ERT 208 REACTION ENGINEERING

Similar documents
1. Introductory Material

Lecture (9) Reactor Sizing. Figure (1). Information needed to predict what a reactor can do.

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler)

Chapter 1. Lecture 1

Chemical Reaction Engineering Lecture 5

Chemical Reaction Engineering. Dr. Yahia Alhamed

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code

Basic Concepts in Reactor Design

PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON

Chemical Reaction Engineering

5. Collection and Analysis of. Rate Data

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS

Mole Balances. The first step to knowledge is to know that we are ignorant. Socrates ( B.C.)

Chemical Reaction Engineering - Part 16 - more reactors Richard K. Herz,

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10]

Chemical Reaction Engineering. Multiple Reactions. Dr.-Eng. Zayed Al-Hamamre

Chemical Reaction Engineering

Advanced Chemical Reaction Engineering Prof. H. S. Shankar Department of Chemical Engineering IIT Bombay. Lecture - 03 Design Equations-1

Plug flow Steady-state flow. Mixed flow

Engineering and. Tapio Salmi Abo Akademi Abo-Turku, Finland. Jyri-Pekka Mikkola. Umea University, Umea, Sweden. Johan Warna.

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS

Mathematical Modeling Of Chemical Reactors

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Chemical Reaction Engineering

Chemical Reaction Engineering

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model

Chemical Reaction Engineering Prof. JayantModak Department of Chemical Engineering Indian Institute of Science, Bangalore

ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam. Open Book, Notes, CD ROM, Disk, and Web

CHEMICAL REACTORS - PROBLEMS OF REACTOR ASSOCIATION 47-60

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz,

Process Design Decisions and Project Economics Prof. Dr. V. S. Moholkar Department of Chemical Engineering Indian Institute of Technology, Guwahati

Reactors. Reaction Classifications

CSTR - PFR - PBR

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes

Introduction to the course ``Theory and Development of Reactive Systems'' (Chemical Reaction Engineering - I)

BAE 820 Physical Principles of Environmental Systems

CHAPTER FIVE REACTION ENGINEERING

Chemical Reaction Engineering. Lecture 2

Process design decisions and project economics Dr. V. S. Moholkar Department of chemical engineering Indian Institute of Technology, Guwahati

IV B.Tech. I Semester Supplementary Examinations, February/March PROCESS MODELING AND SIMULATION (Chemical Engineering)

Chemical Kinetics -- Chapter 14

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design

Nirma University Institute of Technology Chemical Engineering Department, Handouts -RRP- CRE-II. Handouts

We can csalculate the MASS FRACTION of each component, then multiply the mass fraction by 56 g (the sample's actual mass) to get the mass of each

Chemical Reaction Engineering

Typical questions that CRE may answer: KGT 002 Kemisk Reactionsteknik I, 5p 1-

Chemical Reaction Engineering - Part 12 - multiple reactions Richard K. Herz,

Non-Ideal Reactors. Definitions * Segregated flow - fluid elements do not mix, have different residence times - Need Residence Time Distribution

6. Multiple Reactions

Mole Balances. The first step to knowledge is to know that we are ignorant. Socrates ( B.C.)

CHAPTER 4 EXPERIMENTAL METHODS

A First Course on Kinetics and Reaction Engineering Example 11.5

Chapter 1: Mole Balances

Figure Q3. Boundary conditions for a tubular reactor.

Applied chemical process

Steady-State Molecular Diffusion

No. 6. Reaction Rate Constant in CSTR Reaction. 1. Introduction

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

CEE 370 Environmental Engineering Principles

Chemical Reactions and Chemical Reactors

Dr. Trent L. Silbaugh, Instructor Chemical Reaction Engineering Final Exam Study Guide

ChE 344 Winter 2011 Final Exam. Open Book, Notes, and Web

MODELING OF CONTINUOUS OSCILLATORY BAFFLED REACTOR FOR BIODIESEL PRODUCTION FROM JATROPHA OIL ABSTRACT

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI

CHE 404 Chemical Reaction Engineering. Chapter 8 Steady-State Nonisothermal Reactor Design

Development of Dynamic Models. Chapter 2. Illustrative Example: A Blending Process

Problems Points (Max.) Points Received

Design of Ideal Batch Reactors operated under Isothermal Conditions (It is important to have this note set with you during all lecture classes.

Chemical Reaction Engineering II Prof. Ganesh Vishwanathan. Department of Chemical Engineering Indian Institute of Technology, Bombay

The Material Balance for Chemical Reactors

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC

Principles of Chemical Engineering Processes

Chemical Reactor flnolysis

CHEMICAL and BIOMOLECULAR ENGINEERING 140 Exam 1 Friday, September 28, 2018 Closed Book. Name: Section:

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web

Review: Nonideal Flow in a CSTR

The Material Balance for Chemical Reactors. General Mole Balance. R j. Q 1 c j1. c j0. Conservation of mass. { rate of inflow

CHEMICAL REACTION ENGINEERING

Types of Chemical Reactors. Nasir Hussain Production and Operations Engineer PARCO Oil Refinery

BASIC DESIGN EQUATIONS FOR MULTIPHASE REACTORS

Models for Nonideal Reactors

II Choice of Reactor

A First Course on Kinetics and Reaction Engineering Unit 30.Thermal Back-Mixing in a PFR

ChE 344 Winter 2013 Final Exam + Solution. Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems

Engineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press

A First Course on Kinetics and Reaction Engineering Unit 12. Performing Kinetics Experiments

(Refer Slide Time: 00:10)

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

CHEMICAL REACTION ENGINEERING LAB

Reaction Rates and Chemical Equilibrium

and Chemical Equilibrium Reaction Rates

Reaction Rates and Chemical Equilibrium. Chapter 10

Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR CH 3 H 2. m-xylene can also undergo hydrodealkylation to form toluene:

ChE 344 Winter 2013 Mid Term Exam II Tuesday, April 9, 2013

Review for Final Exam. 1ChE Reactive Process Engineering

A First Course on Kinetics and Reaction Engineering Unit D and 3-D Tubular Reactor Models

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Analyzing Mass and Heat Transfer Equipment

Transcription:

ERT 208 REACTION ENGINEERING MOLE BALANCE MISMISURAYA MEOR AHMAD School of bioprocess engineering Unimap

Course Outcome No.1: Ability to solve the rate of reaction and their kinetics.

objectives DESCRIBE and DEFINE the rate of reaction, DERIVE the general balance equation, APPLY the general mole balance to the three most common types of industrial reactors.

Definition Chemical Reaction Engineering (CRE): Combines the study of chemical kinetics with the reactors in which the reaction occur. Chemical kinetics: the study of chemical reaction rates & reaction mechanisms. Chemical kinetics & reactor design are important things in chemical industrial

CHEMICAL ENGINEER Distinguishes between other engineers is: a knowledge of Chemical Kinetics & Reactor Design Aim Select reaction system that operates in the safest and most efficient manner key to economic success or failure of a chemical plant.

Chemical Reaction Engineering principle can be applied in: Waste treatment Microelectronics Nanoparticles pharmaceutical living system of chemical manufactures

Points of view Before discuss the conditions that effect chemical reaction rate mechanisms & reactor design it is necessary to account for the various chemical species entering & leaving a reaction system. Achieved through overall mole balances on individual species in the reacting system.

So that, we will develop a general mole balance that can be applied to any species entering, leaving or remaining within the reaction system volume After that, used general mole balance equation to develop a preliminary form of the design equations of the most common industrial reactor: Batch Reactor (BR), Continuous-Stirred Tank Reactor (CSTR), Plug Flow Reactor/ Tubular (PFR) & Packed Bed Reactor (PBR)

THE RATE OF Reaction (-r A ) The Rate of Reaction show how fast a number of moles of one chemical species are being consumed to form another chemical species. (The rate at which a species loses its chemical identity per unit volume)

Chemical identity A chemical species is said to have reacted when it has lost its chemical identity. The identity of a chemical species is determined by the kind, number, and configuration of that species' atoms.

Three ways a chemical species can lose its chemical identity 1) Decomposition 3) Isomerization 2) Combination

The rate of a reaction can be expressed in several ways: 1) The rate of disappearance of a reactant, -r j r j is the number of moles j reacting (disappering) per unit time per unit volume (mol/dm 3.s) The numerical value r j is positive number

2) The rate of appearance of species j, r j r j is the rate of formation (generation) of species j. If species j is reactant The numerical value of r j will be a negative number. (i.e: r A = - 4 mole A/dm 3.s) If species j is product The numerical value of r j will be a positive number. (i.e: r B = 4 mole A/dm 3.s) The relation between the rate of formation of one species and the rate of disapperance of another species in chemical reaction will be discuss in Chapter 3

Example: A + 2B C + D

2 types of reaction systems: 1) Homogeneous system (one phase)- rate of reaction measure in volume 2) Haterogeneous system (more than one phase)- rate of reaction measure in reaction surface area or catalyst weight A B For a catalytic reaction, we refer to -r A ', which is the rate of disappearance of species A on a per mass of catalyst basis.

THE RATE Equation (rate law) for -r j Is an algebraic equation that is solely function of the properties of the reacting materials & reaction condition [i.e: species concentration, temperature, pressure and the type of catalyst]. The rate equation is independent of the type of reactor (batch, plug flow,cstr etc.) in which the reaction is carried out.

THE RATE Equation (rate law) for -r j However, because the properties & reaction conditions of the reacting materials may vary with position in chemical reactor, r j can turn be function of position & can vary from point to point in the systems. Rate law is essentially an algebraic equation involving concentartion (is not a differential equation)

Example, the algebraic form of the rate law for r A for the reaction: A products may be a linear function of concentration: may be a quadratic function of concentration: determined from experimental observation

The rate of disappearance of A is equal to a rate constant K (which is a function of temperature) times the square of the concentration of A.

General mole balance equation (gmbe) To perform a mole balance on any system, the system boundary must be specified. The volume enclosed by these boundaries is referred as system volume, V.

We shall perform a mole balance on a particluar chemical species, j in a system volume, V.

So that, mole balance on species j at any instance in time,t produces the following equation:

How to derive? Step 1: Understand the meaning of all the terms! (F j0,f j, G j and N j )

F j0 = rate of flow of j into the system F j rate of flow of j out of the system = N j =the no of moles of species j in the system at time,t G j = reaction volume x rate of formation of species j,

If all the system variable [temp., catalytic activity, conc. of the chemical species] are uniform throughout the system volume, the Rate of Generation of species j, G j is just the product of the reaction volume, V & the rate of formation of species j, r j.

The rate of formation of species j for the reaction varies with the position in the system volume. So that, it has r j1 at location 1, which is surrounded by a small volume, ΔV 1, within which the rate is uniform. Suppose, r j1 is surrounded by ΔV 1 and so on, therefore:

The total rate of generation within the system volume is the sum of all the rates of generation in each of the subvolumes. If the total system volume is divided into M subvolumes, the total rate of generation is:

Appropriate limit ( let, the equation becomes: Now, replace G j with this equation.

Therefore, the GMBE for any chemical species j which is entering, leaving, reacting, and/or accumulating within any system volume V. From this GMBE, we can develop the design equations for the various types of industrial reactors. Evaluation of GMBE can determine the time (batch) or reactor volume (continuous flow) necessary to convert a specified amount of the reactants into products.

Mole balance equation on different reactor types The GMBE applied to the major reactor types and the general reaction: A B

1) Batch Reactor (BR) BR used for small scale operation: For testing new processes. For manufacture expensive products. For processes that are difficult to convert to continuous operations.

BR advantage: High conversions (can be obtained by leaving the reactant in the reactor for long period of time). BR disadvantage: High labor cost per batch The variability of products from batch to batch The difficulty of large-scale production

1) Batch Reactor

Batch derivation General Mole Balance on System Volume, V

No inflow or outflow while reaction is carried out: From GMBE: Mole Balance Equation for Batch reactor become:

Assumption (BR): Perfect mixing,therefore no variation in reaction rate throughout the reactor volume (Same rate of reaction). So, r j is removed, integrate, rewrite the MBE:

Now, let s think about isomerization of species A in a BR. A B As the reaction proceeds: no of moles of A, N A decreases & no of moles of B, N B increases.

Question: what time, t 1 is necessary to reduce the initial no of moles from N A0 to final desired number, N A1. Step1: Apply the equation: Step 2: Rearranging, so that we get t:

Step 3: Integrate with limits, Obtain: at t=0, then N A =N A0 at t= t 1, then N A =N A1 This is integral form of mole balance on a BR. It gives the time, t 1 necessary to reduce the number of moles from N AO to N A1 and also to form N B1 moles of B

2) Continous flow reactors Operate at steady state (conditions do not change with times). Consider 3 types: i) Continous Stirred Tank Reactors(CSTR) ii) Plug Flow Reactors(PFR)/Tubular Reactor iii) Packed Bed Reactors(PBR)

i) Continous Stirred Tank reactor (CSTR) Used commonly in industrial processing the stirred tank operated continuously. Also referred as vat or backmix reactor. Used primarily for liquid phase reactions. Operate at steady-state. Is assumed to be perfect mixed/ ideal mixing [no time & no position depends with the temp., conc. or reaction rate inside the CSTR- means every variable is the same at every point inside the reactor ].

View of CSTR

GMBE on System Volume V. Applying on CSTR(Steady State i.e condition don t change with time): Also, Perfect Mixing (no variation in rate of reaction): So, it becomes a design equation of a CSTR:

The design equation gives the reactor volume, V necessary to reduce the entering flow rate of species j, F jo to the exit flow rate, F j when species j is disappering at a rate r j. CSTR is modeled based on conditions in the exit stream [conc., temp.] are identical to those in the tank. So that, the molar flow rate, F j is just the product of the conc. of species j & volumetric flow rate, V F j = concentration of species j x the volumetric flow rate:

Replace F j and combine, we can write a balance on species A in CSTR as:

ii) Tubular Reactors Consists of a cylindrical pipe. Operate at steady-state. Used for gas-phase reaction. Tubular Reactor Schematic

In the tubular reactor, the reactants are continually consumed as they flow down the lenght of the reactor. In modeling the tubular reactor, we assume the concentration varies continously in axial direction through the reactor. Therefore, the reaction rate (function of conc.) will also varies axially. We consider systems in which the flow field modeled by Plug Flow Profile (uniform velocity as in turbulent flow, no radial variation in reaction rate & the reactor referred to as a Plug Flow Reactor (PFR))

PLUG-FLOW REACTOR (PFR) There are two ways to developed the design equation of PFR at steady state: 1) Directly from GMBE by differentiating with respect to volume, V Or 2) From mole balance on species j in a differential segment of the reactor volume ΔV.

Let s choose the 2 nd ways to arrive at the differential form of the PFR mole balance The differential volume, ΔV will be chosen sufficiently small (there are no spatial variation in reaction rate within this volume). Thus the generation ΔG j is We obtain the differential form of steady state mole balance on a PFR:

To derive MB on PFR: At steady state: Accumulation = 0 Dividing by ΔV and rearranging The term in brackets resembles the definition of the derivative:

Taking the limit as ΔV approaches zero, we get the differential form of steady state mole balance on a PFR.

MBE of tubular reactors of variable & constant crosssectional area Pablo Picasso design the reactor for an irregular shape reactor [Pablo Picasso s reactor]

The conclusion from the application of the design equation Picasso s Reactor: The degree of completion of a reaction achieved in ideal PFR does not depends on its shape, only on its total volume

Consider isomerization of A B in PFR. As reactants proceed down the reactor, A is consumed by chemical reaction and B is produced. Consequently, the molar flow rate of A decreases and molar flow rate of B increases. Profile of Molar Flow Rate in a PFR

Question: What is the reactor volume, V 1 necessary to reducethe entering molar flow rate of A from F A0 to F A1. Rearrange equation to become: Integrate with limits: at V=0,F A =F A0 at V=V 1, F A =F A1 V 1 is the volume necessary to reduce the entering molar flow rate F A0 to F A1 & also the volume necessary to produce a molar flow rate of B, F B1

iii) Packed-bed reactor (PBR) The principle difference between rector design calculation which is the reaction occur in the surface of the catalyst (heterogeneous system). So that, the reaction is based on mass of solid catalyst, W rather than reactor volume, V. The differential form of mole balance for PBR:

The mass solid catalyst, W used because the amount of the catalyst is important to the rate of product formation. The reactor volume that contain catalyst is of secondary significance. Shows a schematic of an industrial catalytic reactor with vertical tubes packed with catalyst.

For heterogeneous system, the rate of reaction of a substance A is define as:

Derivation of mole balance on PBR The derivation of the design equation for PBR will be carried out in a manner analogous to the development of the tubular design equation. To do this, we replace the volume, V coordinate in MB of PFR (Tubular) with the catalyst weight, W.

The MB on species A over catalyst weight W produces this equation: The dimensions of generation terms in the equation are: The differential form of MB for a PBR:

When pressure drop through the reactor & catalyst decay are neglected, the integral form of PBR design equation can be used to calculate the catalyst weight:

Example 1.1: How Large is it? Question?

Solution

SUMMARY In the BR, PFR & CSTR, the design equation (mole balances) were developed based on reactor volume, V. While design equation of PBR based on mass solid catalyst, W.

Industrial Reactors British Petroleum Reactor Photos Fixed Bed Reactor 3 Stage Converter used to convert H 2 S to SO 2

Fluidized Bed Reactor Hydrogen Plant

Tutorial 1 Submit on 22 September 2011 before 1200 at Bioprocess main office

Tutorial 1

Q &A THANK YOU