Made by PTY/AAT Date Jan 2006

Similar documents
Structural Steelwork Eurocodes Development of A Trans-national Approach

Made by SMH Date Aug Checked by NRB Date Dec Revised by MEB Date April 2006

Structural Steelwork Eurocodes Development of A Trans-national Approach

Made by SMH Date Aug Checked by NRB Date Nov Revised by MEB Date April 2006

Application nr. 3 (Ultimate Limit State) Resistance of member cross-section

APOLLO SCAFFOLDING SERVICES LTD SPIGOT CONNECTION TO EUROCODES DESIGN CHECK CALCULATIONS

Structural Steelwork Eurocodes Development of A Trans-national Approach

VALLOUREC & MANNESMANN TUBES. Design-support for MSH sections

Design of Beams (Unit - 8)

Job No. Sheet 1 of 6 Rev B. Made by IR Date Oct Checked by FH/NB Date Oct Revised by MEB Date April 2006

Job No. Sheet 1 of 7 Rev A. Made by ER/EM Date Feb Checked by HB Date March 2006

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 8: Description of member resistance calculator

Design of Compression Members

DIF SEK. PART 5a WORKED EXAMPLES. DIFSEK Part 5a: Worked examples 0 / 62

9-3. Structural response

Eurocode 3 for Dummies The Opportunities and Traps

University of Sheffield. Department of Civil Structural Engineering. Member checks - Rafter 44.6

APOLLO SALES LTD PUBLIC ACCESS SCAFFOLD STEP DESIGN CHECK CALCULATIONS

Application nr. 7 (Connections) Strength of bolted connections to EN (Eurocode 3, Part 1.8)

STEEL MEMBER DESIGN (EN :2005)

Plastic Design of Portal frame to Eurocode 3

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

Assignment 1 - actions

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams

Fundamentals of Structural Design Part of Steel Structures

Example 4: Design of a Rigid Column Bracket (Bolted)

= = = 1,000 1,000 1,250. g M0 g M1 g M2 = = = 1,100 1,100 1,250 [ ] 1 0,000 8,000 HE 140 B 0,0. [m] Permanent Permanent Variable Variable Variable

DESIGN GUIDES FOR HIGH STRENGTH STRUCTURAL HOLLOW SECTIONS MANUFACTURED BY SSAB - FOR EN 1090 APPLICATIONS

CHAPTER 4. Design of R C Beams

Design of AAC wall panel according to EN 12602

C6 Advanced design of steel structures

Structural Steel Design Project

NTNU Faculty of Engineering Science and Technology Department of Marine Technology TMR 4195 DESIGN OF OFFSHORE STRUCTURES

CIV 207 Winter For practice

UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING. BEng (HONS) CIVIL ENGINEERING SEMESTER 1 EXAMINATION 2016/2017 MATHEMATICS & STRUCTURAL ANALYSIS

DESIGN OF STAIRCASE. Dr. Izni Syahrizal bin Ibrahim. Faculty of Civil Engineering Universiti Teknologi Malaysia

REINFORCED CONCRETE DESIGN 1. Design of Column (Examples and Tutorials)

Chapter 7: Bending and Shear in Simple Beams

Advanced Analysis of Steel Structures

== Delft University of Technology == Give on the upper right. Exam STATICS /

Metal Structures Lecture XIII Steel trusses

Structural Calculations for Juliet balconies using BALCONY 2 System (Aerofoil) handrail. Our ref: JULB2NB Date of issue: March 2017

3. Stability of built-up members in compression

Supplement: Statically Indeterminate Trusses and Frames

Fire resistance assessment of composite steel-concrete structures

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

Shear Behaviour of Fin Plates to Tubular Columns at Ambient and Elevated Temperatures

Steel Frame Design Manual

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Civil Engineering Design (1) Design of Reinforced Concrete Columns 2006/7

Question 1. Ignore bottom surface. Solution: Design variables: X = (R, H) Objective function: maximize volume, πr 2 H OR Minimize, f(x) = πr 2 H

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

UNIT II 1. Sketch qualitatively the influence line for shear at D for the beam [M/J-15]

STRUCTURAL VERIFICATION OF A 60.7 M DOME ROOF FOR TANK FB 2110

DESIGN AND DETAILING OF COUNTERFORT RETAINING WALL

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

ENG1001 Engineering Design 1

Basis of Design, a case study building

T2. VIERENDEEL STRUCTURES

Pre-stressed concrete = Pre-compression concrete Pre-compression stresses is applied at the place when tensile stress occur Concrete weak in tension

VTU EDUSAT PROGRAMME Lecture Notes on Design of Columns

Properties of Sections

S TRUCTUR A L PR E- A N A LYSIS TA B LES

DESIGN OF BEAM-COLUMNS - II

1C8 Advanced design of steel structures. prepared by Josef Machacek

BRACING MEMBERS SUMMARY. OBJECTIVES. REFERENCES.

SAMPLE PROJECT IN THE MIDDLE EAST DOCUMENT NO. STR-CALC POINT-FIXED GLASS - STEELWORKS 18 ENGINEER PROJECT. Pages REVISION TITLE

Finite Element Modelling with Plastic Hinges

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES


CHAPTER 5 Statically Determinate Plane Trusses

CHAPTER 5 Statically Determinate Plane Trusses TYPES OF ROOF TRUSS

Steel Structures Design and Drawing Lecture Notes

Lateral Torsional Buckling (sections class 1-3) - Column Item COx

The aim of this document together with the ETA 16/0583 is to facilitate the determination of design values.

Optimisation of the transfer carriage structure Thesis Report

Structural Fire Design according to Eurocodes


Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

ARCHIVES OF CIVIL ENGINEERING, LIX, 4, 2013 CALCULATION OF WELDING TRUSSES OVERLAP JOINTS MADE OF RECTANGULAR HOLLOW SECTIONS 1.

JUT!SI I I I TO BE RETURNED AT THE END OF EXAMINATION. THIS PAPER MUST NOT BE REMOVED FROM THE EXAM CENTRE. SURNAME: FIRST NAME: STUDENT NUMBER:

2012 MECHANICS OF SOLIDS

COLUMNS: BUCKLING (DIFFERENT ENDS)

CHAPTER 6: ULTIMATE LIMIT STATE

Part 1 is to be completed without notes, beam tables or a calculator. DO NOT turn Part 2 over until you have completed and turned in Part 1.

CONSULTING Engineering Calculation Sheet. Job Title Member Design - Reinforced Concrete Column BS8110

Chapter. Materials. 1.1 Notations Used in This Chapter

9.5 Compression Members

CHAPTER 4. Stresses in Beams

PART 5a : Worked examples Example to EN 1991 Part 1-2: Compartment fire


Ph.D. Preliminary Examination Analysis

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

National Exams May 2015


Unit III Theory of columns. Dr.P.Venkateswara Rao, Associate Professor, Dept. of Civil Engg., SVCE, Sriperumbudir

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES

Transcription:

Job No. VALCOSS Sheet of 9 Rev A P.O. Box 000, FI-0044 VTT Tel. +358 0 7 Fax +358 0 7 700 Design Example 3 Stainless steel lattice girder made Made by PTY/AAT Date Jan 006 RFCS Checked by MAP Date Feb 006 DESIGN EXAMPLE 3 - HOLLOW SECTION LATTICE GIRDER The lattice girder supports roof glazing and is made of square and rectangular hollow sections of grade.430 stainless steel; a comparison is made between material in two strength levels - the annealed condition (f y 0 N/mm ) and in the cold worked condition (strength level CP460, f y 460 N/mm ). Calculations are performed at the ultimate limit state and then at the fire limit state for a fire duration of 30 minutes. For the CP460 material the reduction factors for the mechanical properties at elevated temperatures are conservatively taken as those for grade.438 C850 (Table 7.). The structural analysis was carried out using the FE-program WINRAMI marketed by Finnish Constructional Steelwork Association (FCSA) (www.terasrakenneyhdistys.fi). The WINRAMI design environment includes square, rectangular and circular hollow sections for stainless steel structural analysis. WINRAMI solves the member forces, deflections and member resistances for room temperature and structural fire design and also joint resistance at room temperature (it also checks all the geometrical restraints of truss girder joints). In the example, the chord members are modelled as continuous beams and the diagonal members as hinge jointed. According to EN 993--, the buckling lengths for the chord and diagonal members could be taken as 0,9 times and 0,75 times the distance between nodal points respectivel but in this example conservatively the distance between nodal points has been used as the buckling length. The member forces were calculated by using WINRAMI with profile sizes based on the annealed strength condition. These member forces were used for both the annealed and CP460 girders. This example focuses on checking 3 members: mainly axial tension loaded lower chord (member 0), axial compression loaded diagonal (member 3) and combination of axial compression and bending loaded upper chord member (member 5). The weight of the girders is also compared. The welded joints should be designed according to the Section 6.3, which is not included in this example. lower chord 00x60x4, upper chord 80x80x5, corner vertical 60x60x5 diagonals from left to middle: 50x50x3, 50x50x3, 40x40x3, 40x40x3, 40x40x3,40x40x3, 40x40x3. lower chord 60x40x4, upper chord 70x70x4, corner vertical 60x60x5, all diagonals 40x40x3. Span length 5m, height in the middle 3,3 m, height at the corner 0,5 m. Weight of girders: Annealed: 407 kg, CP460 307 kg. The weight is not fully optimized. 9

Job No. VALCOSS Sheet of 9 Rev A P.O. Box 000, FI-0044 VTT Tel. +358 0 7 Fax +358 0 7 700 Design Example 3 Stainless steel lattice girder made Made by PTY/AAT Date Jan 006 RFCS Checked by MAP Date Feb 006 Actions Assuming the girder carries equally distributed snow load, glazing and its support structures and weight of girder : Permanent actions (G): Load of glazing and supports kn/m Dead load of girder (WINRAMI calculates the weight) Variable actions (Q): Snow load kn/m Load case to be considered (ultimate limit state): γ Load case to be considered (fire situation): Ultimate limit state (room temperature design) γ G, j,35 (unfavourable effects) γ Q,,5 j γ j G, j G k, j + γ Q, Q k, GA, j G k, j + k, Fire design γ GA, j,0 γ ψ, 0, γ ψ, Q (Recommended partial safety factors for actions shall be used in this example) Factored actions for ultimate limit state: Permanent action: Load on nodal points:,35 x 4, kn Self weight of girder (is included by WINRAMI ) Variable action Load from snow:,5 x 8, kn Eq..3 EN 990 EN 99-- Forces at critical member are: Forces are determined by the model using profiles in the annealed strength condition Lower chord member, member 0 Annealed: 00x60x4 mm, CP460: 60x40x4 mm N t, 4, kn, N t,fi, 46,9 kn M max, 0,67 knm, M max,fire, 0,45 knm Upper chord member, member 5 Annealed: 80x80x5 mm, CP460: 70x70x4 mm N c, -49, kn, N c,fire, -49, kn M max,,49 knm, M max,fire, 0,73 knm Diagonal member, member 3 Annealed: 50x50x3mm, N c, -65,9 kn, CP460: 40x40x3 mm N c,fire, -,7 kn 9

Job No. VALCOSS Sheet 3 of 9 Rev A P.O. Box 000, FI-0044 VTT Tel. +358 0 7 Fax +358 0 7 700 Design Example 3 Stainless steel lattice girder made Made by PTY/AAT Date Jan 006 RFCS Checked by MAP Date Feb 006 Material properties Use material grade.430 Annealed: f y 0 N/mm f u 550 N/mm E 00 000 N/mm Table 3. CP460: f y 460 N/mm f u 650 N/mm E 00 000 N/mm Section 3..4 Partial safety factors Table. The following partial safety factors are used throughout the design example: γ M0,, γ M,, γ M,fi,0 Cross section properties Annealed Member 0: A 75 mm W pl,y 37,93 000 mm 3 Member 5: A436 mm I y 3,44 0 4 mm 4 i y 30,3 mm W pl,y 39,74 0 3 mm 3 Member 3: A54 mm I y 9,47 0 4 mm 4 i y 9 mm W pl,y 9,39 0 3 mm 3 CP460 Member 0: A 695 mm W pl,y 3,6 000 mm 3 Member 5: A05 mm I y 7, 0 4 mm 4 i y 6,7 mm W pl,y 4,76 0 3 mm 3 Classification of the cross-section of member 5 and member 3 ε,0 ε 0,698 Table 4. Assume conservatively that c h t Annealed 80x80x5 : c 80 0 70 mm CP460 70x70x4 : c 70 8 6 mm Annealed 50x50x3 : c 50 6 44 mm CP460 40x40x3 : c 40 6 34 mm Flange/web subject to compression: Table 4. Annealed 80x80x5 : c/t 4 CP460 70x70x4 : c/t 5,5 Annealed 50x50x3 : c/t 4,6 CP460 40x40x3 : c/t,3 For Class, c t 5, 7ε, therefore both profiles are classified as Class Member 3: A4 mm I y 9,3 0 4 mm 4 i y 4,9 mm W pl,y 5,7 0 3 mm 3 LOWER CHORD MEMBER, DESIGN IN ROOM AND FIRE TEMPERATURE (Member 0) A) Room temperature design Tension resistance of cross section Section 4.7. N pl,rd Ag f y γ Eq. 4. 0 M N pl,rd 75 mm 0 N/mm /, 35 kn > 4, kn OK. N pl,rd 695 mm 460 N/mm /, 90 kn > 4, kn OK. 93

Job No. VALCOSS Sheet 4 of 9 Rev A P.O. Box 000, FI-0044 VTT Tel. +358 0 7 Fax +358 0 7 700 Design Example 3 Stainless steel lattice girder made Made by PTY/AAT Date Jan 006 RFCS Checked by MAP Date Feb 006 Moment resistance of cross-section Sec. 4.7.4 M c,rd Wpl f y γ Eq. 4.7 0 M M c,rd M c,rd 3 37,93 0 0, 0 3,6 0 3, 0 6 6 460 7,58 knm > 0,67 knm OK. 5,50 knm > 0,67 knm OK. Axial tension and bending moment interaction N M Eq. 5.39 + N M Rd Rd 4, kn 0,67 knm + 0,69 35 kn 7,58 knm OK. 4, kn 0,67 knm + 0,6 90 kn 5,50 knm OK. B) Fire temperature design ε res 0, Section 7.4.7 Steel temperature after 30 min fire Θ 83 C f, f 0,proof, + g, (f u, f 0,proof, ) Eq. 7. k 0, proof, 0,7-3/00 (0,7-0,4) 0,40 f 0,proof, 0,40 0 N/mm 5,8 N/mm g, (0,35-3/00 (0,35 0,38) 0,357 f u, ( 0,7-3/00 (0,7-0,5)) 550 N/mm 33,3 N/mm f, 5,8 N/mm + 0,357 (33,3 5,8) N/mm 8,5 N/mm k, 8,5/0 0,37 k 0,proof, 0,3-3/00 (0,3-0,) 0,0 f 0,proof, 0,0 460 N/mm 93, N/mm g, 0,5 f u, ( 0,4-3/00 (0,4-0,0)) 650 N/mm 35, N/mm f, 93, N/mm + 0,5 (35, 93,) N/mm 03,6 N/mm k, 03,6 /460 0,5 Section 7. Table 7. Eq. 7. Section 7. Table 7. Eq. 7. Tension resistance of cross section N fi,,rd k, N Rd [γ M0 / γ M,fi ] Eq. 7.6 N fi,,rd 0,370 35 kn,/,0 95,6 kn > 46,9 kn OK. N fi,,rd 0,5 90 kn,/,0 59,3 kn > 46,9 kn OK. 94

Job No. VALCOSS Sheet 5 of 9 Rev A P.O. Box 000, FI-0044 VTT Tel. +358 0 7 Fax +358 0 7 700 Design Example 3 Stainless steel lattice girder made Made by PTY/AAT Date Jan 006 RFCS Checked by MAP Date Feb 006 Moment resistance of cross-section M fi,,rd k, M Rd [ γ M 0 / γ M, fi ] Eq. 7.3 M fi,,rd 0,370 7,58 knm,/,0 3,08 knm > 0,45 knm OK. M fi,,rd 0,5 5,50 knm,/,0,36 knm > 0,45 knm OK. Axial tension and bending moment interaction N M + N M Rd Rd 46,9 kn 0,45 knm + 0,57 95,6 kn 3,08 knm OK. 46,9 kn 0,45 knm + 0,97 59,3 kn,36 knm OK. Eq. 5.39 DIAGONAL MEMBER DESIGN IN ROOM AND FIRE TEMPERATURE (Member 3) Buckling length 53 mm A) Room temperature design N b,rd χ Af y / γ M Eq. 5.a Lcr 53 Eq. 5.5a λ ( f y / E) (0/ 00000) 0,696 i π 9 π ϕ 0,5( + α( λ λ 0 ) + λ ) 0,5(+0,49(0,696-0,4)+0,696 ) 0,85 Eq. 5.4 χ ϕ + ( ϕ λ ) 0,85 + (0,85 0,696 ) 0,807 Eq. 5.3 N b,rd 0,807 54 mm 0 N/mm /, 87,3 kn > 65,9 kn OK. Lcr 53 λ ( f y / E) (460 / 00000),83 i π 4,9 π ϕ 0,5( + α( λ λ0) + λ ) 0,5(+0,49(,83-0,4)+,83 ),540 Eq. 5.5a Eq. 5.4 χ ϕ + ( ϕ λ ),540 + (,540,83 ) 0,48 Eq. 5.3 N b,rd 0,48 4 mm 460 N/mm /, 73,6 kn > 65,9 kn OK. 95

Job No. VALCOSS Sheet 6 of 9 Rev A P.O. Box 000, FI-0044 VTT Tel. +358 0 7 Fax +358 0 7 700 Design Example 3 Stainless steel lattice girder made Made by PTY/AAT Date Jan 006 RFCS Checked by MAP Date Feb 006 B) Fire temperature design ε res 0, Steel temperature after 30 min fire Θ 83 C k 0,proof, 0,7-3/00 (0,7-0,4) 0,8 k E, 0,63-3/00 (0,63-0,45) 0,57 k 0,proof, 0,3-3/00 (0,3-0,) 0,9 k E, 0,5-3/00 (0,5-0,35) 0,465 Section 7.4.7 Section 7. Table 7. Section 7. Table 7. N b,fi,t,rd χ fi A k0, proof, f y /γ M, fi Eq. 7.8 λ λ k / k ) 0,696 (0,8/ 0,57) 0,439 Eq. 7. ( 0, proof, E, 0 ϕ 0,5( + α( λ λ ) + λ ) 0,5(+0,49(0,439-0,4)+0,439 ) 0,606 χ fi ϕ + ( ϕ λ ) 0,606 + (0,606 0,977 0,439 ) N b,fi,t,rd 0,977 54 mm 0,8 0 N/mm /,0 6,5 kn >,7 kn OK. Eq. 7. Eq. 7.0 λ λ k / k ),83 (0,9/ 0,465) 0,8 Eq. 7. ( 0, proof, E, 0 ϕ 0,5( + α( λ λ ) + λ ) 0,5(+0,49(0,8-0,4)+0,8 ) 0,94 χ fi ϕ + ( ϕ λ ) 0,94+ (0,94 0,74 0,8 ) N b,fi,t,rd 0,74 4 mm 0,9 460 N/mm /,0 6,4 kn >,7 kn OK. Eq. 7. Eq. 7.0 UPPER CHORD MEMBER DESIGN IN ROOM AND FIRE TEMPERATURE (Member 5) Buckling length 536 mm A) Room temperature design N M + N e + k y N, ) b Rd min βw, yw pl, y f y / γ Ny ( M Eq. 5.40,0 β W,y,0 class cross section Sec. 5.5. k y,0+(λ y -0,5)N /N b,rd,y, but, k y,+n /N b,rd,y Lcr 536 λ ( f y / E) (0 / 00000) 0,535 i π 30,3 π Eq. 5.5a 96

Job No. VALCOSS Sheet 7 of 9 Rev A P.O. Box 000, FI-0044 VTT Tel. +358 0 7 Fax +358 0 7 700 Design Example 3 Stainless steel lattice girder made Made by PTY/AAT Date Jan 006 RFCS Checked by MAP Date Feb 006 ϕ 0,5( + α( λ λ 0 ) + λ ) 0,5(+0,49(0,535-0,4)+0,535 ) 0,676 χ ϕ + ( ϕ λ ) 0,676 + (0,676 Eq. 5.4 0,97 Eq. 5.3 0,535 ) N b,rd,y 0,97 436 mm 0 N/mm /, 63,3 kn > 49, kn Eq. 5.a k y,0+(0,535-0,5) 49,/63,3,039 because calculated value is less than,, the value of k y,. 49,,49 000 +, 0,890 <,0 OK. 63,3 3 Eq. 5.40,0 39,74 0 0/, CP460 β W,y,0 class cross section Sec. 5.5. Lcr 536 Eq. 5.5a λ ( f y / E) (460 / 00000) 0,878 i π 6,7 π ϕ 0,5( + α( λ λ 0) + λ ) 0,5(+0,49(0,878-0,4)+0,878 ),00 Eq. 5.4 χ ϕ + ( ϕ λ ),00 + (,00 0,673 0,878 ) Eq. 5.3 N b,rd,y 0,673 05 mm 460 N/mm /, 85,6 kn > 49, kn Eq. 5.a k y,0+(0,878-0,5)49,/85,6,394, but, k y, + (49,/85,6),44, thus k y,394 49,,49 000 +,394 0,8 <,0 OK. 85,6 3 Eq. 5.40,0 4,76 0 460 /, B) Fire temperature design ε res 0, Steel temperature 80x80x5 mm Θ 80 C Steel temperature 70x70x4 mm Θ 83 C k 0,proof, 0,7-0/00 (0,7-0,4) 0,57 f 0,proof, 0,57 0 N/mm 56,5 N/mm g, (0,35-0/00 (0,35 0,38) 0,353 f u, (0,7-0/00 (0,7-0,5)) 550 N/mm 4,9 N/mm f, 56,5N/mm + 0,353 (4,9 56,5) N/mm 86,6 N/mm k, 86,6 /0 0,394 k E, 0,63 0/00 (0,63-0,45) 0,6 Section 7.4.7 Section 7. Table 7. Eq. 7. 97

Job No. VALCOSS Sheet 8 of 9 Rev A P.O. Box 000, FI-0044 VTT Tel. +358 0 7 Fax +358 0 7 700 Design Example 3 Stainless steel lattice girder made Made by PTY/AAT Date Jan 006 k 0,proof, 0,3-3/00 (0,3-0,) 0,0 f 0,proof, 0,0 460 N/mm 93, N/mm g, 0,5 f u, (0,4-3/00 (0,4-0,0)) 650 N/mm 35,N/mm f, 93, N/mm + 0,5 (35, 93,) N/mm 03,6 N/mm k, 03,6 /460 0,5 k E, 0,5 3/00 (0,5-0,35) 0,48 RFCS Checked by MAP Date Feb 006 Section 7. Table 7. Eq. 7. χ min, fi A g N k fi, y 0, proof, γ M, fi f k ym + M fi, fi,, Rd,0 Eq. 7.4 λ λ ( k 0, proof, / k E, ) 0,535 (0,57 / 0,6) 0,347 Eq. 7. ϕ 0,5( + α( λ λ 0 ) + λ ) 0,5(+0,49(0,347-0,4)+0,347 ) 0,547 χ fi ϕ + ( ϕ λ ) 0,547 + (0,547,03,0 0,347 ) Eq. 7. Eq. 7.0 µ y N fi, k y 3 Eq. 7.8 χ A k f / γ fi g 0, proof, y M, fi Eq. 7.9 µ,β 3) λ + 0,44β 0,9 0,8 y ( M, y M, y χmin, fi A gk0, proof, f y / γ,0 436 mm 0,57 0 N/mm /,0 8, kn M, fi Eq. 7.8 > 49, kn OK. M fi,,rd k, [γ M0/ γ M,fi ]M Rd 0,394,/,0 39,74 0 3 0/000 3,79 knm Eq. 7.3 >0,73 knm OK. ψ -0,487 knm/0,73 knm -0,666 Table 7.3 β M,y,8-0,7 ψ,466 µ y (,,466-3)0,347 + 0,44,466 0,9 0,78, Eq. 7.9 because calculated value is less than 0,8, the value of µ y 0,8 k y - 0,80 49, kn/8, kn 0,55 Eq. 7.8 49, 0,73 + 0,55 0,70 <,0 8, 3,79 OK. Eq. 7.4 λ λ ( k 0, proof, / k E, ) 0,878 (0,0 / 0,48) 0,569 Eq. 7. 0 ϕ 0,5( + α( λ λ ) + λ ) 0,5(+0,49(0,569-0,4)+0,569 ) 0,703 χ fi ϕ + ( ϕ λ ) 0,703 + (0,703 0,896 0,569 ) Eq. 7. Eq. 7.0 98

Job No. VALCOSS Sheet 9 of 9 Rev A P.O. Box 000, FI-0044 VTT Tel. +358 0 7 Fax +358 0 7 700 Design Example 3 Stainless steel lattice girder made Made by PTY/AAT Date Jan 006 RFCS Checked by MAP Date Feb 006 χmin, fi A gk0, proof, f y / γ 0,896 05 mm 0,0 460 N/mm /,084,5 kn Eq. 7.8 M, fi >49, kn OK. M fi,,rd k, [γ M0/ γ M,fi ]M Rd 0,5,/,0 4,76 0 3 460/000,8 knm Eq. 7.3 >0,73 knm OK. ψ -0,487 knm/0,73 knm -0,666 Table 7.3 β M,y,8-0,7 ψ,466 µ y (,,466-3)0,569 + 0,44,466 0,9 0,77, Eq. 7.9 because calculated value is less than 0,8, the value of µ y 0,8 k y - 0,80 49, kn/84,5 kn 0,534 Eq. 7.8 49, 0,73 + 0,534 0,7 <,0 OK. Eq. 7.4 84,5,8 99