CHEMICAL REACTION ENGINEERING

Size: px
Start display at page:

Download "CHEMICAL REACTION ENGINEERING"

Transcription

1 CHEMICL RECTION ENGINEERING Unit 5 nalysis of reactor DT

2 Collection and analysis of rate data Batch reactor for homogenous and heterogeneous reactions measurement during the unsteady-state operation Differential reactor for solid-fluid reactions measurement during steady state operation product concentration is usually monitored for different feed conditions.

3 nalysing methods Differential method Integral method Half-lives method Initial rate method Linear regression Non-linear regression Batch reactors Software packages

4 nalysing methods Differential method Integral method Half-lives method Initial rate method Linear regression Non-linear regression Batch reactors Software packages

5 Batch reactor Differential method of rate analysis When a reaction is irreversible, it is possible to obtain the specific rate constant by numerically differentiating concentration versus time data. concentration versus time data What we measured What we want to develop dc dt k C For example: decomposition reaction products ssuming the rate law as: What about + B products? r kc

6 Method of excess + B products ssuming the rate law as: r k C C β B Run in an excess of B, so that C B remains essentially unchanged during the course of the reaction k C r fter determing, the reaction is run in an excess of β k C B r

7 Constant-volume batch reactor r kc constant volume r dn Vdt dc dt k C ln (-dc /dt) Slope ln dc dt ln k + ln C Differential method ln C

8 Methods for the determination of the Graphical differentiation derivatives plotting C / t as a function of t using equal-area differentiation to obtain dc /dt Numerical differentiation when the data points in the independent variable are equally spaced weighted averaged C Differentiation of a polynomial fit to the data Excel, MatLaband other software can be used

9 Differential method example Gas-phase decomposition of di-tert-butyl peroxide: (CH 3 ) 3 COOC(CH 3 ) 3 C 2 H 6 + 2CH 3 CCH 3 O Time (min) Total ressure (mmhg)

10 Differential method example ostulate a rate law r kc Mole balance d dt dc dt kc 1 ( 2RT ) (3 For a constant volume batch reactor k C ) V V 3 C 2RT X (1 ε ) T T X

11 Differential method example ) ( 1 ) ( 1 ) ( 1 y X δ δ ε For isothermal operation and constant volume ) (1 ) (1 ) (1 X RT X V N X C C For the reaction y δ δ ε 1+2-1

12 d dt k 1 ( 2RT) (3 ) d dt k ( 3 ) ln (d/dt) d ln( ) lnk + ln(3 ) dt t ln (3 -)

13 nalysing methods Differential method Batch reactors Integral method Half-lives method Initial rate method Linear regression Non-linear regression Software packages

14 Integral Method trial-and-error procedure to find reaction order Guess the reaction order Integrate the differential equation This method is used most often when the reaction order is known and it is desired to evaluate the specific reaction rate constants at different temperatures to determine the activation energy. We are looking for the appropriate function of concentration corresponding to a particular rate law that is linear with time.

15 For the reaction products For a zero-order reaction -r -k C dc dt k For a first-order reaction -r -k C ln (C /C ) t C dc dt C kc kt C ln kt t C For a second-order reaction -r -k C 2 dc 2 kc dt 1/C t 1 C 1 C kt

16 Integral method example Gas-phase decomposition of di-tert-butyl peroxide: (CH 3 ) 3 COOC(CH 3 ) 3 C 2 H 6 + 2CH 3 CCH 3 O Time (min) Total ressure (mmhg)

17 d dt k 1 ( 2RT) (3 ) d dt k ( 3 ) Differential method Integral method ssuming 1 d dt k ( 3 ) 2 ln( 3 ) k t d ln( ) lnk + ln(3 ) dt ln [2 /(3 -)] Bingo! t

18 nalysing methods Differential method Integral method Batch reactors Half-lives method Initial rate method Linear regression Non-linear regression

19 Method of half-lives The half-life of a reaction, t 1/2, is defined as the time it takes for the concentration of the reactant to fall to half of its initial value. By determining the half-life of a reaction as a function of the initial concentration, the reaction order and specific reaction rate can be determined.

20 products dc dt kc t k( 1) C C 1 1 ln (t C C 1/2 ) C 2 Slope 1- t k( 1) C 1 ln C 2 1 ln( t1 ) ln + (1 ) lnc 2 k( 1)

21 nalysing methods Differential method Integral method Half-lives method Batch reactors Initial rate method Linear regression Non-linear regression

22 Method of initial rates When the reaction is reversible, the method of initial rates can be used to determine the reaction order and the specific rate constant. series of experiments is carried out at different initial concentrations and the initial rate of reactionis determined for eachrun. The initial rate can be found by differentiating the data and extrapolating to zero time. By various plotting or numerical analysis techniques relating -r to C, we can obtain the appropriate rate law: kc r

23 Initial rate method example The dissolution of dolomite using hydrochloric acid: 4HCl + CaMg(CO 3 ) 2 Mg 2+ + Ca Cl - +2CO 3 + 2H 2 O The concentration of HCl at various times was determined from atomic absorption spectrophtometer measurements of the calcium and magnesium ions C HCl 4N HCl 1N HCl t p. 24

24 Evaluating the mole balance on a constant-volume batch reactor at t : dc HCl ( rhcl ) kchcl, dchcl dt ln lnk lnc + HCl, dt C HCl, (N) Initial reaction rate r HCl, (mol/cm 2 s) x ln - r HCl, Slope ln C HCl

25 nalysing methods Differential method Integral method Half-lives method Initial rate method Differential reactor Linear regression Non-linear regression Batch reactors

26 Differential reactors The criterion for a reactor being differential is that the conversion of the reactants in the bed is extremely small, as is the change in reactant concentration through the bed. The reactant concentration through the reactor is essentially constant (i.e. the reactor is considered to be gradientless) The rate of reaction is determined for a specified number of pre-determined initial or entering reactant concentrations. Determine the rate of reaction as a function of either concentration or partial pressure. C C C e C ~ C ~ C e

27 Differential reactors The reactor is considered to be gradientless (considered as a CSTR). They operate essentially in an isothermal manner. (Limitation) If the catalyst under investigation decays rapidly, the differential reactor is not a good choice because the reaction rate parameters at the start of a run will be different from those at the end of the run.

28 Differential catalyst bed F C L W F e C p F p The rate of reaction per unit mass of catalyst, r flow rate in -flow rate out + rate of generation rate of accumulation F Fe + r W F Fe vc vc r W W When constant flow rate, v v : r v ( C C W e) v C p W The reaction rate can be determined by measuring the product concentration, C p e roduct concentration

29 Differential reactor example The formation of methane from carbon monoxide and hydrogen using a nickel catalyst at 5 F in a differential reactor: 3H 2 + CO CH 4 + 2H 2 O Run CO (atm) H2 (atm) C CH4 (g mol/dm 3 ) x x x x x x g catalyst exit volumetric flow rate: 3 roduct composition was monitored dm 3 /min

30 vcch 4 r r CH 4 W dm gmol/ dm 3 gmolch4 r min rch 1g cat. g cat. min We can then relate the rate of reaction to the exit methane concentration for each single run. For constant hydrogen concentration, the rate law: 1 r CH k ( 4 CO f H 2 ) r ln + CH k 4 CO ln( rch ) k 4 CO We observe: (1) at low H 2 concentration where r CH4 increases as H2 increases, the rate law may be of the form: r CH4 ~ H2 β1 (2) at high H 2 concentration where r CH4 decreases as H2 increases, the rate law may be of the form: r CH4 ~ H2 1/β2

31 We suggest that the rate law can be the form: r β 1 H 2 CH ~ 4 β β b 1 1/2 H 2 β 2 1 ctually, this is the typical form of the rate law for heterogeneous catalysis. This predicts that if the rate-limiting step in the overall reaction is the reactionbetweenatomic hydrogen absorbed on the nickel surface and CO in the gas phase.

32 r CH 4 ~ 1 + H 2 b 1 / 2 1 H 2 r CH k CO 4 CO r CH H / 2 r CH a 4 1 CO + H b 2 H 1 / 2 2 H 2 r CH CO H 2 H 2 1 / 2 CO r CH H 4 1 / a + b a H 2

33 Experimental planning Fogler, 1999

34 Features of representative laboratory reactors [Levenspiel, 1979].

5. Collection and Analysis of. Rate Data

5. Collection and Analysis of. Rate Data 5. Collection and nalysis of o Objectives Rate Data - Determine the reaction order and specific reaction rate from experimental data obtained from either batch or flow reactors - Describe how to analyze

More information

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data

Lecture 4. Mole balance: calculation of membrane reactors and unsteady state in tank reactors. Analysis of rate data Lecture 4 Mole balance: calculation of membrane reactors and unsteady state in tank reactors. nalysis of rate data Mole alance in terms of Concentration and Molar Flow Rates Working in terms of number

More information

Lecture 11 Kjemisk reaksjonsteknikk Chemical Reaction Engineering

Lecture 11 Kjemisk reaksjonsteknikk Chemical Reaction Engineering Lecture Kjemisk reaksjonsteknikk Chemical Reaction Engineering Review of previous lectures Kinetic data analysis of heterogeneous reactions. Characterization of t catalysts. Kinetic study, find a kinetic

More information

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes

ChE 344 Winter 2011 Mid Term Exam I + Solution. Closed Book, Web, and Notes ChE 344 Winter 011 Mid Term Exam I + Thursday, February 17, 011 Closed Book, Web, and Notes Name Honor Code (sign at the end of exam) 1) / 5 pts ) / 5 pts 3) / 5 pts 4) / 15 pts 5) / 5 pts 6) / 5 pts 7)

More information

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code

ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, Closed Book, Web, and Notes. Honor Code ChE 344 Winter 2013 Mid Term Exam I Tuesday, February 26, 2013 Closed Book, Web, and Notes Name Honor Code (Sign at the end of exam period) 1) / 5 pts 2) / 5 pts 3) / 5 pts 4) / 5 pts 5) / 5 pts 6) / 5

More information

Chemical Reaction Engineering. Dr. Yahia Alhamed

Chemical Reaction Engineering. Dr. Yahia Alhamed Chemical Reaction Engineering Dr. Yahia Alhamed 1 Kinetics and Reaction Rate What is reaction rate? It is the rate at which a species looses its chemical identity per unit volume. The rate of a reaction

More information

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web

ChE 344 Winter 2011 Final Exam + Solution. Open Book, Notes, and Web ChE 344 Winter 011 Final Exam + Solution Monday, April 5, 011 Open Book, Notes, and Web Name Honor Code (Please sign in the space provided below) I have neither given nor received unauthorized aid on this

More information

PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON

PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON PHEN 612 SPRING 2008 WEEK 1 LAURENT SIMON Chapter 1 * 1.1 Rate of reactions r A A+B->C Species A, B, and C We are interested in the rate of disappearance of A The rate of reaction, ra, is the number of

More information

ChE 344 Winter 2013 Final Exam + Solution. Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems

ChE 344 Winter 2013 Final Exam + Solution. Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems ChE 344 Winter 03 Final Exam + Solution Thursday, May, 03 Open Course Textbook Only Closed everything else (i.e., Notes, In-Class Problems and Home Problems Name Honor Code (Please sign in the space provided

More information

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name

Midterm II. ChE 142 April 11, (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name ChE 142 pril 11, 25 Midterm II (Closed Book and notes, two 8.5 x11 sheet of notes is allowed) Printed Name KEY By signing this sheet, you agree to adhere to the U.C. Berkeley Honor Code Signed Name_ KEY

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 2 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. 1 Lecture 2 Review of Lecture

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Acquisition of reaction rate data Dr. Zifei Liu Uncertainties in real world reaction rate data Most interesting reaction systems involves multiple reactions,

More information

Lecture 10 Kjemisk reaksjonsteknikk Chemical Reaction Engineering

Lecture 10 Kjemisk reaksjonsteknikk Chemical Reaction Engineering Lecture 10 Kjemisk reaksjonsteknikk hemical Reaction Engineering Review of previous lectures Procedure of RE data analysis Reactors for kinetic study Determining the Rate Law from Experimental Data Integral

More information

Next, make a stoichiometric table for the flow system (see Table 3-4 in Fogler). This table applies to both a PFR and CSTR reactor.

Next, make a stoichiometric table for the flow system (see Table 3-4 in Fogler). This table applies to both a PFR and CSTR reactor. Cite as: William Green, Jr., and K. Dane Wittrup, course materials for.37 Chemical and Biological Reaction Engineering, Spring 27. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology.

More information

Chemical Reaction Engineering. Lecture 2

Chemical Reaction Engineering. Lecture 2 hemical Reaction Engineering Lecture 2 General algorithm of hemical Reaction Engineering Mole balance Rate laws Stoichiometry Energy balance ombine and Solve lassification of reactions Phases involved:

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Chemical Reaction Engineering Dr. Yahia Alhamed Chemical and Materials Engineering Department College of Engineering King Abdulaziz University General Mole Balance Batch Reactor Mole Balance Constantly

More information

Steady-State Molecular Diffusion

Steady-State Molecular Diffusion Steady-State Molecular Diffusion This part is an application to the general differential equation of mass transfer. The objective is to solve the differential equation of mass transfer under steady state

More information

Mathematical Modeling Of Chemical Reactors

Mathematical Modeling Of Chemical Reactors 37 Mathematical Modeling Of Chemical Reactors Keywords: Reactors, lug flow, CSTR, Conversion, Selectivity Chemical reactor calculations are based on the elementary conservation laws of matter and energy.

More information

1. Introductory Material

1. Introductory Material CHEE 321: Chemical Reaction Engineering 1. Introductory Material 1b. The General Mole Balance Equation (GMBE) and Ideal Reactors (Fogler Chapter 1) Recap: Module 1a System with Rxn: use mole balances Input

More information

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like)

Chemical reactors. H has thermal contribution, pressure contribution (often negligible) and reaction contribution ( source - like) Chemical reactors - chemical transformation of reactants into products Classification: a) according to the type of equipment o batch stirred tanks small-scale production, mostly liquids o continuous stirred

More information

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Lecture 8 Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Mole alance in terms of Concentration and Molar Flow Rates Working in terms of number of moles

More information

Chapter 1. Lecture 1

Chapter 1. Lecture 1 Chapter 1 Lecture 1 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. 1 Lecture 1 Introduction

More information

Chemical Reaction Engineering Lecture 5

Chemical Reaction Engineering Lecture 5 Chemical Reaction Engineering g Lecture 5 The Scope The im of the Course: To learn how to describe a system where a (bio)chemical reaction takes place (further called reactor) Reactors Pharmacokinetics

More information

ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam. Open Book, Notes, CD ROM, Disk, and Web

ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam. Open Book, Notes, CD ROM, Disk, and Web ChE 344 Chemical Reaction Engineering Winter 1999 Final Exam Open Book, Notes, CD ROM, Disk, and Web Name Honor Code 1) /25 pts 2) /15 pts 3) /10 pts 4) / 3 pts 5) / 6 pts 6) / 8 pts 7) / 8 pts 8) / 5

More information

GATE & PSUs CHEMICAL ENGINEERING

GATE & PSUs CHEMICAL ENGINEERING CHEMICL ENGINEERING [GTE-019] Postal Correspondence GTE & PSUs CHEMICL ENGINEERING CHEMICL RECTION ENGINEERING- To Buy Postal Correspondence Packages call at 0-9990657855 018 ENGINEERS INSTITUTE OF INDI.ll

More information

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz,

Chemical Reaction Engineering - Part 14 - intro to CSTRs Richard K. Herz, Chemical Reaction Engineering - Part 4 - intro to CSTRs Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Continuous Stirred Tank Reactors - CSTRs Here are a couple screenshots from the ReactorLab, Division

More information

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler)

Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) CHE 309: Chemical Reaction Engineering Lecture-2 Module 1: Mole Balances, Conversion & Reactor Sizing (Chapters 1 and 2, Fogler) Module 1: Mole Balances, Conversion & Reactor Sizing Topics to be covered

More information

Basic Concepts in Reactor Design

Basic Concepts in Reactor Design Basic Concepts in Reactor Design Lecture # 01 KBK (ChE) Ch. 8 1 / 32 Introduction Objectives Learning Objectives 1 Different types of reactors 2 Fundamental concepts used in reactor design 3 Design equations

More information

Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR CH 3 H 2. m-xylene can also undergo hydrodealkylation to form toluene:

Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR CH 3 H 2. m-xylene can also undergo hydrodealkylation to form toluene: Chapter 8 Multiple Reactions W8-1 Web Solved Problems Web Example SP-8.1 Hydrodealkylation of Mesitylene in a PFR The production of m-xylene by the hydrodealkylation of mesitylene over a Houdry Detrol

More information

Chemical Reactions and Chemical Reactors

Chemical Reactions and Chemical Reactors Chemical Reactions and Chemical Reactors George W. Roberts North Carolina State University Department of Chemical and Biomolecular Engineering WILEY John Wiley & Sons, Inc. x Contents 1. Reactions and

More information

Kinetics CHAPTER IN THIS CHAPTER

Kinetics CHAPTER IN THIS CHAPTER CHAPTER 14 Kinetics IN THIS CHAPTER Summary: Thermodynamics often can be used to predict whether a reaction will occur spontaneously, but it gives very little information about the speed at which a reaction

More information

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model

A First Course on Kinetics and Reaction Engineering Unit 33. Axial Dispersion Model Unit 33. Axial Dispersion Model Overview In the plug flow reactor model, concentration only varies in the axial direction, and the sole causes of that variation are convection and reaction. Unit 33 describes

More information

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10]

H 0 r = -18,000 K cal/k mole Assume specific heats of all solutions are equal to that of water. [10] Code No: RR320802 Set No. 1 III B.Tech II Semester Supplementary Examinations, November/December 2005 CHEMICAL REACTION ENGINEERING-I (Chemical Engineering) Time: 3 hours Max Marks: 80 Answer any FIVE

More information

Dr. Trent L. Silbaugh, Instructor Chemical Reaction Engineering Final Exam Study Guide

Dr. Trent L. Silbaugh, Instructor Chemical Reaction Engineering Final Exam Study Guide Chapter 1 Mole balances: Know the definitions of the rate of reaction, rate of disappearance and rate of appearance Know what a rate law is Be able to write a general mole balance and know what each term

More information

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9

A First Course on Kinetics and Reaction Engineering. Class 9 on Unit 9 A First Course on Kinetics and Reaction Engineering Class 9 on Unit 9 Part I - Chemical Reactions Part II - Chemical Reaction Kinetics Where We re Going A. Rate Expressions - 4. Reaction Rates and Temperature

More information

ChE 344 Winter 2011 Final Exam. Open Book, Notes, and Web

ChE 344 Winter 2011 Final Exam. Open Book, Notes, and Web ChE 344 Winter 2011 Final Exam Monday, April 25, 2011 Open Book, Notes, and Web Name Honor Code (Please sign in the space provided below) I have neither given nor received unauthorized aid on this examination,

More information

Available online Journal of Scientific and Engineering Research, 2018, 5(3): Research Article

Available online   Journal of Scientific and Engineering Research, 2018, 5(3): Research Article Available online www.jsaer.com, 2018, 5(3):415-426 Research Article ISSN: 2394-2630 CODEN(USA): JSERBR Kinetics Study of Reaction between Atenolol Epoxide and Isopropylamine using Differential and Integral

More information

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors

Lecture 8. Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Lecture 8 Mole balance: calculations of microreactors, membrane reactors and unsteady state in tank reactors Mole alance in terms of oncentration and Molar low Rates Working in terms of number of moles

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 6 hemical Reaction Engineering (RE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. Lecture 6 Tuesday 1/9/13 Block

More information

Chemical Reaction Engineering - Part 7 Richard K. Herz,

Chemical Reaction Engineering - Part 7 Richard K. Herz, Chemical Reaction Engineering - Part 7 Richard K. Herz, rherz@ucsd.edu, www.reactorlab.net Methods of experimental data analysis So far we have been given rate equations and values of rate coefficients.

More information

AP Chapter 13: Kinetics Name

AP Chapter 13: Kinetics Name AP Chapter 13: Kinetics Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. AP Chapter 13: Kinetics 2 Warm-Ups (Show your work for credit) Date 1.

More information

Mr. Bracken. Kinetics: Multiple Choice Review Questions

Mr. Bracken. Kinetics: Multiple Choice Review Questions Mr. Bracken AP Chemistry Name Period Kinetics: Multiple Choice Review Questions 1. In the rate law, Rate = k[no] 2 [O 2 ], the reaction is order for NO, order for O 2, and order overall. (a) second; first;

More information

Thermodynamic and Stochiometric Principles in Materials Balance

Thermodynamic and Stochiometric Principles in Materials Balance Thermodynamic and Stochiometric Principles in Materials Balance Typical metallurgical engineering problems based on materials and energy balance NiO is reduced in an open atmosphere furnace by excess carbon

More information

The Material Balance for Chemical Reactors

The Material Balance for Chemical Reactors The Material Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate

More information

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC

The Material Balance for Chemical Reactors. Copyright c 2015 by Nob Hill Publishing, LLC The Material Balance for Chemical Reactors Copyright c 2015 by Nob Hill Publishing, LLC 1 General Mole Balance V R j Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component j = + { rate

More information

LN 8 IDLE MIND SOLUTIONS 1 T x 10 4

LN 8 IDLE MIND SOLUTIONS 1 T x 10 4 LN 8 IDLE MIND SOLUTIONS. k Ae RT k 2 3k Ae RT 2 3 ln 3 R T T 2 e R T T 2 R x ln 3 293 33 4.9 x 0 4 4.9 kjmole 2. (a) k Ae RT.7 x 0 4 xe 2.5x05 8.3x0 23 28.8 s (b) Requires knowledge of k 600 : k 600.7

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Type of reactors Dr. Zifei Liu Ideal reactors A reactor is an apparatus in which chemical, biological, and physical processes (reactions) proceed intentionally,

More information

CHE 611 Advanced Chemical Reaction Engineering

CHE 611 Advanced Chemical Reaction Engineering CHE 611 Advanced Chemical Reaction Engineering Dr. Muhammad Rashid Usman Institute of Chemical Engineering and Technology University of the Punjab, Lahore 54590 mrusman.icet@pu.edu.pk 1 Advanced Chemical

More information

ERT 208 REACTION ENGINEERING

ERT 208 REACTION ENGINEERING ERT 208 REACTION ENGINEERING MOLE BALANCE MISMISURAYA MEOR AHMAD School of bioprocess engineering Unimap Course Outcome No.1: Ability to solve the rate of reaction and their kinetics. objectives DESCRIBE

More information

Elementary Reactions

Elementary Reactions Updated: 3 September 2013 Print version Lecture #5 Kinetics and Thermodynamics: Fundamentals of Kinetics and Analysis of Kinetic Data (Benjamin, 1.6) (Stumm & Morgan, Chapt.2 ) (pp.16-20; 69-81) David

More information

Chemical Energetics. First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another.

Chemical Energetics. First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another. Chemical Energetics First Law of thermodynamics: Energy can be neither created nor destroyed but It can be converted from one form to another. All chemical reactions are accompanied by some form of energy

More information

Chem 6 sample exam 1 (100 points total)

Chem 6 sample exam 1 (100 points total) Chem 6 sample exam 1 (100 points total) @ This is a closed book exam to which the Honor Principle applies. @ The last page contains several equations which may be useful; you can detach it for easy reference.

More information

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65

TABLE OF CONTENT. Chapter 4 Multiple Reaction Systems 61 Parallel Reactions 61 Quantitative Treatment of Product Distribution 63 Series Reactions 65 TABLE OF CONTENT Chapter 1 Introduction 1 Chemical Reaction 2 Classification of Chemical Reaction 2 Chemical Equation 4 Rate of Chemical Reaction 5 Kinetic Models For Non Elementary Reaction 6 Molecularity

More information

Revision Checklist :4.3 Quantitative Chemistry

Revision Checklist :4.3 Quantitative Chemistry Revision Checklist :4.3 Quantitative Chemistry Conservation of Mass The law of conservation of mass states that no atoms are lost or made during a chemical reaction so the mass of the products equals the

More information

CHM 2046 Test 2 Review: Chapter 12, Chapter 13, & Chapter 14

CHM 2046 Test 2 Review: Chapter 12, Chapter 13, & Chapter 14 Chapter 12: 1. In an 80.0 L home aquarium, the total pressure is 1 atm and the mole fraction of nitrogen is 0.78. Henry s law constant for N 2 in water at 25 is 6.1 x 10 4. What mass of nitrogen is dissolved

More information

[ A] 2. [ A] 2 = 2k dt. [ A] o

[ A] 2. [ A] 2 = 2k dt. [ A] o Chemistry 360 Dr Jean M Standard Problem Set 3 Solutions The reaction 2A P follows second-order kinetics The rate constant for the reaction is k350 0 4 Lmol s Determine the time required for the concentration

More information

CHE 611 Advanced Chemical Reaction Engineering

CHE 611 Advanced Chemical Reaction Engineering CHE 611 Advanced Chemical Reaction Engineering Dr. Muhammad Rashid Usman Institute of Chemical Engineering and Technology University of the Punjab, Lahore 54590 mrusman.icet@pu.edu.pk 1 Course contents

More information

Exam 4, Ch 14 and 15 December 7, Points

Exam 4, Ch 14 and 15 December 7, Points Chem 130 Name Exam 4, Ch 14 and 15 December 7, 2016 100 Points Please follow the instructions for each section of the exam. Show your work on all mathematical problems. Provide answers with the correct

More information

Lesmahagow High School

Lesmahagow High School Lesmahagow High School Higher Chemistry Controlling the Rate - Tutorial Questions Rates of Reaction Tutorial Questions 1 1. The graph shows the variation of concentration of a reactant with time as a reaction

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 8 Chemical Reaction Engineering (CRE) is the field that studies the rates and mechanisms of chemical reactions and the design of the reactors in which they take place. oday s lecture Block 1: Mole

More information

The Material Balance for Chemical Reactors. General Mole Balance. R j. Q 1 c j1. c j0. Conservation of mass. { rate of inflow

The Material Balance for Chemical Reactors. General Mole Balance. R j. Q 1 c j1. c j0. Conservation of mass. { rate of inflow 2 / 153 The Material Balance for Chemical Reactors Copyright c 2018 by Nob Hill Publishing, LLC 1 / 153 General Mole Balance R j V Q 0 c j0 Q 1 c j1 Conservation of mass rate of accumulation of component

More information

CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN. Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa

CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN. Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa CHEMICAL ENGINEERING KINETICS/REACTOR DESIGN Tony Feric, Kathir Nalluswami, Manesha Ramanathan, Sejal Vispute, Varun Wadhwa Presentation Overview Kinetics Reactor Design Non- Isothermal Design BASICS OF

More information

CE 329, Fall 2015 First Mid-Term Exam

CE 329, Fall 2015 First Mid-Term Exam CE 39, Fall 15 First Mid-erm Exam You may only use pencils, pens and erasers while taking this exam. You may NO use a calculator. You may not leave the room for any reason if you do, you must first turn

More information

A is the frequency factor (related to the number of collisions)

A is the frequency factor (related to the number of collisions) Chemistry Week 10 Worksheet Notes Oregon State University Ea RT 1. Discuss k e k is the rate is the frequency factor (related to the number of collisions) Ea is the activation energy R is the gas constant

More information

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore

Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Chemical Reaction Engineering Prof. Jayant Modak Department of Chemical Engineering Indian Institute of Science, Bangalore Lecture No. #40 Problem solving: Reactor Design Friends, this is our last session

More information

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium

Chemical Equilibrium. Professor Bice Martincigh. Equilibrium Chemical Equilibrium by Professor Bice Martincigh Equilibrium involves reversible reactions Some reactions appear to go only in one direction are said to go to completion. indicated by All reactions are

More information

2. Review on Material Balances

2. Review on Material Balances 2. Review on Material Balances Objectives After completing this chapter, students should be able to recall the principle of the conservation of mass recall the principle of the stoichiometry of chemical

More information

ST. FRANCIS SECONDARY SCHOOL HALF YEARLY EXAMINATION SPECIMEN PAPER FORM 4 CHEMISTRY TIME: 2 HOURS. Name: Total Mark from 90:

ST. FRANCIS SECONDARY SCHOOL HALF YEARLY EXAMINATION SPECIMEN PAPER FORM 4 CHEMISTRY TIME: 2 HOURS. Name: Total Mark from 90: ST. FRANCIS SECONDARY SCHOOL HALF YEARLY EXAMINATION SPECIMEN PAPER FORM 4 CHEMISTRY TIME: 2 HOURS Name: Total Mark from 90: A copy of the periodic table is provided during the exam. You are reminded of

More information

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS

IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS IDEAL REACTORS FOR HOMOGENOUS REACTION AND THEIR PERFORMANCE EQUATIONS At the end of this week s lecture, students should be able to: Differentiate between the three ideal reactors Develop and apply the

More information

B. The rate will increase by a factor of twelve. C. The rate will increase by a factor of twenty-four. D. The rate will decrease by a factor of six.

B. The rate will increase by a factor of twelve. C. The rate will increase by a factor of twenty-four. D. The rate will decrease by a factor of six. 1. If O 2 (g) disappears at a rate of 0.250 M/s at a particular moment in the reaction below, what is the rate of appearance of H 2 O(g) at the same time? C 3 H 8 (g) + 5 O 2 (g) 3 CO 2 (g) + 4 H 2 O(g)

More information

CE 329, Fall 2015 Assignment 16, Practice Exam

CE 329, Fall 2015 Assignment 16, Practice Exam CE 39, Fall 15 Assignment 16, Practice Exam You may only use pencils, pens and erasers while taking this exam. You may NO use a calculator. You may not leave the room for any reason if you do, you must

More information

UNIT 1 Chemical Reactions Part II Workbook. Name:

UNIT 1 Chemical Reactions Part II Workbook. Name: UNIT 1 Chemical Reactions Part II Workbook Name: 1 Molar Volume 1. How many moles of a gas will occupy 2.50 L at STP? 2. Calculate the volume that 0.881 mol of gas at STP will occupy. 3. Determine the

More information

Quantitative Chemistry. AQA Chemistry topic 3

Quantitative Chemistry. AQA Chemistry topic 3 Quantitative Chemistry AQA Chemistry topic 3 3.1 Conservation of Mass and Balanced Equations Chemical Reactions A chemical reaction is when atoms are basically rearranged into something different. For

More information

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes.

REACTION KINETICS. Catalysts substances that increase the rates of chemical reactions without being used up. e.g. enzymes. REACTION KINETICS Study of reaction rates Why? Rates of chemical reactions are primarily controlled by 5 factors: the chemical nature of the reactants 2 the ability of the reactants to come in contact

More information

4 th Edition Chapter 9

4 th Edition Chapter 9 Insert Page 547A 4 th Edition Chapter 9 In summary, if any one of the following three things had not occurred the explosion would not have happened. 1. Tripled production 2. Heat exchanger failure for

More information

Chemical Kinetics. What Influences Kinetics?

Chemical Kinetics. What Influences Kinetics? Chemical Kinetics Predictions of likelihood for a reaction to occur have been based on difference in energy between products and reactants: Thermodynamics only compares reactants to products, says nothing

More information

Ch 13 Rates of Reaction (Chemical Kinetics)

Ch 13 Rates of Reaction (Chemical Kinetics) Ch 13 Rates of Reaction (Chemical Kinetics) Reaction Rates and Kinetics - The reaction rate is how fast reactants are converted to products. - Chemical kinetics is the study of reaction rates. Kinetics

More information

1. Introduction to Chemical Kinetics

1. Introduction to Chemical Kinetics 1. Introduction to Chemical Kinetics objectives of chemical kinetics 1) Determine empirical rate laws H 2 + I 2 2HI How does the concentration of H 2, I 2, and HI change with time? 2) Determine the mechanism

More information

A First Course on Kinetics and Reaction Engineering Example 38.2

A First Course on Kinetics and Reaction Engineering Example 38.2 Example 38.2 Problem Purpose This example illustrates some limitations to the use of the effectiveness factor and shows how to model an isothermal packed bed reactor by writing mole balances separately

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture # Chemical Reaction Engineering Youn-Woo Lee School of Chemical and Biological Engineering Seoul National University 155-741, 599 Gwanangro, Gwanak-gu, Seoul, Korea ywlee@snu.ac.kr http://sfpl.snu.ac.kr

More information

Chapter 13 Rates of Reactions

Chapter 13 Rates of Reactions Chapter 13 Rates of Reactions Chemical reactions require varying lengths of time for completion, depending on the characteristics of the reactants and products. The study of the rate, or speed, of a reaction

More information

Yes. Yes. Yes. Experimental data: the concentration of a reactant or product measured as a function of time. Graph of conc. vs.

Yes. Yes. Yes. Experimental data: the concentration of a reactant or product measured as a function of time. Graph of conc. vs. Experimental data: the concentration of a reactant or product measured as a function of time Graph of conc. vs. time Is graph a straigh t line? No Graph of ln[conc.] vs. time Yes System is zero order Is

More information

C A0 0.8 mol/dm 3. C T0 1.0 mol/dm 3. r A. v 0 C A0 vc A + r A V V dc A. 4. Stoichiometry (gas phase, P P 0, T T 0 ). From Equation (3-41) we have

C A0 0.8 mol/dm 3. C T0 1.0 mol/dm 3. r A. v 0 C A0 vc A + r A V V dc A. 4. Stoichiometry (gas phase, P P 0, T T 0 ). From Equation (3-41) we have Chapter 10 Catalsis and Cataltic Reactors W10-1 Web Example W10 Catalst Deca in a Fluidized Bed Modeled as a CSTR The gas-phase cracking reaction Gas oil (g) Products (g) B C is carried out in a fluidized

More information

Kinetics. Consider an irreversible unimolecular reaction k. -d[a]/dt = k[a] Can also describe in terms of appearance of B.

Kinetics. Consider an irreversible unimolecular reaction k. -d[a]/dt = k[a] Can also describe in terms of appearance of B. Kinetic data gives insight into reaction mechanisms kinetic analysis will describe a relationship between concentrations of all chemical species before the rate determining step in a given reaction and

More information

Questions Q1. Which of the following contains the greatest number of hydrogen atoms? 2 moles of water, H 2 O. B 1.5 moles of ammonia, NH 3

Questions Q1. Which of the following contains the greatest number of hydrogen atoms? 2 moles of water, H 2 O. B 1.5 moles of ammonia, NH 3 Questions Q1. Which of the following contains the greatest number of hydrogen atoms? 2 moles of water, H 2 O B 1.5 moles of ammonia, NH 3 C 1 mole of hydrogen gas, H 2 D 0.5 moles of methane, CH 4 Q2.

More information

Revision Checklist :4.3 Quantitative Chemistry

Revision Checklist :4.3 Quantitative Chemistry Revision Checklist :4.3 Quantitative Chemistry Conservation of Mass The law of conservation of mass states that no atoms are lost or made during a chemical reaction so the mass of the products equals the

More information

CBE 142: Chemical Kinetics & Reaction Engineering

CBE 142: Chemical Kinetics & Reaction Engineering CBE 142: Chemical Kinetics & Reaction Engineering Midterm #2 November 6 th 2014 This exam is worth 100 points and 20% of your course grade. Please read through the questions carefully before giving your

More information

6. Multiple Reactions

6. Multiple Reactions 6. Multiple Reactions o Selectivity and Yield o Reactions in Series - To give maximum selectivity o Algorithm for Multiple Reactions o Applications of Algorithm o Multiple Reactions-Gas Phase 0. Types

More information

1/r plots: a brief reminder

1/r plots: a brief reminder L10-1 1/r plots: a brief reminder 1/r X target X L10-2 1/r plots: a brief reminder 1/r X target X L10-3 1/r plots: a brief reminder 1/r X target X Special Case: utocatalytic Reactions Let s assume a reaction

More information

Case Study: The Industrial Manufacture of Ammonia The Haber Process

Case Study: The Industrial Manufacture of Ammonia The Haber Process Case Study: The Industrial Manufacture of Ammonia The Haber Process In the Haber Process, ammonia (NH3) is synthesised from nitrogen and hydrogen gases: N 2 (g) + 3H 2 (g) Ý 2NH3(g), ΔH = 92.4 kjmol -1

More information

Unit #10. Chemical Kinetics

Unit #10. Chemical Kinetics Unit #10 Chemical Kinetics Zumdahl Chapter 12 College Board Performance Objectives: Express the rate of a reaction in terms of changes in the concentration of a reactant or a product per time. Understand

More information

13 th Aug Chemical Reaction Engineering CH3010. Home work problems

13 th Aug Chemical Reaction Engineering CH3010. Home work problems 13 th ug 18. Chemical Reaction Engineering CH31. Home work problems 1. Batch reactor, variable volume. Consider a gas phase reaction B, conducted isothermally and at constant pressure in a batch reactor.

More information

CHE 611 Advanced Chemical Reaction Engineering

CHE 611 Advanced Chemical Reaction Engineering CHE 611 Advanced Chemical Reaction Engineering Dr. Muhammad Rashid Usman Institute of Chemical Engineering and Technology University of the Punjab, Lahore 54590 mrusman.icet@pu.edu.pk 1 Diffusion and reaction

More information

Questions 1-3 relate to the following reaction: 1. The rate law for decomposition of N2O5(g) in the reaction above. B. is rate = k[n2o5] 2

Questions 1-3 relate to the following reaction: 1. The rate law for decomposition of N2O5(g) in the reaction above. B. is rate = k[n2o5] 2 Questions 1-3 relate to the following reaction: 2N2O5(g) 4NO2(g) + O2(g) 1. The rate law for decomposition of N2O5(g) in the reaction above A. is rate = k[n2o5] B. is rate = k[n2o5] 2 C. is rate = [NO2]

More information

A First Course on Kinetics and Reaction Engineering Unit 14. Differential Data Analysis

A First Course on Kinetics and Reaction Engineering Unit 14. Differential Data Analysis Unit 14. Differential Data Analysis Overview The design equations (reactor models) for the perfectly mixed batch reactor and for the PFR are differential equations. This presents a small problem when data

More information

UNIT 4 CHEMICAL KINETICS

UNIT 4 CHEMICAL KINETICS Concentration Ankit Gupta Classes UNIT 4 CHEMICAL KINETICS MARK QUESTIONS Q.. In the reaction A B, if the concentration of A is plotted against time, the nature of the curve obtained will be as shown.

More information

1. The reaction between solid barium hydroxide and solid ammonium chloride can be represented by the equation below.

1. The reaction between solid barium hydroxide and solid ammonium chloride can be represented by the equation below. 1. The reaction between solid barium hydroxide and solid ammonium chloride can be represented by the equation below. Ba(OH) 2 (s) + 2NH 4 Cl(s) BaCl 2 (s) + 2NH 3 (g) + 2H 2 O(l) ΔH ο = +51.1 kj mol 1

More information

CHEM111 UNIT 1 MOLES, FORMULAE AND EQUATIONS QUESTIONS

CHEM111 UNIT 1 MOLES, FORMULAE AND EQUATIONS QUESTIONS Lesson 1 1. (a) Deduce the number of protons, neutrons and electrons in the following species: (i) 37 Cl - (ii) 1 H + (iii) 45 Sc 3+ (b) Write symbols for the following species: (i) 8 protons, 8 neutrons,

More information

A First Course on Kinetics and Reaction Engineering Example 15.2

A First Course on Kinetics and Reaction Engineering Example 15.2 Example 15.2 Problem Purpose This example illustrates the use of the integral method of data analysis with a rate expression that depends on the concentrations of more than one species. Problem Statement

More information

A First Course on Kinetics and Reaction Engineering Example 14.3

A First Course on Kinetics and Reaction Engineering Example 14.3 Example 14.3 Problem Purpose This problem illustrates differential analysis using data from a differentially operated PFR. Problem Statement The isomerization of cyclopropane, equation (1), was known from

More information