy of a Shallow Impurity Level 102 5.6. Hall Effect, Hall Mobility, and Electrical Conductivity 104 5.7. Heavy Doping Effects in a Degenerate Semiconductor 107 Problems 109 Reference Ill Bibliography Ill CHAPTER 6. Excess Carrier Phenomenon in Semiconductors 6.1. Introduction 113 6.2. Nonradiative Recombination: Shockley-Read-Hall Model 114 6.3. Band-to-Band Radiative Recombination 118 6.4. Band-to-Band Auger Recombination 121 6.5. Basic Semiconductor Equations 124 6.6. Charge-Neutrality Conditions 126 6.7. The Haynes-Shockley Experiment 128 6.8. Minority Carrier Lifetimes and Photoconductivity Experiment 130 6.9. Surface States and Surface Recombination Velocity 135 6.10. Deep-Level Transient Spectroscopy (DLTS) Technique 138

CONTENTS ix 6.11. Surface Photovoltage (SPV) Technique 141 Problems 143 References 145 Bibliography 145 CHAPTER 7. Transport Properties of Semiconductors 7.1. Introduction 147 7.2. Galvanomagnetic, Thermoelectric, and Thermomagnetic Effects 149 7.2.1. Electrical Conductivity a 149 7.2.2. Electronic Thermal Conductivity K 151 7.2.3. Thermoelectric Coefficients 152 7.2.4. Galvanomagnetic and Thermomagnetic Coefficients 153 7.3. Boltzmann Transport Equation 155 7.4. Derivation of Transport Coefficients 156 7.4.1. Electrical Conductivity a 158 7.4.2. Hall Coefficient R 161 7.4.3. Seebeck Coefficient S 164 7.4.4. Nernst Coefficient ß 164 7.4.5. Transverse Magnetoresistance 165 7.5. Transport Coefficients for the Mixed Conduction Case 169 7.5.1. Electrical Conductivity a 169 7.5.2. Hall Coefficient R 169 7.5.3. Seebeck Coefficient S 170 7.5.4. Nernst Coefficient ß 171 7.6. Transport Coefficients for Some Semiconductors 171 Problems 179 References 181 Bibliography 181 CHAPTER 8. Scattering Mechanisms and Carrier Mobilities in Semiconductors 8.1. Introduction 183 8.2. Differential Scattering Cross Section 186 8.3. Ionized Impurity Scattering 189 8.4. Neutral Impurity Scattering 192 8.5. Acoustic Phonon Scattering 193 8.5.1. Deformation Potential Scattering 194 8.5.2. Piezoelectric Scattering 196 8.6. Optical Phonon Scattering 198 8.7. Scattering by Dislocations 200 8.8. Electron and Hole Mobilities in Semiconductors 201 8.9. Hot Electron Effects in a Semiconductor 204 Problems 209 References 210 Bibliography 211

x CONTENTS CHAPTER 9. Optical Properties and Photoelectric Effects 9.1. Optical Constants of a Solid 214 9.2. Free-Carrier Absorption Process 219 9.3. Fundamental Absorption Process 222 9.3.1. Direct Transition Process 224 9.3.2. Indirect Transition Process 225 9.4. The Photoconductive Effect 228 9.4.1. Kinetics of Photoconduction 235 9.4.2. Practical Applications of Photoconductivity 237 9.5. The Photovoltaic (Dember) Effect 238 9.6. The Photomagnetoelectric Effect 240 Problems 244 References 245 Bibliography 245 CHAPTER 10. Metal-Semiconductor Contacts 10.1. Introduction 247 10.2. Metal Work Function and Schottky Effect 248 10.3. Thermionic Emission Theory 249 10.4. Ideal Schottky Barrier Contact 252 10.5. Current Flow in a Schottky Barrier Diode 256 10.5.1. Thermionic Emission Model 257 10.5.2. Image Lowering Effect 258 10.5.3. The Diffusion Model 259 10.6. I-V Characteristics of a Silicon and a GaAs Schottky Diode 261 10.7. Determination of Barrier Height 264 10.8. Enhancement of Effective Barrier Height 269 10.9. Applications of Schottky Diodes 275 10.9.1. Photodetectors and Solar Cells 275 10.9.2. Schottky-Clamped Transistors 277 10.9.3. Microwave Mixers 278 10.10. Ohmic Contacts 279 Problems 284 References 285 Bibliography 285 CHAPTER 11. p-n Junction Diodes 11.1. Introduction 287 11.2. Equilibrium Properties of a p-n Junction Diode 287 11.3. p-n Junction Under Bias Conditions 293 11.4. Minority Carrier Distribution and Current Flow 296 11.5. Diffusion Capacitance and Conductance 301 11.6. Minority Carrier Storage and Transient Behavior 304 11.7. Zener and Avalanche Breakdowns 307 11.8. Tunnel Diode 312 11.9. p-n Heterojunction Diodes 314

CONTENTS xi 11.10. Junction Field-Effect Transistors 318 Problems 324 References 325 Bibliography 326 CHAPTER 12. Photonic Devices 12.1. Introduction 327 12.2. Photovoltaic Devices 328 12.2.1. p-n Junction Solar Cells 329 12.2.2. Schottky Barrier and MIS Solar Cells 338 12.2.3. Heterojunction Solar Cells 341 12.2.4. Thin Film Solar Cells 343 12.3. Photodetectors 344 12.3.1. p-n Junction Photodiodes 348 12.3.2. p-i-n Photodiodes 349 12.3.3. Avalanche Photodiodes 353 12.3.4. Schottky Barrier Photodiodes 357 12.3.5. Point-Contact Photodiodes 358 12.3.6. Heterojunction Photodiodes 358 12.3.7. Photomultipliers 359 12.3.8. Long-Wavelength Infrared Detectors 360 12.4. Light-Emitting Diodes (LEDs) 363 12.4.1. Injection Mechanisms 364 12.4.2. Electronic Transitions 365 12.4.3. Luminescent Efficiency and Injection Efficiency 365 12.4.4. Application of LEDs 370 12.5. Semiconductor Laser Diodes 375 12.5.1. Population Inversion 375 12.5.2. Oscillation Conditions 377 12.5.3. Threshold Current Density 378 12.5.4. GaAs Laser Diodes 380 12.5.5. Semiconductor Laser Materials 384 12.5.6. Applications of Lasers 386 Problems 387 References 388 Bibliography 389 CHAPTER 13. Bipolar Junction Transistor 13.1. Introduction 391 13.2. Basic Structures and Modes of Operation 392 13.3. Current-Voltage Characteristics 393 13.4. Current Gain, Base Transport Factor, and Emitter Injection Efficiency 401 13.5. Modeling of a Bipolar Junction Transistor 404 13.6. Switching Transistor 409 13.7. Advanced Bipolar Transistor 414

xii CONTENTS 13.8. Thyristors 415 Problems 420 References 421 Bibliography 422 CHAPTER 14. Metal-Oxide-Semiconductor Field-Effect Transistors 14.1. Introduction 423 14.2. An Ideal Metal-Oxide-Semiconductor System 423 14.2.1. Surface Space-Charge Region 426 14.2.2. Capacitance-Voltage Characteristics 427 14.3. Oxide Charges and Interface Traps 430 14.3.1. Interface Trap Charges 431 14.3.2. Oxide Charges 433 14.4. The MOS Field-Effect Transistors 435 14.4.1. General Characteristics of a MOSFET 436 14.4.2. Channel Conductance 437 14.4.3. Current-Voltage Characteristics 439 14.4.4. Small-Signal Equivalent Circuit 442 14.4.5. Scaled-Down MOSFETs 444 14.5. Charge-Coupled Devices 446 14.5.1. Charge Storage and Transfer 447 14.5.2. Charge Injection and Detection 450 14.5.3. Buried-Channel CCDs 451 Problems 452 References 453 Bibliography 453 CHAPTER 15. High-Speed II1-V Semiconductor Devices 15.1. Introduction 455 15.2. Metal-Semiconductor Field-Effect Transistors 456 15.2.1. Basic Device Structure and Characteristics 456 15.2.2. Current-Voltage Characteristics 460 15.2.3. Small-Signal Device Parameters 463 15.2.4. Second-Order Effects in a GaAs MESFET 467 15.3. Modulation-Doped Field-Effect Transistors (MODFETs) 468 15.3.1. Equilibrium Properties of the 2-DEG in GaAs 470 15.3.2. 2-DEG Charge Control Regime 474 15.3.3. Current-Voltage Characteristics 475 15.4. Heterojunction Bipolar Transistor 481 15.4.1. Device Structure and Fabrication Technology 481 15.4.2. Current Gain and Device Parameters 483 15.4.3. Current-Voltage Characteristics 485 15.4.4. High-Frequency Performance 486 15.5. Hot Electron Transistors 490 15.6. Resonant Tunneling Devices 493

CONTENTS xffi 15.7. Transferred-Electron Devices 495 Problems 499 References 501 Bibliography 501 Index 503